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Abstract. One-dimensional logistic population models with quasi-constant-
yield harvest rates are studied under the assumptions that a population in-

habits a patch of dimensionless width and no members of the population can

survive outside of the patch. The essential problem is to determine the size of
the patch and the ranges of the harvesting rate functions under which the pop-

ulation survives or becomes extinct. This is the first paper which discusses such
models with the Dirichlet boundary conditions and can tell the exact quantity

of harvest rates of the species without having the population die out. The

methodology is to establish new results on the existence of positive solutions
of semi-positone Hammerstein integral equations using the fixed point index

theory for compact maps defined on cones, and apply the new results to tackle

the essential problem. It is expected that the established analytical results
have broad applications in management of sustainable ecological systems.

1. Introduction. The temporal behavior of population of one species which inhab-
its a strip of dimensionless width and obeys the logistic growth law can be modeled
by a reaction-diffusion equation

∂w(t,X)

∂t
= rw(t,X)

[
1− w(t,X)

K

]
+ d

∂2w(t,X)

∂X2
(1.1)

with suitable boundary conditions (BCs), where w(t,X) is the population density of
a species at time t and location X. Such a model was derived by Ludwig, Aronson
and Weinberger [20] in 1979, based on a more general model whose derivation can
be found in [23, 26]. (1.1) is called the Fisher equation proposed by Fisher [11] to
model the advance of a mutant gene in an infinite one-dimensional habitat.
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It is well known that exploiting biological resources and harvesting populations
often occur in fishery, forestry, and wildlife management [4, 5, 6, 7], and overex-
ploitation leads to extinction of species [3, 17, 27, 29]. This leads to the introduction
of harvest rates into a variety of population models. The population models with
harvesting rates governed by one or two first-order ordinary differential equations
have been widely studied in [4, 6, 7, 17, 27, 29] and the references therein. From
[17, 27, 29], one can see that the constant harvest rates greater than 1/4 lead to
extinction of species.

There are a few papers which study on population models with harvesting rates
governed by reaction-diffusion equations [22, 24, 25]. One of these harvesting rates
is the quasi-constant-yield harvest rate introduced by Roques and Chekroun [25] in
2007. This leads to the following population model

∂w(t,X)

∂t
= rw(t,X)

[
1− w(t,X)

K

]
+ d

∂2w(t,X)

∂X2
− δH(X)ρε0(w(t,X)), (1.2)

where ρε0 : R→ R+ is a differentiable and increasing function satisfying ρε0(w) = 0
for w ∈ (−∞, 0] and ρε0(w) = 1 for w ∈ (ε0,∞). In the model, the harvest term is
requested to depend on the population densities when the densities are very lower
(≤ ε0) to ensure the nonnegativity of the solution w. However, when the population
densities are greater than ε0, the harvest rate at location X is a constant δH(X).
It is mentioned in [25] that considering a constant harvest rate δH(X) without the
function ρε0 would result in a harvest on zero-populations, which makes the model
unrealistic.

Equation (1.2) with Neumann BCs or periodic function H was studied in [25]
even in a more general setting, where X ∈ Ω ⊂ Rn and heterogeneous environments
were considered, that is, the first term on the right side of (1.2) is replaced by
w(t,X)

[
µ(X)−ν(X)w(t,X)

]
. Using sub- and supersolution methods it was proved

in [25] that there exists δ∗ > 0 such that for δ ≤ δ∗ the positive steady-state
solutions exist and for δ > δ∗ there are no such solutions [25, Theorem 2.6]. It
is mentioned in [25, p.139] that obtaining information on the threshold value δ∗ is
precious for ecological questions such as the study of the relationship between δ∗

and the environmental heterogeneities. There is only one result on the computable
bounds for δ∗ [25, Theorem 2.10], where Neumann BCs or periodic functions H are
considered.

Neubert [22] considered the population models with the proportional harvest
rates, that is, the harvesting term of (1.2) is replaced by δH(X)w(t,X), subject
to the Dirichlet BCs: w(t, 0) = w(t, l) = 0, where l is the habitat patch size. It
is pointed out in [22, p.845] that considering the Dirichlet BCs is of ecological
importance since they reflect the discontinuity between the habitat patch and its
uninhabitable surroundings.

To the best of our knowledge, there are no results on model (1.2) with the
Dirichlet BCs. In this paper, we investigate (1.2) with the Dirichlet BCs via its
steady-state solutions. We shall study the following two essential problems to the
population models (1.2) with the Dirichlet BCs.

(1) Since the population is diffusing, some members in the population may be
lost through the boundary. Hence, it is of importance to find a critical patch size l∗

such that the population cannot sustain itself against boundary losses if the patch
size is less than l∗, and can always maintain itself if the patch size is greater than
l∗. When H ≡ 0, this problem was studied in [20, p.224].
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(2) The effects of the quasi-constant-yield harvest rates on the population system,
that is, to seek the threshold value δ∗ for (1.2) with the Dirichlet BCs.

However, it seems difficult to find the exact critical patch size l∗ and determine
the exact threshold value δ∗ for (1.2) with the Dirichlet BCs. It turns out for us to
find the ranges for the patch size l and the computable expressions for the bounds of
δ∗ under which the population persists or becomes extinct. Similar to the problem
studied in [25], seeking the computable bounds of δ∗ for (1.2) with the Dirichlet
BCs is precious for the population models since they can tell the exact quantity of
harvest rates of the species without having the population die out.

After rescaling the variables of (1.2), the steady-state equations of (1.2) with the
Dirichlet BCs is of the form{

−y′′(x) = λ
[
y(x)(1− y(x))− hλ(x)ρε(y(x))

]
for x ∈ [0, 1],

y(0) = y(1) = 0,
(1.3)

where λ is related to the patch size l and the norm ‖hλ‖ can be used to determine
the value δ in (1.2). Note that the function hλ in the harvest term depends on λ,
which implies that harvesting policy must be made based on the patch size l.

The persistence or extinction of the population corresponds to existence or nonex-
istence of positive solutions of (1.3), respectively. A solution y of (1.3) is said to be
positive if it satisfies y(x) > 0 for x ∈ (0, 1).

Our purpose is to seek the range of λ and the function hλ (equivalently, the
function H) under which (1.3) has no positive solutions or has positive solutions.
This is equivalent to look for the range of λ and a function h independent of λ under
which the following second order boundary value problem{

−y′′(x) = λ
{
y(x)[1− y(x)]− h(x)ρε(y(x))

}
for x ∈ [0, 1],

y(0) = y(1) = 0
(1.4)

has no positive solutions or has positive solutions.
We shall prove that when λ ∈ (0, π2], (1.4) has no positive solutions for any

continuous function h, and when λ > 32, (1.4) has positive solutions under suitable
assumptions on the norm ‖h‖. These assumptions provide computable explicit
expressions for the upper bound of ‖h‖. All the expressions are hyperbola functions
of λ or rational functions of λ with the degrees of the numerator and denominator
being 1 and 2, respectively, so the values of the upper bounds can be easily computed
when λ > 32 is given. This provides the exact quantity of harvest rates of the species
without having the population die out.

When π2 < λ ≤ 32, we do not obtain any results on existence of positive solutions
of (1.4), but we conjecture that the critical size λ for (1.4) is π2 since it is true when
h ≡ 0, see [9, Lemma 1(i)] or [19, Lemma 1.1(ii)]) and [8, Lemma 1.1].

As illustrations of our results, we consider two specific functions h: one is a
location-independent constant function defined by h(x) ≡ σ(λ), and another is
the unimodal polynomial defined by h(x) = γ(λ)x(1 − x) for x ∈ [0, 1], which
corresponds to a radial harvest rate approaching maximum only at the center of
the patch. When λ > 32, we provide the intervals for σ(λ) or γ(λ) under which the
harvest activity does not result in extinction of the population.

Our method is to study the existence of positive solutions of a semi-positone
Hammerstein integral equation of the form

y(x) = λ

∫ 1

0

k(x, s)f(x, y(s)) ds for x ∈ [0, 1], (1.5)
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where the nonlinearity f satisfies the semi-positone condition:

f(x, u) ≥ −η(x) for a.e. x ∈ [0, 1] and all u ∈ R+, (1.6)

and η is a measurable and positive real-valued function defined on [0, 1]. Previous
results considered the case when η is a constant function (for example see [2, 12,
13, 14, 21] and the references therein).

By employing the well-known nonzero fixed point theorems for compact maps
defined on cones obtained via the fixed point index [1], we prove a result on the
existence of nonzero nonnegative solutions of (1.5) with λ = 1 and then apply the
result to obtain a new result on the eigenvalue problem (1.5). The last result is the
key of dealing with the biological model (1.4). By defining a suitable nonlinearity
f , we are able to transfer the boundary value problem (1.4) into (1.5) with the
well-known Green’s function.

