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Abstract. Drug-eluting stents have been used widely to prevent restenosis of

arteries following percutaneous balloon angioplasty. Mathematical modelling

plays an important role in optimising the design of these stents to maximise
their efficiency. When designing a drug-eluting stent system, we expect to have

a sufficient amount of drug being released into the artery wall for a sufficient
period to prevent restenosis. In this paper, a simple model is considered to
provide an elementary description of drug release into artery tissue from an

implanted stent. From the model, we identified a parameter regime to optimise

the system when preparing the polymer coating. The model provides some
useful order of magnitude estimates for the key quantities of interest. From the

model, we can identify the time scales over which the drug traverses the artery
wall and empties from the polymer coating, as well as obtain approximate
formulae for the total amount of drug in the artery tissue and the fraction

of drug that has released from the polymer. The model was evaluated by
comparing to in-vivo experimental data and good agreement was found.
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1. Introduction. Coronary artery disease (CAD) is a common cause of heart dis-
ease and heart attacks. It is caused by the buildup of atheroma, also known as
plaque, on the inner walls of the coronary arteries. Drug-eluting stents (DESs) are
currently one of the preferred treatment options of CAD. A DES generally consists
of a metallic scaffold to hold the artery open and a polymer coating containing
a drug that diffuses into its surroundings subsequent to deployment. The drug,
which is usually an anti-proliferant, helps to prevent re-blockage of the artery due
to restenosis. The drug is contained within the polymer coating and then slowly
released into the arterial wall from the polymer source over a period on the order
of 60-120 days [5, 17]. The first DESs were designed with nondegradable polymer
coatings; however, some of the newer DESs are manufactured with biodegradable
polymer coatings [7, 14]. In Figure 1, the deployment of a DES in a diseased
coronary artery is schematically represented.

StentBalloonPlaqueArtery

Drug-eluting
coating

Artery wall

Plaque

Figure 1. The deployment of a drug-eluting stent in a diseased coro-
nary artery. The stent is coated with a drug-loaded polymer, and sub-
sequent to deployment of the stent, drug releases from the stent coating
into the artery wall to prevent re-blockage due to restenosis.

Mathematical modelling has a huge potential to inform both the design of drug-
eluting stents and the choice of the appropriate DES for a specific lesion. For
that potential to be realised mathematical models of drug-eluting stents must be
capable of describing the phenomenon of restenosis and its modulation by the drugs
released by the stent. In other words mathematical models of drug-eluting stents
must model not just the chemistry of drug release and transport but also the biology
of restenosis and the interaction between the two. In this series of two papers we
present a modelling framework that can be used to address these questions. Our aim
is firstly to show that such models can be created and can give results consistent with
available experimental data, and secondly to show where additional experimental
measurements would be most useful to enable the refinement of these models. This
is the first of the two papers in which we use nondimensionalisation and asymptotic
analysis to investigate models of the drug release into the artery wall and transport
of drugs through the artery wall. In doing so we develop reduced models of the drug
concentration within the artery wall which are used as inputs for the models of the
biology of restenosis developed in the paper [19], which is currently in preparation.

Accurately modelling the kinetics of drug in-vivo subsequent to its release from a
stent coating is very challenging because there are numerous factors that can affect
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the drug behaviour. For example, drug redistribution will depend on its diffusive
and convective character in the artery wall, and the artery wall is known to contain
three distinct substructures through its thickness [17, 13]. Furthermore, compressed
atherosclerotic plaque is likely to form part of the drug’s tissue environment near to
the inner wall of the artery because of the stent implantation procedure [9]. Also,
the drug may bind specifically and non-specifically with receptors in the tissue,
and specific binding in particular can have a very strong effect on drug kinetics
[26, 27, 25]. Other complicating factors include the details of the construction and
drug loading of the polymer coating, and drug washout through the inner and outer
walls of the artery. Added to this, and for obvious reasons, there is a scarcity of
experimental data for drug release from stents implanted in-vivo.

Mathematical models of varying complexity and sophistication have been pro-
posed to model drug release from a DES. In a recent study, McGinty et al. [17]
have developed a hierarchy of mathematical models to describe elution from stents
that incorporate many of the phenomena referred to above; earlier references for
stent modelling can also be found in this study. Bozsak et al. [6] developed a com-
putational model for drug eluted from a drug-eluting stent into the arterial wall.
The model took into account the multilayered structure of the arterial wall and
incorporated a reversible binding model to describe drug interactions with the con-
stituents of the arterial wall. They assumed drug transport to be purely diffusive
in the polymer coating. The model considered here is closely related to the models
described in Borghi et al. [5], Sakharov et al. [21], and Tzafriri et al. [24].

In [5, 21], the transport of drug within the polymer is assumed to be dominated
by diffusion while in the artery wall, the effects of both diffusion and reversible
binding of drug to receptors were incorporated in the modelling. Only numerical
solutions were calculated. The model in [24] included drug convection, diffusion and
accounted for saturable binding of drug to both specific and non-specifics binding
sites. However they neglected the actual geometry of the drug-eluting stent and
approximated it using an equivalent phantom surface that elutes a defined drug
load to the arterial lumen and wall. They provided both numerical and analytical
results and also in-vivo experimential data.