To the best of our knowledge, this is the first paper to apply results on existence of
positive solutions of semi-positone integral equations (1.5) to tackle the ecological
model described by the equation (1.4). We believe that the results on existence
of positive solutions of (1.5) would be also interesting to researchers working on
integral equations and boundary value problems.

In section 2 of this paper, we formulate the model, rescale the variables, derive
the steady-state equation of (1.2) with the Dirichlet BCs, and state the main results
on positive steady-state solutions. In section 3 we provide and prove results on the
existence of positive solutions of semi-positone Hammerstein integral equations (1.5)
and apply them to section 4 to prove all the results mentioned in section 2. In the
last section, we discuss and propose some questions about the model (1.2) with the
Dirichlet BCs and its generalization.

2. Main results on the logistic models with quasi-constant-yield harvest
rates. In this section, we derive the logistic models with quasi-constant-yield har-
vest rates subject to the Dirichlet BCs, derive the stead-state equations of the
models and give the main results on the positive steady-state solutions.

We consider population of one species whose density varies in space and time.
Following [20, 22], we assume that the species inhabits a patch of favorable envi-
ronment, in a one-dimensional strip of length l, surrounded by unsuitable habitat,
and individuals that cross the boundary immediately die. Individuals in the pop-
ulation are assumed to disperse randomly, without regard to the positions of their
neighbors, and the dispersal of the species is purely diffusive, so systematic motions
are not considered. Under these assumptions, if the population obeys the logistic
growth law and quasi-constant-yield harvesting is considered, then the temporal
behavior of the species can be modeled by the following reaction-diffusion equation

∂w(t,X)

∂t
= rw(t,X)

[
1− w(t,X)

K

]
+ d

∂2w(t,X)

∂X2
− δH(X)ρε0(w(t,X)), (2.1)

subject to the Dirichlet boundary conditions:

w(t, 0) = w(t, l) = 0, (2.2)

where w(t,X) is the population density of a species at time t and location X.
Equation (2.1) shows that the rate of change of population density at a given

location depends on population growth, movement and harvesting. The first term on
the right side of (2.1) represents logistic growth rate. The parameter r is the intrinsic
growth rate of the species and K is the environmental carrying capacity. The second
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term describes the movement of the population as by diffusion; the parameter d is
the diffusion coefficient. The last term denotes the quasi-constant-yield harvesting
introduced in [25, p.136]. This corresponds for example, to a population of animals
from which some of individuals are removed per year by hunting or trapping. The
function H is called the harvesting scalar field, the parameter δ is the amplitude of
this field, and ρε0 : R→ R+ is a differentiable and increasing function satisfying

ρε0(w) =

{
1 if w ∈ (ε0,∞),
0 if w ∈ (−∞, 0),

(2.3)

where ε0 ∈ [0, 1) is a given small constant. With such a function ρε0 , the yield
depends on the population density when u < ε0, but it is a constant δH(X) when
u ≥ ε0. Biologically, the number ε0 is a threshold value below which harvesting is
progressively abandoned. It was pointed out in [25, p.136] that without the thresh-
old value, the model equation (2.1) only with constant-yield harvesting function
δH(X) is unrealistic since it would lead to a harvest on zero population.

Since it is assumed that no members of the population survive outside the strip,
the population density at the habitat boundary is zero, which leads to the boundary
conditions (2.2). The model is complete.

Let x = X/l and v(t, x) = w(t,X)/K. Then (2.1)-(2.2) is equivalent to the
following boundary value problem

∂v(t, x)

∂t
− d

l2
∂2v(t, x)

∂x2
= rv(t, x)[1− v(t, x)]− δH(lx)ρε0(Kv(t, x)),

v(t, 0) = v(t, 1) = 0.
(2.4)

If a solution v of (2.4) satisfies ∂v(t, x)/∂t ≡ 0, then v is independent of t, and is a
function of x. Such solutions are called the stead-state solutions of (2.4) and are of
the form−

d

l2
y′′(x) = ry(x)[1− y(x)]− δH(lx)ρε0(Ky(x)) for x ∈ [0, 1],

y(0) = y(1) = 0.
(2.5)

Let

λ = l2r/d, ε = ε0/K and hλ(x) = δH(lx)/r. (2.6)

Since the first term of (2.6) implies that λ is related to the patch size l, by the
last term of (2.6), we see that the harvest function hλ depends essentially on l.
Biologically, it implies that making the harvest strategies must be based on the
patch size.

By (2.6), (2.5) becomes the second order boundary value problem{
−y′′(x) = λ

{
y(x)[1− y(x)]− hλ(x)ρε(y(x))

}
for x ∈ [0, 1],

y(0) = y(1) = 0.
(2.7)

where ρε : R → R+ is a differentiable and increasing function satisfying ρε(y) = 0
for y ∈ (−∞, 0] and ρε(y) = 1 for y ∈ (ε,∞).

We denote by C[0, 1] the Banach space of continuous functions defined on [0, 1]
with the norm ‖y‖ = max{|y(x)| : x ∈ [0, 1]} and by P the positive cone, that is,

P = {y ∈ C[0, 1] : y(x) ≥ 0 for x ∈ [0, 1]}. (2.8)

A function y : [0, 1] → R is called a solution of (2.7) if y ∈ C2[0, 1] satisfies (2.7),
where C2[0, 1] = {y ∈ C[0, 1] : y′′(x) ∈ C[0, 1] for x ∈ [0, 1]}. If y is a solution of
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(2.7), then v(t, x) ≡ y(x) is a solution of (2.4). A solution y of (2.7) is called a
nonnegative solution if y ∈ P , and a positive solution if y(x) > 0 for x ∈ (0, 1).

Our purpose is to seek the range of λ and the function hλ under which (2.7) has
no positive solutions or has positive solutions. This is equivalent to look for the
range of λ and a function h under which the following second order boundary value
problem {

−y′′(x) = λ
{
y(x)[1− y(x)]− h(x)ρε(y(x))

}
for x ∈ [0, 1],

y(0) = y(1) = 0
(2.9)

has no positive solutions or has positive solutions.
Now, we state the main results on existence and nonexistence of positive solutions

of (2.9) and postpone their proofs to section 4. For simplification, throughout this
paper we always assume that the following condition holds.

(C): The function h : [0, 1]→ [0,∞) is continuous.
We first give a result on nonexistence of nonzero nonnegative solutions of (2.9).

Theorem 2.1. For each λ ∈ (0, π2] and each function h satisfying (C), (2.9) has
no solutions in P \ {0}.

Remark 2.1. Theorem 2.1 shows that if the patch size l =
√
λd/r is less than or

equal to π
√
d/r, the species dies out everywhere on (0, 1). Also, Theorem 2.1 is a

generalization of [9, Lemma 1(i)] or [19, Lemma 1.1(ii)], where h ≡ 0.

From Theorem 2.1, we see that the necessary condition for the species to survive
is to require that the patch size is greater than π

√
d/r, equivalently, λ > π2.

In the following, we provide sufficient conditions on λ and h for the species to
survive, that is, (2.9) has a positive solution.

Notation. Let a, b ∈ (0, 1) with a < b and let

ω(a, b) =

 a(1− b) if 0 ≤ a ≤ b ≤ 1
2 ,

1
2 min{a, 1− b} if 0 ≤ a ≤ 1

2 ≤ b ≤ 1,
(1− a)(1− b) if 1

2 ≤ a ≤ b ≤ 1,
(2.10)

M1(a, b) =

(
min

{∫ x

a

(1− x)s ds+

∫ b

x

x(1− s) ds : x ∈ [a, b]
})−1

, (2.11)

h(a, b) = max{h(x) : x ∈ [a, b]}, h(a, b) = min{h(x) : x ∈ [a, b]}, (2.12)

and

h∗(a, b) = h(a, b)− h(a, b). (2.13)

The following result provides sufficient conditions on the patch size and the har-
vesting rate for the species to survive everywhere on (0, 1).

Theorem 2.2. Assume that there exist a, b ∈ (0, 1) with a < b and ρ ∈ (0, 1) such
that the following conditions hold.

(H1) λ ∈
(

min{a, 1− b}M1(a, b)

min{ω(a, b)(1− ρω(a, b)), 1− ρ}
,∞
)

.

(H2) h∗(a, b) < ρmin{ω(a, b)(1− ρω(a, b)), 1− ρ} − ρmin{a, 1− b}M1(a, b)

λ
.

(H3) max

{∫ 1

0

sh(s) ds,

∫ 1

0

(1− s)h(s) ds

}
<
ρmin{a, 1− b}

λ
.
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Then (2.9) has a positive solution.