McGinty et al. [15, 16] presented a collection of models to describe drug release
from the polymer including diffusion-based models and diffusion-dissolution-based
models. When the initial concentration of drug in the polymer exceeds the solubility
limit and the drug can only diffuse after it has dissolved, the models that incorporate
both dissolution and diffusion are often used [8, 10, 4]. However, when the drug
solubility is high or very low initial concentration of drug, a pure diffusion model
is more appropriate [18]. Sirianni et al. [22] evaluated models that accounted for
drug release from polymer coatings by different mechanisms. They observed that
Fickian diffusion, dissolution and osmotic gradient models were capable of fitting
the data equally well, and concluded that when the mechanism of drug release is
not known, the simplest model with good predictive value is desired.

In this paper, we analyse a somewhat simple model to describe the redistribu-
tion of drug in a coronary artery wall subsequent to its elution from an implanted
DES. We apply Fick’s laws to model the evolution of the drug concentration in the
polymer coating and in the tissue, and also include for the tissue the effects of drug
convection, diffusion and a reversible binding of drug to specific receptors. Both nu-
merical and analytical solutions are calculated. Although the model contains many
simplifying assumptions, it is in our view capable of providing some useful order of
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magnitude estimates for the key quantities of interest. It will be seen that three
independent small dimensionless parameters usually arise in the system, which com-
plicates an asymptotic analysis, but does allow for useful qualitative information
to be extracted. The advantage of a simple model is that we can obtain analytical
results which can provide useful qualitative insights into the mechanisms governing
release behaviour. From the analysis, we shall obtain the time scales over which the
drug traverses the artery wall, empties from the polymer coating and resides in the
arterial tissue. Also a formula for the total amount of drug in the artery tissue as
a function of time will be derived, as well as a formula for the release profile from
the polymer.
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Figure 2. Drug diffuses from a polymer coating into the artery wall.
In the arterial tissue, drug molecules can associate with and dissociate
from specific binding sites, and can diffuse in their free form. Drug
molecules may also be convected by the outward movement of plasma
through the artery wall.

2. Model of drug release from DES. For simplicity, we consider a one-dimen-
sional problem, and suppose that the polymer coating is located at −Lp < x < 0,
with x = 0 giving the interface between the polymer and the artery wall, and Lp, La
denoting the thickness of the polymer coating and the artery wall, respectively. It
is supposed that there is a stent strut located at x = −Lp through which the drug
cannot penetrate. We denote by cp(x, t) the concentration of drug in the polymer
at penetration x and time t, and suppose that this concentration is governed by
Fick’s law, so that (in dimensional variables):

∂cp
∂t

= Dp
∂2cp
∂x2

in − Lp < x < 0, t > 0,

∂cp
∂x

(−Lp, t) = 0 for t ≥ 0,

cp(x, 0) = c∗ for − Lp < x < 0,

(1)

where Dp is the constant diffusivity of the drug in the polymer coating, and c∗ is the
uniform initial drug concentration in the polymer. It should be emphasised that all
of the assumptions here concerning the drug and the polymer are certainly not true
of all stents. For example, the polymer coating may not be uniformly loaded, and
the drug concentration need not be below solubility throughout the coating [24, 22].
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Furthermore, some modern stent coatings are manufactured using biodegradable
materials. However, it should also be remembered here that the manufacturer has
control over the design of the polymer coating and the drug loading, and there is a
case to be made for designing the system so that its behaviour may be adequately
described by a simple mathematical model.

In the arterial tissue, it is supposed that the drug can associate with and dis-
sociate from its specific binding sites, and that it can diffuse in its free form and
be convected by the outward movement of plasma through the arterial wall. We
also suppose that the effect of non-specific binding is negligible. We denote by
C,B,A, a free molecule, a specific binding site, and a drug-specific binding site
complex (bound drug), respectively. The reversible binding reactions can then be
represented by:

C +B
kon


koff

A,

where kon, koff are rate constants. We denote by a(x, t), b(x, t), c(x, t) the concen-
trations of A,B,C, respectively, at location x and time t. Following [17, 24], we
suppose that the convection velocity of the plasma is constant and denote it by Va.
The governing equations for a, b, c are now:

∂a

∂t
= konbc− koffa, 0 < x < La, t > 0,

∂b

∂t
= −konbc+ koffa, 0 < x < La, t > 0,

∂c

∂t
+ Va

∂c

∂x
= Da

∂2c

∂x2
− konbc+ koffa, 0 < x < La, t > 0, (2)

c(La, t) = 0 for t > 0,

a(x, 0) = 0, b(x, 0) = b∗, c(x, 0) = 0 for 0 < x < La,

where Da is the diffusivity of the drug in the arterial tissue, and b∗ is the equilib-
rium concentration of specific binding site for the drug in the arterial tissue. It is
noteworthy in this model that the drug can only diffuse in its free form, and that
both the binding sites and the drug-binding site complexes are immobile. Therefore
binding will clearly have an effect on the rate at which the drug can move through
the tissue. The first three equations in (2) may be written in the equivalent form