Remark 2.2. Under (H1) and (H3), h(0, 1) = min{h(s) : s ∈ [0, 1]} < 1/2.

Let

ηρ =

{
8−ρ
64 if 0 < ρ ≤ 8

9 ,
1− ρ if 8

9 < ρ < 1.
(2.14)

Theorem 2.2 depends on the choices of a and b. One of the choices is a = 1
4 and

b = 3
4 . This leads to the following result.

Corollary 2.1. Assume that there exists ρ ∈ (0, 1) such that the following condi-
tions hold.

(1) Either λ ∈
[

9

2ηρ
,∞
]

or λ ∈
(

4

ηρ
,

9

2ηρ

]
and h∗

(
1

4
,

3

4

)
< ρηρ −

4ρ

λ
.

(2) ‖h‖ < ρ

2λ
.

Then (2.9) has a positive solution.

In Corollary 2.1, the intervals of λ and ‖h‖ depend heavily on the existence of ρ.
The following result gives the intervals of λ and ‖h‖ which do not involve the

number ρ explicitly, so is easily verified and applied.

Theorem 2.3. Assume that one of the following conditions holds.
(T1) λ ∈ (32, 36] and one of the following conditions holds.

(i) ‖h‖ < 2(λ− 32)

λ2
and h∗

(
1

4
,

3

4

)
<

(λ− 32)2

4λ2
.

(ii)
2(λ− 32)

λ2
≤ ‖h‖ < 4(λ− 32)

λ2
and h∗

(
1

4
,

3

4

)
<
‖h‖(−‖h‖λ2 + 4λ− 128)

16
.

(T2) 36 < λ ≤ 81

2
and one of the following conditions holds:

(i) ‖h‖ < 4(λ− 36)

λ2
.

(ii)
4(λ− 36)

λ2
≤ ‖h‖ < 4

9λ
and h∗

(
1

4
,

3

4

)
<

8(λ− 36)

81λ
.

(iii)
4

9λ
≤ ‖h‖ < λ− 4

2λ2
and h∗

(
1

4
,

3

4

)
< 2‖h‖(−2‖h‖λ2 + λ− 4).

(T3)
81

2
< λ <∞ and one of the following conditions holds.

(i) ‖h‖ < 2λ− 9

4λ2
.

(ii)
2λ− 9

4λ2
≤ ‖h‖ < λ− 4

2λ2
and h∗

(
1

4
,

3

4

)
< 2‖h‖(−2‖h‖λ2 + λ− 4).

Then (2.9) has a positive solution.

In Theorem 2.3, both conditions (T2) (i) and (T3) (i) do not contain the term
h∗
(

1
4 ,

3
4

)
, but all others do. However, the conditions on h∗ can be removed when h

satisfies suitable conditions (see Examples 2.1 and 2.2 below).
As first illustration, we consider h to be a location-independent constant function.

Example 2.1. Assume that λ and σ(λ) satisfy the following condition:

0 < σ(λ) <


4(λ− 32)2

λ2
if 32 < λ ≤ 36,

λ− 4

2λ2
if 36 < λ <∞.

(2.15)
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Figure 1. (a) The areas between the λ-axis and the curve of the
upper bound of σ(λ) in (2.15) is a feasible region for choosing σ(λ) when
h(x) ≡ σ(λ). (b) The area between the λ-axis and the curve of the upper
bound of γ in (2.17) is a feasible region for choosing γ(λ) in Theorem

2.2.

Then (2.9) with h(x) ≡ σ(λ) has a positive solution.

As second illustration, we consider a unimodal polynomial h defined by

h(x) = γ(λ)x(1− x) for x ∈ [0, 1]. (2.16)

Considering (2.16) is realistic since it corresponds to a radial harvest rate reaching
the maximum at the center of the patch and approaching zero at both boundaries.

Example 2.2. Assume that λ and γ(λ) satisfy the following condition:

γ(λ) <



4(λ− 32)2

λ2
if 32 < λ ≤ 34,

8(λ− 32)

λ2
if 34 < λ ≤ 36,

128(λ− 36)

81λ
if 36 < λ ≤ 81

2 ,

2λ− 9

λ2
if 81

2 < λ <∞.

(2.17)

Then (2.9) with h defined in (2.16) has a positive solution.

As shown in Figure 1, Examples 2.1 and 2.2 actually provide feasible regions
of the quantity of harvest rates of the species for each patch size under which the
population survives. We expect that these ranges will be useful in management of
sustainable ecological systems.

3. Positive solutions of semi-positone Hammerstein integral equations.
To prove results on the persistence of the one-dimensional diffusive logistic models
with quasi-constant-yield harvest rates given in section 2, we first establish new
results on the existence of positive solutions of a semi-positone Hammerstein integral
equation of the form

y(x) =

∫ 1

0

k(x, s)f(s, y(s)) ds :≡ Ty(x) for x ∈ [0, 1], (3.1)

where the nonlinearity f satisfies a semi-positone condition to be given below. This
allows f to take negative values and to have a lower bound depending on x.

We denote by M+ the set of all measurable real-valued positive functions defined
on [0, 1]. We list the following conditions.
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(C1) k : [0, 1]× [0, 1]→ R+ satisfies the following conditions:
(i) For each x ∈ [0, 1], k(x, ·) ∈M+.

(ii) There exist a continuous function C : [0, 1] → [0, 1] and a function Φ ∈
M+ such that for almost every (a.e.) x ∈ [0, 1] and all s ∈ [0, 1],

C(x)Φ(s) ≤ k(x, s) ≤ Φ(s).

With the function Φ given in (C1), we let

M+
Φ = {z ∈M+ : zΦ ∈ L1[0, 1]}.

(C2) f : [0, 1] × R+ → R satisfies Carathéodory conditions on [0, 1] × R+, that is,
f(·, u) is measurable for u ∈ R+ and f(x, ·) is continuous for a.e. x ∈ [0, 1],
and for r > 0, there exists gr ∈M+

Φ satisfying the following conditions:

(i) For each τ ∈ [0, 1], limx→τ
∫ 1

0
|k(x, s)− k(τ, s)|gr(s) ds = 0.

(ii) |f(x, u)| ≤ gr(x) for a.e. x ∈ [0, 1] and all u ∈ [0, r].
(C3) (Semi-positone condition) There exists η ∈M+

Φ such that

f(x, u) ≥ −η(x) for a.e. x ∈ [0, 1] and all u ∈ R+.

(C4) There exists r(η) > 0 such that∫ 1

0

k(x, s)η(s) ds ≤ r(η)C(x) for x ∈ [0, 1].

(C5) There exist a, b ∈ [0, 1] with a < b such that

c(a, b) := min{C(x) : x ∈ [a, b]} > 0.

The conditions (C1), (C2) and (C5) are the standard conditions used in [12, 13,
14, 28], and (C4) with a constant η was used in some of these references. (C3)
allows f to take negative values and is more general than those in [2, 12, 13, 14, 21],
where the lower bound function η is a constant. (C3) was used in [28], where η is
integrable and its main result can not be applied to treat the biological models in
section 2.

Recall that a function y ∈ C[0, 1] is said to be a nonnegative solution of (3.1)
if y ∈ P and y satisfies (3.1). A nonnegative solution y is said to be positive if it
satisfies

y(x) > 0 for x ∈ (0, 1). (3.2)

To obtain positive solutions of (3.1), we need some knowledge on the fixed point
index theory for compact maps defined in cones in Banach spaces [1].

Let K be a cone in a Banach space X and D a bounded open set in X. We denote
by DK and ∂DK the closure and the boundary, respectively, of DK = D∩K relative
to K. Recall that a map A : Ω ⊂ X → X is said to be compact if it is continuous
and A(D) is compact for each bounded subset D ⊂ Ω. We shall use the following
result (see Lemma 2.3 in [15]).

Lemma 3.1. Let D1 be open in X such that D1
K 6= ∅ and D1

K ⊂ DK . Assume that

A : DK → K is a compact map and satisfies the following conditions.
(i) There exists e ∈ K \ {0} such that

z 6= Az + βe for z ∈ ∂D1
K and β ≥ 0.

(ii) z 6= %Az for z ∈ ∂DK and % ∈ [0, 1].

Then A has a fixed point in DK \D1
K .
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The fixed point index theory for compact maps defined on K requires the maps
to be self-maps taking values in K. Since the semi-positone condition (C3) allows
f to take negative values, the integral operator T defined in (3.1), in general, is not
a self-map on the cone P in (2.8). This leads to considering the following equation

z(x) =

∫ 1

0

k(x, s)
[
f(s, z(s)− w(s)) + η(s)

]
ds :≡ Az(x) for x ∈ [0, 1], (3.3)

where

w(x) =

∫ 1

0

k(x, s)η(s) ds for x ∈ [0, 1]. (3.4)

By the condition (C3), we have

f(s, z(s)− w(s)) + η(s) ≥ 0 for s ∈ [0, 1]

and Az(x) ≥ 0 for x ∈ [0, 1]. Since f is defined only on [0, 1]×R+ and z(s)− w(s)
may be negative for some z ∈ P and s ∈ [0, 1], Az is defined only for z(s) ≥ w(s)
for s ∈ [0, 1]. This implies that A is not, in general, defined on the entire cone P .
In addition, since there is difficulty to prove that the index for the operator A is
zero if one uses the cone P , the following cone K smaller than P is often employed:

K = {z ∈ C[0, 1] : z(x) ≥ C(x)‖z‖ for x ∈ [0, 1]}. (3.5)

Such a cone has been used in [12, 13, 14, 28] to study the existence of nonnegative
solutions for some Hammerstein integral equations and differential equations.

Let r > 0 and let Kr = {x ∈ K : ‖x‖ < r} and Kr = {x ∈ K : ‖x‖ ≤ r}.
The following result shows that A is well defined on K \ Kr(η) and is compact

from K \Kr(η) to K, and gives the relation between the solutions of (3.1) and (3.3).

Lemma 3.2. (i) Under the hypotheses (C1)-(C4) the map A defined in (3.3) maps
K \Kr(η) into K and is compact.

(ii) A function z ∈ K \ Kr(η) is a solution of (3.3) if and only if z − w is a
nonnegative solution of (3.1).

(iii) If C(x) > 0 for x ∈ (0, 1) and z ∈ K \ Kr(η) is a solution of (3.3), then
z − w is a positive solution of (3.1).

Proof. (i) Let z ∈ K \Kr(η). Then ‖z‖ ≥ r(η) and by (3.5), we have

z(x)− w(x) ≥ C(x)‖z‖ − r(η)C(x) ≥ 0 for x ∈ [0, 1]. (3.6)

This implies that Fz(x) := f(x, z(x) − w(x)) + η(x) is well defined for x ∈ [0, 1].
By Lemmas 2.1 and 2.2 in [16], A : K \ Kr(η) → P is compact. By (C1) (ii), we

have ‖Az‖ ≤
∫ 1

0
Φ(s)Fz(s) ds for z ∈ K \Kr(η) and

Az(x) ≥ C(x)

∫ 1

0

Φ(s)Fz(s) ds for x ∈ [0, 1].

This implies Az(x) ≥ C(x)‖Az‖ for x ∈ [0, 1] and Az ∈ K for z ∈ K \Kr(η).
(ii) The proof follows from (3.6) and (C1) (ii).
(iii) Let z ∈ K \Kr(η). Note that C(x) > 0 for x ∈ (0, 1). By (3.6), we have

y(x) = z(x)− w(x) ≥ C(x)‖z‖ − r(η)C(x) = C(x)[‖z‖ − r(η)] > 0 for x ∈ (0, 1)

and (iii) holds.

Remark 3.1. Lemma 3.2 (i) and (ii) are generalizations of [13, Theorem 1] and
Lemma 3.2 (iii) is new and will be used in section 4.
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By Dugundji’s theorem [10], there is a compact map A∗ : K → K such that

A∗z = Az for z ∈ K \Kr(η). (3.7)

We need the following relatively open subset and its properties:

Ωρ = {z ∈ K : q(z) < cρ} = K ∩ {z ∈ P : c‖z‖ ≤ q(z) < cρ},
where q(z) = min{z(x) : x ∈ [a, b]} and c = c(a, b) is given in (C5).

Lemma 3.3 ([12]). Ωρ defined above has the following properties.
(1) Ωρ is open relative to K.
(2) Kcρ ⊂ Ωρ ⊂ Kρ.
(3) z ∈ ∂Ωρ if and only if z ∈ K and q(z) = cρ, where ∂Ωρ denotes the boundary

of Ωρ relative to K.
(4) If z ∈ ∂Ωρ, then cρ ≤ z(x) ≤ ρ for x ∈ [a, b].

We will use the following notations: Let ψ ∈M+
Φ and let

mψ(a, b) =

(
max
x∈[a,b]

∫ 1

0

k(x, s)ψ(s) ds

)−1

and

Mψ(a, b) =

(
min
x∈[a,b]

∫ b

a

k(x, s)ψ(s) ds

)−1

. (3.8)

To obtain the fixed point index of A is 1, we need the characteristic value, denoted
by µφ, of the following linear integral equation

u(x) = µ

∫ 1

0

k(x, s)φ(s)u(s) ds := µ(Lu)(x) for x ∈ [0, 1]. (3.9)

By [14, Theorem 2.1], it is known that if the conditions (C1) and (C2) (i) hold and∫ 1

0

Φ(s)φ(s)C(s) ds > 0,

then there exists ψ ∈ K \ {0} such that

ψ(x) = µφ

∫ 1

0

k(x, s)φ(s)ψ(s) ds for x ∈ [0, 1],

where µφ = 1/r(L) and

r(L) = lim
n→∞

‖Ln‖1/n

is the spectral radius of the compact linear operator L defined in (3.9).
We now prove the following new result on the existence of nonnegative solutions

of (3.3).

Theorem 3.1. Assume that the conditions (C1)-(C5) hold and there exist ρ, ρ0 ∈
(r(η)c(a, b)−1,∞) with ρ < ρ0 such that the following conditions hold.

(H0
≥)ρ There exists ψ(s) ∈M+

Φ with
∫ 1

0
Φ(s)ψ(s) ds > 0 such that

f(s, u) ≥ ρc(a, b)Mψ(a, b)ψ(s)− η(s) for a.e. s ∈ [a, b] and u ∈ [ρ∗, ρ].

where ρ∗ = ρc(a, b)−mη(a, b)−1.

(H1
≤)∞φρ0

There exist φρ0 ∈ L1
+(0, 1) with

∫ 1

0
Φ(s)φρ0(s)C(s) ds > 0 and ε > 0

such that

f(s, u) ≤ (µφρ0
− ε)φρ0(s)u for a.e. s ∈ [0, 1] and u ∈ [ρ0,∞). (3.10)



478 KUNQUAN LAN AND WEI LIN

Then (3.1) has one nonnegative solution. In addition, if C(x) > 0 for x ∈ (0, 1),
then (3.1) has one positive solution.

Proof. By Lemma 3.2 (ii), to obtain nonnegative solutions of (3.1), we prove that
(3.3) has a solution in K \ Kr(η), that is, A defined in (3.3) has a fixed point in

K \Kr(η). Without loss of generalization, we assume that z 6= Az for z ∈ ∂Ωρ. Let
e(x) ≡ 1 for x ∈ [0, 1]. Then e ∈ K with ‖e‖ = 1. We prove that

z 6= A∗z + βe for z ∈ ∂Ωρ and β ≥ 0. (3.11)

In fact, if not, there exist z ∈ ∂Ωρ and β > 0 such that z = A∗z + βe. By Lemma
3.3 (3), we have ‖z‖ ≥ q(z) ≥ ρc(a, b) > r(η) and z ∈ K \Kr(η). It is easy to verify
that

ρ∗ = ρc(a, b)−mη(a, b)−1 ≤ z(s)− w(s) ≤ ρ for s ∈ [a, b].

Since ‖z‖ > r(η), by (3.7), A∗z = Az. By (H0
≥)ρ, we have for x ∈ [a, b],

z(x) = A∗z + β = Az + β =

∫ 1

0

k(x, s)[f(s, z(s)− w(s)) + η(s)] ds+ β

≥
∫ b

a

k(x, s)[f(s, z(s)− w(s)) + η(s)] ds+ β

≥ ρc(a, b)Mψ(a, b)

∫ b

a

k(x, s)ψ(s) ds+ β

≥ ρc(a, b)Mψ(a, b) min
x∈[a,b]

∫ b

a

k(x, s)ψ(s) ds+ β = ρc(a, b) + β.

This implies that q(z) ≥ ρc(a, b) + β > ρc(a, b). By Lemma 3.3 (3), we have

ρc(a, b) = q(z) > ρc(a, b),

a contradiction. It follows from (3.11) and Lemma 3.1 (2) that iK(A∗,Ωρ) = 0.
By (C2) (ii), there exists gρ0 ∈M+

Φ such that

f(s, u) ≤ gρ0(s) for a.e. s ∈ [0, 1] and u ∈ [0, ρ0].