∂

∂t
(a+ c) = Da

∂2c

∂x2
− Va

∂c

∂x
, 0 < x < La, t > 0,

∂

∂t
(a+ b) = 0, 0 < x < La, t > 0, (3)

∂a

∂t
= konbc− koffa, 0 < x < La, t > 0,

where, for example, equation (3)1 is obtained by forming (2)1+(2)3.
The problem is completed by imposing continuity in the drug concentration and

drug flux at the polymer-artery wall interface, so that

cp(0
−, t) = c(0+, t),

(
−Dp

∂cp
∂x

)
x=0−

=

(
−Da

∂c

∂x

)
x=0+

+ (Vac)x=0+ for t ≥ 0.

(4)

2.1. Non-dimensionalization. We introduce non-dimensional variables as fol-
lows

t̄ =
t

(L2
p/Dp)

, x̄ =
x

Lp
, ā =

a

b∗
, b̄ =

b

b∗
, c̄ =

c

c∗
, c̄p =

cp
c∗
,
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to obtain the following dimensionless equations (dropping the over-bars for conve-
nience)

Polymer coating :

∂cp
∂t

=
∂2cp
∂x2

, −1 < x < 0, t > 0,

∂cp
∂x

(−1, t) = 0 for t ≥ 0,

cp(x, 0) = 1 for − 1 < x < 0;

(5)

Arterial tissue:

ε
∂

∂t
(ηa+ c) =

∂2c

∂x2
− Pe

L

∂c

∂x
, 0 < x < L, t > 0,

a+ b = 1, δ
∂a

∂t
=
Kb

η
bc− a, 0 < x < L, t > 0,

c(L, t) = 0 for t ≥ 0,

c(x, 0) = 0 for 0 < x < L;

(6)

Polymer/artery wall interface:

cp(0
−, t) = c(0+, t),

(
−ε∂cp

∂x

)
x=0−

=

(
− ∂c
∂x

)
x=0+

+

(
Pe

L
c

)
x=0+

for t ≥ 0,

(7)
where

L =
La
Lp
, ε =

Dp

Da
, P e =

VaLa
Da

, η =
b∗

c∗
, Kb =

konb
∗

koff

, δ =
Dp

L2
pkoff

. (8)

Here L is the ratio of the artery and polymer coating thicknesses; ε is the ratio of
the diffusivities in the polymer coating and in the artery tissue; η is the ratio of
initial concentration of binding sites to initial drug concentration; Pe is the Peclet
number which determines the relative importance of drug transport by advection
and by diffusion (if Pe is small diffusion dominates over advection); Kb gives the
binding constant for drug to binding site (Kb � 1 and Kb � 1 correspond to strong
retention and weak retention, respectively, of the drug by the binding site); and δ
measures the ratio of the dissociation time scale to the diffusion time scale.

It is seen that for some drug/tissue systems of particular interest, the diffusion
time scale is much longer than the two time scales associated with specific binding
[27]. For example, taking Dp = 1.0 × 10−10 mm2s−1 (Table 3) as a representative
diffusivity for a drug in polymers and the polymer thickness to be L = 0.01 mm
(Table 1), we calculate a typical diffusion time scale to be L2

p/Dp ≈ 11.6 days.
However, the time scales associated with the binding reactions are frequently much
shorter. For Rapamycin, taking koff = 0.096 min−1 and kon = 4.8× 107 M−1 min−1

for the binding constants and b∗ = 3.3 × 10−6 M for the initial concentration of
binding sites [27] gives the binding time scales 1/koff ≈ 10.4 minutes and 1/(konb

∗) ≈
0.4 s. Therefore in this paper, we confine our discussion to cases for which the
diffusion time scale is much longer than the time scales associated with the binding
reactions, so that:

L2
p/Dp � max {1/(konb

∗), 1/koff} ,
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which implies that δ � min(Kb, 1). Hence, we neglect the term involving δ in the
second equation in (6)2, to obtain

ηa = Kbbc. (9)

The initial-boundary value problems (5), (6), (7) and (9) can be numerically inte-
grated using the command pdepe in the mathematical software package MATLAB.
The pdepe solver implements the method of lines to convert the partial differential
equation to a set of ordinary differential equations (ODEs) using a second-order
accurate spatial discretization. The resulting ODEs are integrated to obtain ap-
proximate solutions at various times. An implicit time-stepping finite difference
algorithm is used with the time step determined automatically and adaptively by
the ODE solver (ode15s in MATLAB).

Table 1. Data for some commercial drug-eluting stents.