This, together with (3.10), implies

f(s, u) ≤ gρ0(s) + (µφρ0
− ε)φρ0(s)u for a.e. s ∈ [0, 1] and all u ∈ R+. (3.12)

Let

Su(x) =

∫ 1

0

k(x, s)φρ0(s)u(s) ds for x ∈ [0, 1].

Since r((µφρ0
− ε)S) = (µφρ0

− ε)r(S) < 1,
(
I − (µφρ0

− ε)S
)−1

exists and is a

bounded linear operator satisfying
(
I − (µφρ0

− ε)S
)−1

(K) ⊂ K. Let

u1(x) =

∫ 1

0

k(x, s)[gρ0(s) + (µφρ0
− ε)w(s) + η(s)] ds for x ∈ [0, 1]

and

ρ∗ > max
{
r(η), ‖

(
I − (µφρ0

− ε)S
)−1

(u1)‖
}
.

Then ρ∗ ∈ (r(η),∞). Let ρ > ρ∗. We prove that

z 6= %Az for z ∈ ∂Kρ and % ∈ [0, 1]. (3.13)
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In fact, if not, there exist z ∈ ∂Kρ and % ∈ (0, 1] such that z = %Az. By (3.12), we
have for x ∈ [0, 1],

z(x) ≤ Az(x) =

∫ 1

0

k(x, s)
[
f(s, z(s)− w(s)) + η(s)

]
ds

≤
∫ 1

0

k(x, s)
[
gρ0(s) + (µφρ0

− ε)φρ0(s)(z(s)− w(s)) + η(s)
]
ds

≤
∫ 1

0

k(x, s)
[
gρ0(s) + (µφρ0

− ε)φρ0(s)(z(s) + w(s)) + η(s)
]
ds

≤ (µφρ0
− ε)Sz(x) + u1(x)

and (I − (µφρ0
− ε)S)z ≤ u1. This, together with

(
I − (µφρ0

− ε)S
)−1

(K) ⊂ K,
implies

z ≤
(
I − (µφρ0

− ε)S
)−1

(u1)

and

‖z‖ ≤ ‖
(
I − (µφρ0

− ε)S
)−1

(u1)‖ < ρ∗.

Hence, we have ρ = ‖z‖ < ρ∗ < ρ, a contradiction. By (3.13) and Lemma 3.1 (1),
iK(A∗,Kρ) = 1 for ρ > ρ1.

By Lemma 3.1, A∗ has a fixed point z in Kρ0 \Kρ. Since

‖z‖ > ρ > r(η)c(a, b)−1 ≥ r(η),

z = A∗z = Az and z is a fixed point of A. By Lemma 3.2 (ii), y = z − w is a
nonnegative solution of (3.3). If C(x) > 0 for x ∈ (0, 1), it follows from Lemma 3.2
(iii) that y is a positive solution of (3.3).

To study the biological model (2.9), we consider the following eigenvalue problems
of semi-positone Hammerstein integral equation

y(x) = λ

∫ 1

0

k(x, s)f(s, y(s)) ds for x ∈ [0, 1]. (3.14)

Equation (3.14) was studied in [14], where the nonlinearity is a product of a measur-
able function g(s) and a continuous function f(s, u), and multiple positive solutions
were studied. Here we apply Theorem 3.1 to prove a new result which is different
from those obtained in [14] and is suitable to tackling (2.9).

Notation. Let

δ∗ := δ∗(a, b, ρ, η) = ρc(a, b)

[
1− 1

r(η)mη(a, b)

]
, (3.15)

f(u) = sup
x∈[0,1]

f(x, u), f∞ = lim sup
u→∞

f(u)/u, f
a,b

(u) = inf
x∈[a,b]

f(x, u),

fρ
δ
(a, b) = min

{
f
a,b

(u) : u ∈ [δ, ρ]
}
, η(a, b) = min{η(s) : s ∈ [a, b]}.

Theorem 3.2. Assume that the hypotheses (C1)-(C5) hold and there exist ρ > 0
and δ ∈ (0, δ∗] such that the following conditions hold.

(i) −∞ ≤ f∞ <∞.
(ii) fρ

δ
(a, b) + η(a, b) > 0.
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(iii) µ∗(a, b, ρ, δ) < µ∗(a, b, ρ), where

µ∗(a, b, ρ) =


min

{
ρc(a, b)

r(η)
,
µ1

f∞

}
, if 0 < f∞ <∞,

ρc(a, b)

r(η)
, if −∞ ≤ f∞ ≤ 0,

(3.16)

and

µ∗(a, b, ρ, δ) =
ρc(a, b)M1(a, b)

fρ
δ
(a, b) + η(a, b)

, (3.17)

where M1(a, b) is specified in (3.8) with ψ(s) ≡ 1.
Then for each λ ∈

(
µ∗(a, b, ρ, δ), µ

∗(a, b, ρ)
)
, (3.14) has one nonnegative solution,

and if C(x) > 0 for x ∈ (0, 1), then (3.14) has one positive solution.

Proof. Let λ ∈
(
µ∗(a, b, ρ, δ), µ

∗(a, b, ρ)
)
. We define fλ : [0, 1]× R+ → R by

fλ(x, u) = λf(x, u).

Then fλ satisfies (C2). Let ηλ(x) = λη(x) for x ∈ [0, 1]. Since f satisfies (C3),

fλ(x, u) ≥ −λη(x) = −ηλ(x) for a.e. x ∈ [0, 1] and all u ∈ R+

and fλ satisfies (C3). Let r(ηλ) = λr(η). Since η satisfies (C4), we have∫ 1

0

k(x, s)ηλ(s) ds ≤ λr(η)C(x) = r(ηλ)C(x) for x ∈ [0, 1]

and ηλ satisfies (C4). Since λ < µ∗(a, b, ρ) ≤ ρc(a, b)

r(η)
, it follows that

ρ ∈ (r(ηλ)c(a, b)−1,∞).

Since λ > µ∗(a, b, ρ, δ), we have λfρ
δ
(a, b) ≥ ρc(a, b)M1(a, b)− λη(a, b) and

λf(s, u) ≥ ρc(a, b)M1(a, b)− λη(s) for a.e. s ∈ [a, b] and u ∈ [δ, ρ]. (3.18)

Since λ < µ∗(a, b, ρ) ≤ ρc(a, b)

r(η)
, we have

mηλ(a, b)−1 = λmη(a, b)−1 <
ρc(a, b)

r(η)mη(a, b)
.

Let (ρλ)∗ = ρc(a, b)−mηλ(a, b)−1. Then

(ρλ)∗ > ρc(a, b)− ρc(a, b)

r(η)mη(a, b)
= δ∗(a, b, ρ, η)

and [
(ρλ)∗, ρ

]
⊂ [δ∗(a, b, ρ, η), ρ] ⊂ [δ, ρ].

This, together with (3.18), implies

fλ(s, u) ≥ ρc(a, b)M1(a, b)− ηλ(s) for a.e. s ∈ [a, b] and u ∈
[
(ρλ)∗, ρ

]
and fλ satisfies Theorem 3.1 (H0

≥)ρ with ψ ≡ 1.

If 0 < f∞ <∞, then since λ < µ∗(a, b, ρ), it follows from (3.16) that

λf∞ < µ1. (3.19)

Let ε ∈ (0, µ1 − λf∞). Then by (3.19), there exists ρ0 > ρ such that

λf(u) ≤ (µ1 − ε)u for u ∈ [ρ0,∞).
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This implies

fλ(s, u) = λf(s, u) ≤ (µ1 − ε)u for a.e. s ∈ [0, 1] and u ∈ [ρ0,∞)

and fλ satisfies (3.10) with φρ0 ≡ 1.
If −∞ ≤ f∞ ≤ 0, then there exist ρ0 > ρ and ε ∈ (0, µ1) such that

fλ(s, u) = λf(s, u) ≤ (µ1 − ε)u for a.e. s ∈ [0, 1] and u ∈ [ρ0,∞)

and fλ satisfies (3.10) with φρ0 ≡ 1. Hence, fλ satisfies Theorem 3.1 (H1
≤)∞φρ0

with

φρ0 ≡ 1. The result of Theorem 3.2 follows from Theorem 3.1.

4. Proofs of results in section 2. In this section, we provide all the proofs of
results mentioned in section 2. Recall that the function h : [0, 1] → [0,∞) satisfies
the condition (C) if h is continuous on [0, 1].

Proof of Theorem 2.1. The proof is by contradiction. Assume that there exist
λ ∈ (0, π2] and y ∈ P \ {0} satisfying (2.9). Let φ1(x) = sin(πx) for x ∈ [0, 1].
Multiplying (2.9) by φ1 and integrating the resulting equation implies

(λ− π2)

∫ 1

0

y(x)φ1(x) dx = λ

∫ 1

0

y2(x)φ1(x) dx+ λ

∫ 1

0

h(x)ρε(y(x))φ1(x) dx.

Since λ ∈ (0, π2] and h(x)ρε(y(x)) ≥ 0 for x ∈ [0, 1],
∫ 1

0
y2(x)φ1(x) dx = 0. Noting

that φ1(x) > 0 for x ∈ (0, 1), we have y(x) = 0 for x ∈ [0, 1] and y = 0, which
contradicts the fact y ∈ P \ {0}. �

To prove Theorem 2.2, we first prove an equivalent result on the boundary value
problem (2.9). We define a function f : [0, 1]× R+ → R by

f(x, u) =

{
u(1− u)− h(x)ρε(u) if x ∈ [0, 1] and u ∈ [0, 1],
−h(x) if x ∈ [0, 1] and u ∈ (1,∞).

(4.1)

Since h and ρε are continuous and ρε(u) = 1 for u > 1, f is continuous on [0, 1]×R+.
The following result shows that (2.9) is equivalent to the following boundary

value problem. {
−y′′(x) = λf(x, y(x)) for x ∈ [0, 1],

y(0) = y(1) = 0.
(4.2)

Theorem 4.1. Assume that h satisfies the condition (C) and let λ > 0. Then the
following assertions hold.

(1) If y ∈ P is a solution of (2.9), then ‖y‖ ≤ 1.
(2) If y ∈ P is a solution of (4.2), then ‖y‖ ≤ 1.
(3) y ∈ P is a solution of (2.9) if and only if y ∈ P is a solution of (4.2).

Proof. (1) Suppose y ∈ P is a solution of (2.9). If ‖y‖ > 1, then there exists
x0 ∈ [0, 1] such that y(x0) = ‖y‖ > 1. By y(0) = y(1) = 0, x0 ∈ (0, 1). Since
y ∈ C2[0, 1], y′(x0) = 0 and y′′(x0) ≤ 0, and since 1− y(x0) < 0, by (2.9) we have

0 ≤ −y′′(x0) = λ
[
y(x0)(1− y(x0))− h(x0)ρε(y(x0))

]
< 0,

a contradiction. This shows that the solution y satisfies ‖y‖ ≤ 1.
(2) Assume that y ∈ P is a solution of (4.2). If ‖y‖ > 1, then there exists

x0 ∈ (0, 1) such that y(x0) = ‖y‖ > 1. Then y′(x0) = 0 and there exists δ0 ∈
(0,min{x0, 1− x0}) such that y(x) > 1 for x ∈ (x0 − δ0, x0 + δ0). Let

x1 = inf{x ∈ [0, 1] : y(s) > 1 for s ∈ [x, x0] }
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and

x2 = sup{x ∈ [0, 1] : y(s) > 1 for s ∈ [x0, x]}.
Noting that y(0) = y(1) = 0, we have (i) 0 < x1 < x0 < x2 < 1, (ii) y(x) > 1 for
x ∈ (x1, x2) and (iii) y(x1) = 1 and y(x2) = 1. Since

f(x, u) = −h(x)ρε(u) = −h(x) for x ∈ [0, 1] and u ≥ 1,

it follows from (4.2) that

−y′′(x) = λf(x, y(x)) = −λh(x) for x ∈ (x1, x2).

Integrating the above equation from x0 to x implies

y′(x) = y′(x)− y′(x0) =

∫ x

x0

y′′(s) ds = λ

∫ x

x0

h(s) ds for x ∈ [x1, x2]. (4.3)

Since h(s) ≥ 0 for s ∈ [0, 1], by (4.3) we have y′(x) ≤ 0 for x ∈ [x1, x0] and y′(x) ≥ 0
for x ∈ [x0, x2]. Hence, y is decreasing on [x1, x0] and increasing on [x0, x2]. Hence,
y(x) ≥ y(x0) for x ∈ [x1, x2] and

y(x) = y(x0) = ‖y‖ > 1 for x ∈ [x1, x2].

It follows that y(x1) > 1, which contradicts the fact y(x1) = 1 given in the above
property (iii). Hence, the solution y of (4.2) satisfies ‖y‖ ≤ 1.

(3) Assume that y ∈ P is a solution of (2.9). By the assertion (1), ‖y‖ ≤ 1 and
0 ≤ y(x) ≤ 1 for x ∈ [0, 1]. By (4.1), we obtain

f(x, y(x)) = y(x)[1− y(x)]− h(x)ρε(y(x)) for x ∈ [0, 1]. (4.4)

By (2.9), y satisfies (4.2). Conversely, assume that y ∈ P is a solution of (4.2). By
the assertion (2), ‖y‖ ≤ 1. By (4.1) and (4.4), y satisfies (2.9).

Theorem 4.1 (1) shows that if y ∈ P is a solution of (2.9), then y(x) ≤ 1 for
x ∈ (0, 1). Hence, the size of the population must be below the carrying capacity 1
everywhere on [0, 1]. When h ≡ 0, the result was proved in [20, p.222].

It is well known that the boundary value problem (4.2) is equivalent to the
following eigenvalue problem

y(x) = λ

∫ 1

0

k(x, s)f(s, y(s)) ds for x ∈ [0, 1], (4.5)

where k : [0, 1]× [0, 1]→ R+ is the Green’s function defined by

k(x, s) =

{
(1− x)s if 0 ≤ s ≤ x ≤ 1,
x(1− s) if 0 ≤ x < s ≤ 1.

(4.6)

Proof of Theorem 2.2. We prove that the Green’s function defined in (4.6) and the
function f defined in (4.1) satisfy all the conditions of Theorem 3.2.

Let Φ(s) = s(1− s) for s ∈ [0, 1] and

C(x) = min{x, 1− x} for x ∈ [0, 1].

By [12, Lemma 2.1], (C1) holds. For r ∈ R+, we define a function gr : [0, 1] → R+

by

gr(x) =
1

4
+ h(x).

By (4.1), if r ∈ [0, 1], then

|f(x, u)| ≤ u(1− u) + h(x) ≤ 1

4
+ h(x) = gr(x) for x ∈ [0, 1] and u ∈ [0, r]
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and if r > 1, then

|f(x, u)| ≤ gr(x) for x ∈ [0, 1] and u ∈ [0, 1]

and

|f(x, u)| = h(x)ρε(u) = h(x) ≤ gr(x) for x ∈ [0, 1] and u ∈ (1, r].

Hence, f satisfies (C2) (ii). Since k and gr are continuous, it follows from [12,
Lemma 2.1] that (C2) (i) holds. We define a function η : [0, 1]→ R+ by

η(x) = h(x). (4.7)

By (4.1), we see that

f(x, u) ≥ −h(x)ρε(u) ≥ −h(x) for x ∈ [0, 1] and u ∈ R+

and (C3) with η = h holds. By [13, Proposition 1], we have∫ 1

0

k(x, s)h(s) ds ≤ r(h)C(x) for x ∈ [0, 1], (4.8)

where

r(h) = max
{∫ 1

0

sh(s) ds,

∫ 1

0

(1− s)h(s) ds
}

and (C4) with η = h holds. Since a, b ∈ (0, 1) with a < b, we have

c(a, b) = min{C(x) : x ∈ [a, b]} = min{a, 1− b} > 0 (4.9)

and (C5) holds. By (4.1), we have

f(u) = sup
0≤x≤1

f(x, u) =

{
u(1− u)− h(0, 1)ρε(u) if 0 ≤ u ≤ 1,
−h(0, 1) if 1 < u <∞.

Hence,

f∞ = lim
u→∞

f(u)

u
= lim
u→∞

−h(0, 1)

u
= 0 (4.10)

and Theorem 3.2 (i) holds. By (4.8), we have

mh(a, b) =

(
max
a≤x≤b

∫ 1

0

k(x, s)h(s) ds

)−1

≥ r(h)−1(max{C(x) : a ≤ x ≤ b})−1

= r(h)−1c(a, b)−1.

This implies

1

r(h)mh(a, b)
≤ c(a, b) and 1− 1

r(h)mh(a, b)
≥ 1− c(a, b) > 0.

By (4.9), we see

c(a, b) =

 a if 0 ≤ a ≤ b ≤ 1
2 ,

min{a, 1− b} if 0 ≤ a ≤ 1
2 ≤ b ≤ 1,

1− b if 1
2 ≤ a ≤ b ≤ 1

and

c(a, b) =


b if 0 ≤ a ≤ b ≤ 1

2 ,
1

2
if 0 ≤ a ≤ 1

2 ≤ b ≤ 1,

1− a if 1
2 ≤ a ≤ b ≤ 1.