DES / Drug
Polymer

Drug dose Life time References
thickness (Lp)

Cypher
12.6 µm

140 µg/cm2 80% of drug released
[7, 14]

/Rapamycin stent surface area within 30 days

Taxus
16 µm

100 µg/cm2 Early 48 hours burst, then
[7, 14]

/Paclitaxel stent surface area slow release over 10 days

Endeavor
5.3 µm

100 µg/cm 95% of drug released
[7, 14]

/Zotarolimus stent length within 15 days

Xience V
7.6 µm

100 µg/cm2 80% of drug released
[7, 14]

/Everolimus stent surface area within 30 days

Promus Element
7 µm

100 µg/cm2 80% of drug released
[3]

/Everolimus stent surface area within 30 days

2.2. Designing a stent coating system. In Tables 1, 2, 3, 4, and 5, values for the
parameters appearing in the model above are shown. The point of view taken in the

Table 2. Drug diffusivities, Da, in arterial tissues.

Drug Diffusivity Da (mm2/s) References

Rapamycin 1.5 − 2.5 × 10−4 [24]

Paclitaxel 2.6 × 10−6 [28]

Dextran 3.0 × 10−5 [12]

Heparin 7.7 × 10−6 [13]

Table 3. Data for drug diffusivities in polymers. Note: PEVA =
Poly(ethylene-co-vinyl acetate), PBMA = Poly(n-butyl methacrylate),
PVDF-HFP = Poly(vinylidene fluoride-co-hexafluoropropylene), SIBS =
Poly(styrene-b-isobutylene-b-styrene).

Drug Diffusivity Dp (mm2/s) Polymer DES References

Rapamycin 1.2 × 10−10 PEVA and PBMA Cypher This study
6.3 × 10−11 PEVA and PBMA Cypher [16]

Everolimus 1.0 − 1.2 × 10−11 PBMA and PVDF-HFP Xience V This study

Paclitaxel O(10−15) −O(10−11) SIBS Taxus [22]
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Table 4. Data for transmural velocities and pressures in the arterial wall.

Artery
Transmural Transmural

References
velocity (×10−5 mm/s) pressure (mmHg)

Porcine coronary 5.8 50 [24]

Rabbit carotid 1.85 ± 0.33 110 [11]

8.9 ± 6.8 60 [1]

Rabbit thoracic aorta 2.8 ± 0.9 70 [23]
4.4 ± 1.4 180 [23]

Rabbit femoral artery 3.3 ± 1.3 30 [2]
8.1 ± 2.4 60 [2]
9.9 ± 2.5 90 [2]

Table 5. Values for some of the non-dimensional parameters appearing
in the model for some commercial drug/stent systems. For the purposes
of calculation, the values La = 0.75 mm and Va = 6 × 10−5 mm/s [24]
have been chosen. For Rapamycin, koff = 0.096 min−1, kon = 4.8 × 107

M−1 min−1, and b∗ = 3.3 × 10−6 M [27, 24]. For Paclitaxel, koff = 5.46
min−1, kon = 2.2×108 M−1 min−1, and b∗ = 1.0×10−5 M [27, 28]. The
remaining values used can be found in Tables 1 and 2.

Stent/ Drug L = La/Lp Pe = VaLa/Da Kb = konb
∗/koff

Cypher/ Rapamycin 60 0.2 1700

Taxus/ Paclitaxel 47 17 400

Endeavor/ Zotarolimus 141 0.2 1700

Xience V/ Everolimus 99 0.2 1700

Promus Element/ Everolimus 107 0.2 1700

current analysis is that of a stent manufacturer who wishes to design a drug loaded
polymer coating. Such a person would prefer to restrict the design space to a region
where the performance of the stent could be robustly predicted by a simple model, if
that restriction allows viable stents to be designed. We show that by restricting our
attention to a system in which the polymer is monolithic and nondegradable, and
that the drug is uniformly dispersed throughout the polymer bulk at a concentration
below solubility, we are able to predict the performance of the system from a simple
model. The drug delivery industry has extensive experience in designing monolithic
polymeric devices.

The manufacturer wishes to design the system so that a sufficient amount of
drug is released into the artery wall for a sufficient period to prevent restenosis.
More precisely, the manufacturer wishes to design the system so that a significant
proportion of the specific binding sites in the artery wall are occupied by the drug
for a period of some months subsequent to the stent being implanted.

The task then is to identify a parameter regime for the governing equations that
achieves the stated goal subject to the constraints. From (8), it is seen that there are
five independent dimensionless parameters that can in principle be independently
varied to tune the system. However, two of these parameters, Kb and Pe, are largely
determined by the nature of the drug, and since most modern stent systems use
either sirolimus (or one of its close relatives) or paclitaxel, there is not much scope
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for varying these. The parameter L may be varied by changing the thickness of the
polymer. However, the parameters ε = Dp/Da and η = b∗/c∗ are probably the most
convenient to use to optimise the system since the diffusivity and the drug-loading
for the polymer are readily changed.

We first turn our attention to the selection of appropriate values for the parameter
ε. A drug-eluting stent implanted in a coronary artery is required to release drug
for a period of at least a few months subsequent to its deployment in order to
prevent restenosis [7, 14]. Hence, since we are assuming here that diffusion is the
only mechanism for drug transport in the polymer coating, it is required that the
drug diffusion time scale in the polymer, L2

p/Dp, should be of the order of some
weeks. For the sake of definiteness, we suppose that:

L2
p/Dp ∼ 2 weeks. (10)

Inspecting Table 1, it is seen that Lp ∼ 10 µm, and (10) then implies that for the
drug to release from the polymer over an appropriate time scale, the polymer should
be fabricated so that:

Dp ∼ 10−10 mm2/s or smaller. (11)

It is noteworthy that the diffusivities Dp displayed in Table 3 are O(10−10) mm2/s
or smaller.