Hence, by (2.10), we have

ω(a, b) = c(a, b)[1− c(a, b)].
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Let δ = ρω(a, b). Then

ρmin{ω(a, b)(1− ρω(a, b)), 1− ρ} = min{δ(1− δ), ρ(1− ρ)}. (4.11)

By (4.7), (4.9) and (3.15), we have

δ∗ = δ∗(a, b, ρ, η) = ρc(a, b)
(
1− 1

r(η)mη(a, b)

)
= ρc(a, b)

(
1− 1

r(h)mh(a, b)

)
≥ ρc(a, b)[1− c(a, b)] = δ

and δ ∈ (0, δ∗]. Noting that

f(x, u) = u(1− u)− h(x)ρε(u) for x ∈ [0, 1] and u ∈ [0, 1],

we have for u ∈ [0, 1],

f
a,b

(u) = min{f(x, u) : x ∈ [a, b]} = u(1− u)− h(a, b)ρε(u).

Hence,

fρ
δ

= min{f
a,b

(u) : u ∈ [δ, ρ]} = min{u(1− u)− h(a, b)ρε(u) : u ∈ [δ, ρ]}

≥ min{u(1− u)− h(a, b) : u ∈ [δ, ρ]}
= min{δ(1− δ)− h(a, b), ρ(1− ρ)− h(a, b)}
= min{δ(1− δ), ρ(1− ρ)} − h(a, b).

This, together with (4.11) and (H2) implies

fρ
δ

+ η(a, b) = fρ
δ

+ h(a, b) ≥ min{δ(1− δ), ρ(1− ρ)} − (h(a, b)− h(a, b))

≥ ρmin{a, 1− b}M1(a, b)

λ
> 0

and Theorem 3.2 (ii) holds. By (3.17) and (4.11),

µ∗(a, b, ρ, δ) =
ρc(a, b)M1(a, b)

fρ
δ
(a, b) + η(a, b)

≤ ρmin{a, 1− b}M1(a, b)

min{δ(1− δ), ρ(1− ρ)} − (h(a, b)− h(a, b))

=
ρmin{a, 1− b}M1(a, b)

ρmin{ω(a, b)(1− ρω(a, b)), 1− ρ} − (h(a, b)− h(a, b))
.

This, together with (H2), implies

λ >
ρmin{a, 1− b}M1(a, b)

ρmin{ω(a, b)(1− ρω(a, b)), 1− ρ} − (h(a, b)− h(a, b))
≥ µ∗(a, b, ρ, δ).

By (4.10) and (3.16), µ∗(a, b, ρ) = ρc(a, b)r(h)−1 and by (H3), λ < µ∗(a, b, ρ).
Hence,

µ∗(a, b, ρ, δ) < λ < µ∗(a, b, ρ) (4.12)

and µ∗(a, b, ρ, δ) < µ∗(a, b, ρ). This shows that Theorem 3.2 (iii) holds. Since λ ∈(
µ∗(a, b, ρ), µ∗(a, b, ρ)

)
, it follows from (4.12) and Theorem 3.2 that (4.5) has one

solution z in P . By the equivalence of solutions of (4.5) and (4.2), z is nonnegative
solution of (4.2). By Lemma 4.1, z is a nonnegative solution of (2.9). Since C(x) > 0
for x ∈ (0, 1), it follows from Lemma 3.2 (iii) that y(x) > 0 for x ∈ (0, 1). �

Proof of Remark 2.2. By (H1), we have

λ >
min{a, 1− b}M1(a, b)

min{ω(a, b)(1− ρω(a, b)), 1− ρ}
.



POPULATION MODELS 485

It follows that

ρmin{a, 1− b}
λ

<
min{ρω(a, b)(1− ρω(a, b)), ρ(1− ρ)}

M1(a, b)

≤ 1

4M1(a, b)
=

1

4
min
a≤x≤b

∫ b

a

k(x, s) ds ≤ 1

4
.

By (H3), we see that

h(0, 1)/2 ≤ max

{∫ 1

0

sh(s) ds,

∫ 1

0

(1− s)h(s) ds

}
<
ρmin{a, 1− b}

λ
<

1

4
.

It follows that h(0, 1) < 1/2. �

Proof of Corollary 2.1. We prove that Theorem 2.2 with a = 1
4 and b = 3

4 holds.

Let a = 1
4 and b = 3

4 . By [18, Corollary 3.2 and its proof] or [12, Example 2.1],

M1( 1
4 ,

3
4 ) = 16 and c( 1

4 ,
3
4 ) = 1

4 . By computations, we have min{a, 1 − b} = 1
4 ,

c( 1
4 ,

3
4 ) = ‖C‖ = 1

2 , ω( 1
4 ,

3
4 ) =

1

8
and

min{a, 1− b}M1(a, b)

min{ω(a, b)(1− ρω(a, b)), 1− ρ}
=

1
4 (16)

min

{
1

8

(
1− ρ

8

)
, 1− ρ

} =
4

ηρ
.

Hence, the condition (1) implies that Theorem 2.2 (H1) with a = 1
4 and b = 3

4

holds. If a = 1
4 and b = 3

4 , then

ρmin{ω(a, b)(1− ρω(a, b)), 1− ρ} = ρmin

{
1

8

(
1− ρ

8

)
, 1− ρ

}
= ρηρ

and
ρmin{a, 1− b}M1(a, b)

λ
=

4ρ

λ
.

Hence, if a = 1
4 and b = 3

4 , then

ρηρ −
4ρ

λ
= ρmin{ω(a, b)(1− ρω(a, b)), 1− ρ} − ρmin{a, 1− b}M1(a, b)

λ
. (4.13)

When λ ∈
[

9

2ηρ
,∞
)

, it is easy to verify that
ρ

2λ
≤ ρηρ −

4ρ

λ
. This, together with

the condition (2) implies

h∗
(

1

4
,

3

4

)
≤ ‖h‖ < ρ

2λ
≤ ρηρ −

4ρ

λ
.

This, together with the second part of the condition (1), implies that

h∗
(

1

4
,

3

4

)
< ρηρ −

4ρ

λ
for each λ ∈

(
4

ηρ
,∞
)

.

By (4.13), we see that Theorem 2.2 (H2) with a = 1
4 and b = 3

4 holds.

By the condition (2) and a = 1
4 and b = 3

4 , we have

r(h) = max

{∫ 1

0

sh(s) ds,

∫ 1

0

(1− s)h(s) ds

}
≤ ‖h‖max

{∫ 1

0

s ds,

∫ 1

0

(1− s) ds
}

=
‖h‖
2

<
ρ

4λ
=
ρmin{a, 1− b}

λ
.
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Hence, Theorem 2.2 (H3) with a = 1
4 and b = 3

4 holds. The result follows from
Theorem 2.2. �

Proof of Theorem 2.3. It is sufficient to show that for each case, Corollary 2.1 (1)
and (2) hold.

(T1) If 32 < λ ≤ 36, then it is easy to verify

8(λ− 36)

λ
≤ 0 <

8(λ− 32)

λ
≤ 8

9

and

4

ηρ
< λ <

9

2ηρ
for ρ ∈

(
0,

8(λ− 32)

λ

)
⊂
(

8(λ− 36)

λ
,

8(λ− 32)

λ

)
, (4.14)

where ηρ =
8− ρ

64
. We define a function Dλ : (0, 8

9 )→ R by

Dλ(ρ) = ρηρ −
4ρ

λ
.

Then Dλ(ρ) =
ρ(8− ρ)

64
− 4ρ

λ
and

(Dλ)′(ρ) = − 1

32

[
ρ− 4(λ− 32)

λ

]
for ρ ∈ (0, 8

9 ).

Since 32 < λ ≤ 36, we have 0 < 4(λ−32)
λ ≤ 4

9 . Hence, Dλ is strictly increasing on(
0, 4(λ−32)

λ

)
, strictly decreasing on

(
4(λ−32)

λ , 8
9

)
and

Dλ

(
4(λ− 32)

λ

)
=

(λ− 32)2

4λ2
. (4.15)

(i) By the first inequality of the condition (i), we have

2λ‖h‖ < 4(λ− 32)

λ
. (4.16)

By the second inequality of the condition (i), (4.15), (4.16) and the continuity of

Dλ, there exists ρ ∈
(
2λ‖h‖, 4(λ−32)

λ

)
such that

h∗
(

1

4
,

3

4

)
< Dλ(ρ) = ρηρ −

4ρ

λ
. (4.17)

Since ‖h‖ < ρ
2λ , we see from (4.14) and (4.17) that Corollary 2.1 (1) and (2) hold.

(ii) By the first part of the condition (ii), we have

4(λ− 32)

λ
≤ 2λ‖h‖ < 8(λ− 32)

λ
≤ 8

9
.

By computation, we have

Dλ(2λ‖h‖) =
‖h‖(−‖h‖λ2 + 4λ− 128)

16
.

This, together with the second part of the condition (ii) and the continuity of Dλ,

implies that there exists ρ ∈
(

2λ‖h‖, 8(λ−32)
λ

)
such that

h∗
(

1

4
,

3

4

)
< Dλ(ρ) = ρηρ −

4ρ

λ
.

From this and (4.14) we see that Corollary 2.1 (1) and (2) hold.
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(T2) (i) By 36 < λ ≤ 81
2 and the inequality of the condition (i), we have

2λ‖h‖ < 8(λ− 36)

λ
≤ 8

9
.

Let ρ ∈
(

2λ‖h‖, 8(λ−36)
λ

]
and ηρ =

8− ρ
64

. Then ‖h‖ < ρ

2λ
and it is easy to verify

that λ ≥ 9
2ηρ

. Hence, Corollary 2.1 (1) and (2) hold.

(ii) Since 36 < λ ≤ 81
2 , we have 1− 9

2λ ≤
8
9 <

λ−4
λ and

4

ηρ
< λ <

9

2ηρ
for ρ ∈

[
8
9 ,

λ−4
λ

)
.

where ηρ = 1− ρ. We define a function D∗λ :
[

8
9 ,

λ−4
λ

)
→ R by

D∗λ(ρ) = ρηρ −
4ρ

λ
.

Then D∗λ(ρ) = ρ(1− ρ)− 4ρ

λ
and

(D∗λ)′(ρ) = −2
(
ρ− λ− 4

2λ

)
for ρ ∈

[
8
9 ,

λ−4
λ

)
.

Since λ−4
2λ < 8

9 , (D∗λ)′(ρ) < 0 for ρ ∈
[

8
9 ,

λ−4
λ

)
and D∗λ is strictly decreasing on[

8
9 ,

λ−4
λ

)
. By computation, D∗λ( 8

9 ) = 8(λ−36)
81λ . This, together with the second part

of the condition (ii), and the continuity ofD∗λ, implies that there exists ρ ∈
(

8
9 ,

λ−4
λ

)
such that h∗( 1

4 ,
3
4 ) < D∗λ(ρ). Since ‖h‖ < 4

9λ , we have 2λ‖h‖ < 8
9 ≤ ρ and ‖h‖ < ρ

2λ .
Hence, Corollary 2.1 (1) and (2) hold.

(iii) By the first part of the condition (iii), we have

8

9
≤ 2λ‖h‖ < λ− 4

λ
.

By computation,

D∗λ(2λ‖h‖) = 2‖h‖(−2‖h‖λ2 + λ− 4). (4.18)

This, together with the second part of the condition (iii) and the continuity of D∗λ,

implies that there exists ρ ∈ (2λ‖h‖, λ−4
λ ) such that h∗( 1

4 ,
3
4 ) < D∗λ(ρ). Hence,

Corollary 2.1 (1) and (2) hold.
(T3) (i) Since λ > 81

2 , we have

2λ‖h‖ < 2λ− 9

2λ
and

8

9
<

2λ− 9

2λ
.

Let ρ ∈
(

max
{

8
9 , 2λ‖h‖

}
, 2λ−9

2λ

)
and ηρ = 1− ρ. Then

9

2ηρ
=

9

2(1− ρ)
< λ and ‖h‖ < ρ

2λ

and Corollary 2.1 (1) and (2) hold.
(ii) By λ > 81

2 and the first part of the condition (ii), we have

8

9
< 1− 9

2λ
≤ 2λ‖h‖ < λ− 4

λ
.
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By (4.18), the second part of the condition (ii) and the continuity of D∗λ, there

exists ρ ∈
(
2λ‖h‖, λ−4

λ

)
such that h∗( 1

4 ,
3
4 ) < D∗λ(ρ) and Corollary 2.1 (1) and (2)

hold. �

Proof of Example 2.1. Since h(x) ≡ σ(λ) for x ∈ [0, 1], h∗
(

1
4 ,

3
4

)
= 0. When

32 < λ ≤ 36, combining (T1) (i) and (ii) of Theorem 2.3 with h∗
(

1
4 ,

3
4

)
= 0 implies

‖h‖ < 4(λ−32)2

λ2 . When 36 < λ < ∞, combining (T2) and (T3) with h∗
(

1
4 ,

3
4

)
= 0

implies ‖h‖ < λ−4
2λ2 . The result follows from (2.15) and Theorem 2.3. �

Proof of Example 2.2. Let h be the same as in (2.16). By (2.12), (2.13) and (2.16),
we have

‖h‖ = h

(
1

4
,

3

4

)
=
γ(λ)

4
and h

(
1

4
,

3

4

)
=

3γ(λ)

16
.

(i) We consider three cases: (1) If λ ∈ (32, 36], then

h∗
(

1

4
,

3

4

)
= h

(
1

4
,

3

4

)
− h

(
1

4
,

3

4

)
=
γ(λ)

16
.

It is easy to verify that

min

{
4(λ− 32)2

λ2
,

8(λ− 32)

λ2

}
=


4(λ− 32)2

λ2
if 32 < λ ≤ 34,

8(λ− 32)

λ2
if 34 < λ ≤ 36.

Hence, we obtain

‖h‖ < 2(λ− 32)

λ2
and h∗

(
1

4
,

3

4

)
<

(λ− 32)2

4λ2
.

The result follows from Theorem 2.3 (T1) (i).

(2) If λ ∈ (36, 81
2 ] and γ(λ) <

16(λ− 36)

λ2
, then

‖h‖ =
γ(λ)

4
<

4(λ− 36)

λ2
.

The result follows from Theorem 2.3 (T2) (i).

If λ ∈ (36, 81
2 ] and 16(λ−36)

λ2 ≤ γ(λ) < 128(λ−36)
81λ , then 128(λ−36)

81λ ≤ 16
9λ . Hence,

4(λ− 36)

λ2
≤ ‖h‖ < 4

9λ
and h∗

(
1

4
,

3

4

)
<

8(λ− 36)

81λ
.

The result follows from Theorem 2.3 (T2) (ii).
(3) If λ ∈ ( 81

2 ,∞), then by the last inequality of (2.17),

‖h‖ =
γ(λ)

4
<

2λ− 9

4λ2
.

The result follows from Theorem 2.3 (T3) (i). �

5. Discussion. We have studied a one dimensional logistic population model of
one species with quasi-constant-yield harvest rates governed by a reaction-diffusion
equation subject to the Dirichlet BCs, an important BCs for population model of
one species as pointed out in [22]. The emphasis is placed in seeking the intervals
for λ related to the patch size l and the explicit expressions for the upper bounds
of the norm of ‖h‖ related to the amplitude δ under which the population becomes
extinct or can survive. Two types of results on positive steady-state solutions are
obtained for 0 < λ < π2 (nonexistence results) or λ > 32 (existence results). It
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remains open whether positive steady-state solutions exist for π2 < λ ≤ 32. For
λ > 32, the existence results are obtained for suitable function h whose norm is
below a piecewise rational function of λ. As illustrations, two realistic cases with
h being a location-independent constant or a unimodal polynomial have been used
to exhibit the methods of how to get the upper bound of h. These results provide
accurate quantities of harvest rates for the species without having the population
die out.

Novel results on existence of positive solutions of a semi-positone Hammerstein
integral equation are obtained, where the semi-positone condition allows the lower
bound of the nonlinearity f to be a function of x. It is the first paper to tackle the
ecological model equation via semi-positone Hammerstein integral equations and
the fixed point index theory. All of these would be interesting to mathematicians
or ecologists who work on integral equations and boundary value problems with
applications to real problems of ecological significance.

There are several interesting subjects for future work. The first one is to gen-
eralize the results obtained in this paper from one-dimensional models to higher-
dimensional ones, that is, (1.1) with X ∈ Ω ⊂ Rn subject to the Dirichlet BCs:
w(t,X) = 0 for X ∈ ∂Ω. The approach involving semi-positone integral equa-
tion seems unsuitable to treating the positive steady-state solutions for higher-
dimensional models due to lack of Green’s functions. It would motivate the estab-
lishment of new theories to tackle the higher-dimensional ones. The second one is to
drop the semi-positone condition on f , which may lead to solve the open question
mentioned above. The last one is to seek the optimal values of a and b in Theorems
2.2 for the larger intervals of λ or h∗(a, b). This will improve Corollary 2.1 and
Theorems 2.3-2.2, where a = 1/4 and b = 3/4 may not be the optimal choice.
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