Inspecting the data in Table 2, it is seen that if Dp ∼ 10−10 mm2/s, then:

ε =
Dp

Da
∼


10−6 for rapamycin,
10−4 for paclitaxel,
10−5 for heparin,
10−5 for dextran.

(12)

If ε is of order 10−4 or smaller, then it is clear from Table 5 that for commercially
available stenting systems, we have:

ε� 1/Kb � 1/L� 1. (13)

It would seem from this that ε → 0 is a sensible limit to consider to analyse the
behaviour of (5), (6) and (7). This is indeed the case, but care must be taken
to ensure that combinations of Kb and L do not arise in the system which may
interfere with the accuracy of the results. This follows from the fact that in order
to preserve the accuracy of our results, no quantity may arise in our equations (6)
that is comparable to or smaller than ε. This could arise because 1/Kb, 1/L are
both small. In fact, we shall show that we require ε� 1/L2 in the next section.

We now turn our attention to the selection of the parameter η, which corresponds
to choosing a drug loading concentration for the polymer. After briefly investigating
various limits for the governing equations, we propose the following:

η/Kb = O(ε),

with ε� 1 as explained above, or, in dimensional terms:

c∗/KD = O (Da/Dp) , with Dp � Da,

where KD = koff/kon is the dissociation constant for the drug from its specific
binding sites. It is noteworthy that with this choice the mass transfer Fourier
number in the artery tissue will be Fo = O( 1

εL2 ) � 1. Therefore we can assume
that the drug concentration in the artery wall is approximately independent of
space. In our second paper [19], the drug concentration is assumed to be constant
in the intima for small timescales.

We now justify this choice by carrying out an asymptotic analysis of the governing
equations in the limit ε→ 0, with η/Kb = O(ε).
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2.3. Preparing the polymer coating: c∗/KD = O (Da/Dp) , Dp/Da � 1. Writ-
ing η/Kb = µε with µ = O(1), so that the second equation in (6)2 becomes:

µεa = bc.

Since Kb � 1 for most of the drugs of interest, we shall also make the choice
Kb = O(ε−1/2) here, which implies that η = O(ε1/2). However, this choice is not
particularly significant since most of the more important results shall be derived
below depend only on the requirement that η/Kb = O(ε), ε � 1. We write η =
ε1/2η∗ with η∗ = O(1).

There are two time scales to consider in the limit ε → 0: a short time scale
t = O(ε), and a longer time scale t = O(1).

2.3.1. Short time scale, t = O(ε). In dimensional terms, this time scale is given by
t = O(L2

p/Da). Writing t = εt̂, it is found that cp ∼ 1 in −1 < x < 0, t̂ = O(1).

In 0 < x < L, t̂ = O(1), we have a = 1 +O(ε1/2), b, c = O(ε1/2), and we pose

a ∼ 1 + ε1/2â0(x, t̂), b ∼ ε1/2b̂0(x, t̂), c ∼ ε1/2ĉ0(x, t̂) as ε→ 0,

to obtain
â0(x, t̂) = − µ

ĉ0(x, t̂)
, b̂0(x, t̂) =

µ

ĉ0(x, t̂)
,

and
∂ĉ0

∂t̂
=
∂2ĉ0

∂x2
− Pe

L

∂ĉ0

∂x
, 0 < x < L, t̂ > 0. (14)

Recalling that L� 1, it is clear that the diffusion term dominates on the right hand
side of equation (14); so that the drug traverses the artery wall on the diffusion
time scale t̂ = O(L2), or t = O(εL2), which corresponds in dimensional terms to
t = O(L2

a/Da), the diffusion time scale for the free drug in the artery wall. We
deduce from this that in order for the asymptotic approximations to be valid, it is
required that ε� 1/L2, or, in dimensional terms:

Dp �
L2
p

L2
a

Da, or
L2
p

Dp
� L2

a

Da
, (15)

which implies that the drug diffusion time scale in the polymer must be much
longer than the free drug diffusion time scale in the artery wall. For rapamycin,
this implies that L2

p/Dp � 1 hours, and for paclitaxel it requires that L2
p/Dp � 2

days. However, we are insisting that L2
p/Dp ∼ 2 weeks here, as previously discussed,

so these criteria are met.
The specification of the problem for ĉ0(x, t̂) requires the derivation of a boundary

condition for ĉ0 on x = 0. This is obtained by noting that there is a boundary layer
near the surface of the polymer where it interfaces with the artery tissue. This
layer is located at x̂ = O(1), x̂ < 0 where x = ε1/2x̂, and in x̂, t̂ = O(1), we pose
cp ∼ ĉp0(x̂, t̂) to obtain

∂ĉp0

∂t̂
=
∂2ĉp0

∂x̂2
, −∞ < x̂ < 0, t̂ > 0,

ĉp0(x̂, t̂)→ 1 as x̂→ −∞, t̂ ≥ 0, (16)

ĉp0(0−, t̂) = 0 for t̂ ≥ 0,

and this self-similar problem has solution

ĉp0(x̂, t̂) = −erf

(
x̂

2
√
t̂

)
. (17)
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The perfect sink boundary condition on x = 0− in (16) is noteworthy because it
implies that at leading order the problem for the drug concentration in the polymer
decouples from that in the tissue. It also implies that in-vitro experimental release
studies should adequately mimic the release behaviour from the polymerin on this
time scale (and for longer times too, as we shall see). It follows from (17) that, in
dimensional unscaled variables, the fraction of drug released from the polymer for
short times is approximated by

M(t)

M(∞)
∼ 2

√
Dpt

πL2
p

for t = O
(
L2
p/Da

)
. (18)

The boundary condition for ĉ0 on x = 0 is obtained by matching the drug fluxes
across x = 0. (see equation (7)):

lim
x̂→0−

(
−∂ĉp0

∂x̂

)
= lim
x→0+

(
−∂ĉ0

∂x
+
Pe

L
ĉ0

)
,

to obtain:

− ∂ĉ0

∂x
(0+, t̂) +

Pe

L
ĉ0(0+, t̂) =

1√
πt̂

for t̂ ≥ 0. (19)

Combining (14) and (19) yields a nonlinear initial boundary value problem which
can in principle be solved for ĉ0. However, the solution to (14) and (19) is not
pursued here. In Figure 3, we plot some numerical solutions to (5-7) for ε = 10−6

and t = O(εL2) and for parameter values appropriate to rapamycin. It is clearly
seen in this figure that the drug traverses the artery wall on this time scale, and
that there is a sharp diffusion front tracking to the right.

2.3.2. Long time scale, t = O(1). This is the time scale over which the drug empties
from the polymer coating, and in dimensional terms, it is given by t = O(L2

p/Dp).
In −1 < x < 0, t = O(1), we pose cp ∼ cp0(x, t) as ε→ 0, to obtain:

∂cp0

∂t
=
∂2cp0

∂x2
, −1 < x < 0, t > 0,

∂cp0

∂x
(−1, t) = 0 for t ≥ 0, (20)

cp0(0−, t) = 0 for t ≥ 0,

cp0(x, 0) = 1 for − 1 < x < 0.

Notice that on this time scale, we also have a perfect sink boundary condition for the
drug on x = 0−. This is obtained by matching with the free drug concentration at
x = 0+; see below. Hence, the leading order problem for the drug concentration in
the polymer again decouples from the leading order problem in the tissue. Solving
(20) yields:

cp0(x, t) = − 4

π

∞∑
n=1

1

2n− 1
sin

(
(2n− 1)πx

2

)
exp

(
− (2n− 1)2π2t

4

)
. (21)

The fraction of the total drug released in t = O(1) is easily calculated using
this expression; combining the results of this calculation with (18) now gives (using
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Figure 3. Numerical solutions to the initial boundary value problem
(5-7) for various dimensional times t = O(L2

a/Da), the diffusion time
scale for free drug in the artery wall. The drug penetrates the artery
wall on this time scale and this is evident in the figures. We have plotted
profiles for the bound drug in the artery wall in (a), and the free drug
in the polymer and the artery wall in (b). The parameter values used
are L = 60, ε = 10−6, η = 0.002,Kb = 1700, and Pe = 0.2.

dimensional variables):

M(t)

M(∞)
∼


2
√

Dpt
πL2

p
for t = O

(
L2
p/Da

)
,

1− 8
π2

∞∑
n=1

1
(2n−1)2 exp

(
− (2n−1)2π2Dpt

4L2
p

)
for t = O

(
L2
p/Dp

)
,

(22)
In 0 < x < L, t = O(1), we have a, b = O(1), c = O(ε), and pose:

a ∼ a0(x, t), b ∼ b0(x, t), c ∼ εc0(x, t) as ε→ 0,

to obtain

a0(x, t) =
c0(x, t)

µ+ c0(x, t)
, b0(x, t) =

µ

µ+ c0(x, t)
. (23)
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Recalling that η = O(ε1/2), as ε→ 0 we have that

∂2c0

∂x2
− Pe

L

∂c0

∂x
= 0, 0 < x < L, t > 0,

− ∂c0

∂x
(0+, t) +

Pe

L
c0(0+, t) = γ(t) for t ≥ 0, (24)

c0(L, t) = 0 for t ≥ 0,

where

γ(t) = −∂cp0

∂x
(0−, t) = 2

∞∑
n=1

exp

(
− (2n− 1)2π2t

4

)
, (25)

is the leading order flux of drug from the polymer into the tissue across x = 0
for t = O(1). These equations imply that the behaviour in the arterial tissue
is approximately quasistatic, with the time dependence only entering via a time-
varying flux of drug from the polymer coating, γ(t). Integrating (24) leads to the
following approximation

c(x, t) ∼ εγ(t)L

Pe

(
1− e−Pe(1−x/L)

)
, (26)

so that

a(x, t) ∼
γ(t)L

(
1− e−Pe(1−x/L)

)
µPe+ γ(t)L

(
1− e−Pe(1−x/L)

) ,
b(x, t) ∼ µPe

µPe+ γ(t)L
(
1− e−Pe(1−x/L)

) ;

(27)

similar forms have recently been noted by Tzafriri et al. [24]. Hence, at the midpoint
of the artery wall, we have

a(L/2, t) ∼
γ(t)L

(
1− e−Pe/2

)
µPe+ γ(t)L

(
1− e−Pe/2

) .
Recalling that 1/ε� L� 1, we have that

a(L/2, t) ∼ 1 for γ(t) = O(1),

so that we have approximately full occupancy of the specific binding sites at the
centre of the artery wall on the time scale γ(t) = O(1), or t = O(1). In dimensional
terms, this corresponds to t = O(L2

p/Dp), the diffusion time scale in the polymer
which can be tuned by the manufacturer by making appropriate choices for Lp and
Dp. This suggests that the parameter regime we have chosen for the design of the
coating system should produce satisfactory results since it predicts that a significant
proportion of the specific binding sites in the artery wall will be occupied by the
drug for a period of some months subsequent to the stent being implanted. In other
words, it predicts that sufficient drug will be having its physiological effect in the
artery tissue over the time scale of interest.

In Figure 4, we plot some numerical solutions to (5-7) for ε = 10−6 and t = O(1).
It is confirmed in this figure that to a good approximation the behaviour is indeed
quasistatic in the artery tissue, with the shape of the profiles scarcely changing for
successive times. We also note that a significant proportion of the specific binding
sites away from the outer wall of the artery are occupied for γ(t) = O(1).
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Figure 4. Numerical solutions to the initial boundary value problem
(5-7) for various dimensional times t = O(L2

p/Dp). On this time scale,
the behaviour in the arterial tissue is quasistatic, and is driven tempo-
rally by the decreasing flux of drug from the stent coating. We have
plotted profiles for the bound drug in the artery wall in (a), and the free
drug in the polymer and the artery wall in (b). The parameter values
used are L = 60, ε = 10−6, η = 0.002,Kb = 1700, and Pe = 0.2.

The average occupancy of the specific binding sites over the thickness of the
artery wall is given by

ma(t) =
1

L

∫ L

0

a(x, t)dx.

In Figure 5 (a), we plot this quantity as a function of time for ε = 10−6 and various
values of η, with the other parameter values being appropriate for sirolimus, and
a(x, t) is calculated numerically from the initial boundary value problem (5-7). The
rapid climb in the profiles near t = 0 corresponds to the initial layer t = O(εL2);
this rapid behaviour has been observed in experimental studies [24]. We also note
that a significant proportion of the binding sites are occupied for a period of a few
months.
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Using (27)1, we obtain the useful approximation for t = O(1)

ma(t) ∼
γ(t)L+ µ ln

(
1

1+
γ(t)L
µPe (1−e−Pe)

)
µPe+ γ(t)L

for t� εL2. (28)

In Figure 5 (b), we compare this result to the numerical profiles for various val-
ues of η for the first month. There is a good agreement for t = O(1), which in
dimensional terms corresponds to t = O(L2

p/Dp), as expected. The sub window in
Fig. 5 shows the relative errors between the asymptotic and numerical solutions,
(ma,numerical −ma,asymptotic)/ma,numerical. The discrepancies increase with increas-
ing time due to the fact that the asymptotic approximations are just to the leading
order and cannot be expected to match the true solution exactly.

In addition, the approximation for the average of free drug over the thickness of
the artery wall is calculated using (26)

mc(t) =
1

L

∫ L

0

c(x, t)dx ∼ εγ(t)L

Pe2
(
Pe− 1 + e−Pe

)
for t� εL2, (29)

then the average average mass of drug in the artery wall is

mT (t) = ηma(t) +mc(t). (30)

The asymptotic analysis has justified the selection of parameters with η/Kb =
O(ε) and ε � 1, or in dimensional terms, c∗/KD = O (Da/Dp) and Dp � Da.
It implies that when preparing the polymer coating, the diffusion of drug in the
polymer should be much slower than in the artery tissue and the ratio of initial
drug concentration to the dissociation constant should be proportional to the ratio
of the drug diffusivity in the artery tissue to the diffusivity in the polymer. Then
we can expect that a significant proportion of the specific binding sites in the artery
wall are occupied by the drug for a sufficient amount of time for the therapy to be
effective.

2.4. Comparison with experimental data. We now compare the modelling re-
sults with in-vivo experimental data of drug elution from Cypher[24] and Xience
V stents [20] implanted in porcine coronary arteries. We fit the expression (22)2
for t = O

(
L2
p/Dp

)
to the experimental data using the method of least squares,

with Dp being the only unknown parameter. The nonlinear equation for Dp arising
from this fitting procedure was solved numerically using the mathematical package
MAPLE, and the estimates for Dp obtained from the fitting procedure are given in
Table 3. The good agreement between the model results and the experimental data
in Figure 6 demonstrates that diffusion is the dominant mechanism of release, at
least for these particular stents. Therefore the simple diffusion model is sufficient
here to describe drug release from the polymer coating. Figure 7 also shows a good
agreement between the average mass of drug in the artery wall calculated by (30)
and in-vivo experimental data. The fitting errors are estimated using the mean
squared error (MSE) expression.

3. Conclusion. In this paper, we considered a simple model to provide an ele-
mentary description of drug release into artery tissue from an implanted stent. The
model tracks the evolution of the concentration of both free drug and bound drug
in the tissue. In the current work, we have only considered a one dimensional
model, the structure of the artery wall was assumed to be homogeneous, and the
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Figure 5. Plots of the average bound drug, ma(t), in the artery wall
as a function of time t for various values of η, and with L = 60, ε =
10−6,Kb = 1700, and Pe = 0.2. On the vertical scale, 1 corresponds
to full occupancy of the specific binding sites. The rapid rise in the
profiles near t = 0 corresponds to the short time scale over which free
drug in the tissue crosses the artery wall. In (a), ma(t) was calculated
from numerical solutions of the initial boundary value problem (5-7).
It is seen that there is significant occupancy of the binding sites for a
period of a few months subsequent to the stent being implanted. In
(b), we compare the asymptotic solution (28) to numerical results for
the first month. The sub window shows the relative errors between the
asymptotic and numerical solutions, (ma,numerical −
ma,asymptotic)/ma,numerical.

effect of the non-specific binding site was neglected. Also a perfect sink condition
was used at the distal end of the artery wall. In addition, we have only considered
the case of a polymer that is monolithic and nondegradable, and where the drug is
uniformly dispersed throughout the polymer bulk at a concentration below solubil-
ity. Although we have used many simplifying assumptions, as we demonstrate by
comparing solutions to experimental data, the model is capable of providing some
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Figure 6. Comparison between in-vivo experimental data and mod-
elling profiles for the fraction of the total drug released. In (a), Ra-
pamycin release from Cypher [24] with Dp = 1.2×10−10 mm2/s and the
mean squared error MSE = 9 × 10−4. In (b), Everolimus release from
Xience V [20] with Dp = 1.1 × 10−11 mm2/s and MSE = 9 × 10−3.

useful order of magnitude estimates for the key quantities of interest. When design-
ing a drug-eluting stent system, we expect to have a sufficient amount of drug that
is released into the artery tissue for a sufficient amount of time to prevent resteno-
sis. A parameter regime is identified to optimise the system when preparing the
polymer coating based on the model. It is shown that with the chosen parameter
regime for the design of the coating system, a significant proportion of the specific
binding sites in the artery wall are occupied by the drug for a period of some months
subsequent to the stent being implanted. The model was evaluated by comparing
with in-vivo experimental data and good agreement was found. In addition, we
found that the mass transfer Fourier number in the artery tissue, Fo = O( 1

εL2 ), is
large. We therefore can assume a homogeneous distribution of drug when devel-
oping models of the interaction of the drug with the cellular processes leading to
restenosis, the subject of the second paper in this sequence [19].

Acknowledgments. We gratefully acknowledge the support of the Mathemat-
ics Applications Consortium for Science and Industry (www.macsi.ul.ie) funded
by the Science Foundation Ireland (SFI) Investigator Award 12/IA/1683. Dr Vo
also thanks the New Foundations Awards 2013 and 2014 from the Irish Research
Council.



508 TUOI VO, WILLIAM LEE, ADAM PEDDLE AND MARTIN MEERE

0 3 6 9 12 15 18 21 24 27 30
0

0.05

0.1

0.15

Time t (days)

N
o

rm
a

li
z
e

d
 m

a
s

s
 o

f 
d

ru
g

 i
n

 a
rt

e
ry

(a)

 

 

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.01

0.02

0.03

0.04
(b)

Time t (days)

N
o

rm
a

li
z
e

d
 m

a
s

s
 o

f 
d

ru
g

 i
n

 a
rt

e
ry

 

 

 

Model
In−vivo data (Tzafriri et al., 2012)

Model
In−vivo data (Perkins et al., 2009)

Figure 7. Comparison of the average mass of drug in the artery wall
calculated by (30) to in-vivo experimental data after (a) implantation
of Cypher stents from 1 to 30 days [24] and (b) implantation of Xience
V stents from 1 to 120 days [20]. Values have been normalized with
respect to the initial drug content, M(0). The parameter values used
are: La = 0.45 mm, Da = 2.5 × 10−4 mm2/s, Va = 5.8 × 10−5 mm/s,
Kb = 300; (a) Lp = 1.26×10−2 mm, M(0) = 174.89 µg, Dp = 6.0×10−11

mm2/s, η = 0.0075 (MSE=1.7 × 10−4); and (b) Lp = 7.6 × 10−3 mm,
M(0) = 100 µg, Dp = 1.0×10−11 mm2/s, η = 0.002 (MSE=2.2×10−4).
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