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Abstract. This paper presents a mathematical model for malaria–schistosom-

iasis co-infection in order to investigate their synergistic relationship in the

presence of treatment. We first analyse the single infection steady states, then
investigate the existence and stability of equilibria and then calculate the basic

reproduction numbers. Both the single-infection models and the co-infection

model exhibit backward bifurcations. We carrying out a sensitivity analysis
of the co-infection model and show that schistosomiasis infection may not be

associated with an increased risk of malaria. Conversely, malaria infection may
be associated with an increased risk of schistosomiasis. Furthermore, we found

that effective treatment and prevention of schistosomiasis infection would also

assist in the effective control and eradication of malaria. Finally, we apply
Pontryagin’s Maximum Principle to the model in order to determine optimal

strategies for control of both diseases.

1. Introduction. Malaria and schistosomiasis often overlap in tropical and sub-
tropical countries, imposing tremendous disease burdens [11, 19, 41]. The substan-
tial epidemiological overlap of these two parasitic infections invariably results in
frequent co-infections [16, 47]. The challenges facing the development of a highly
effective malaria vaccine have generated interest in understanding the interactions
between malaria and co-endemic helminth infections, such as those caused by Schis-
tosoma, that could impair vaccine efficacy by modulating host-immune responses
to Plasmodium infection and treatment [40, 41]. Both malaria and schistosomiasis
are endemic to most African nations. However, the extent to which schistosomiasis
modifies the risk of febrile malaria remains unclear.

Malaria is an infectious disease that causes morbidity and mortality in the de-
veloping world. There are an estimated 360 million cases [44], killing between one
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to two million people annually [6], primarily among children less than five years of
age in sub-Saharan Africa [20]. Three billion people — almost half the world’s pop-
ulation — are at risk of malaria [29, 42, 44]. It has been estimated that one in two
humans who ever lived has been killed by malaria [12]. The strategy for reducing
malaria transmission is to protect individuals from mosquito bites by the distri-
bution of inexpensive mosquito nets and insect repellents or by mosquito-control
measures such as indoor spraying of insecticides and draining of stagnant water
where mosquitoes breed [35]. Schistosomiasis is a water-borne disease with a com-
plex biological cycle, involving at least two host species (human and snail), two
free-living transmission stages of the parasite (cercariae and miracidia) and distinct
environments. Humans are the principal definitive host for the five schistosome
species. Adult worms live in the venous system of intestine (S. mansoni, S. japon-
icum, S. mekongi and S. intercalatum) or the urinary bladder (S. haematobium)
[9, 17, 28]. Flooding can lead to severe schistosomiasis outbreaks [15, 28, 48].

Mathematical modelling has been an important tool in understanding the dy-
namics of disease transmission and also in the decision-making processes regarding
intervention mechanisms for disease control. For example, Ross [39] developed the
first mathematical models of malaria transmission. His focus was on mosquito
control, and he showed that, for the disease to be eliminated, the mosquito popu-
lation should be brought below a certain threshold. Other studies include Koella
and Anita [22], who included a latent class for mosquitoes. They considered dif-
ferent strategies to reduce the spread of resistance and studied the sensitivity of
their results to the parameters. Another classical result is due to Anderson and
May [4], who derived a malaria model with the assumption that acquired immu-
nity in malaria is independent of exposure duration. Different control measures
and the role of the transmission rate on disease prevalence were further examined.
Nikolaos et al. [34] proposed a detailed analysis of a dynamical model to describe
pathogenesis of HIV infection. Kribs-Zaleta and Velasco-Hernandez [23] derived a
simple two-dimensional SIS (susceptible-infected-susceptible) model with vaccina-
tion and multiple endemic states. Li and Jin [27] studied the global dynamics of an
SEIR (susceptible-exposed-infected-recovered) epidemic model in which latent and
immune states were infective. In Chiyaka et al. [9], the authors constructed a deter-
ministic mathematical model to study the transmission dynamics of schistosomiasis
where the miracidia and cercariae dynamics are incorporated. A mathematical
model for the human–cattle–snail transmission of schistosomiasis was proposed by
Chen et al. [8]. Their model consisted of six ordinary differential equations that de-
scribe susceptible and infected human, cattle and snail subpopulations. Longxing
et al. [28] examined a mathematical model of schistosomiasis transmission under
flood in Anhui province, China.

There is an urgent need for co-infection models for infectious diseases, partic-
ularly those that mix neglected tropical diseases with “the big three” (HIV, TB
and malaria) [19]. However, few studies have been carried out on the formulation
and application of optimal control theory to schistosomiasis models. To the best of
our knowledge, no work has been done to investigate the malaria–schistosomiasis
co-infection dynamics or the application of optimal control methods. Recently,
Mukandavire et al. [31] proposed a deterministic model for the co-infection of HIV
and malaria in a community. Mtisi et al. [30] examined a deterministic model for
the co-infection of tuberculosis and malaria, while Mushayabasa and Bhunu [32]
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proposed a model for schistosomiasis and HIV/AIDS co-dynamics. A simple math-
ematical model was developed by Mushayabasa and Bhunu [33] to assess whether
HIV infection is associated with an increased risk for cholera, while the co-infection
dynamics of malaria and cholera were studied by Okosun and Makinde [36].

In this paper, we formulate and analyse an SIR (susceptible, infected and re-
covered) model for malaria–schistosomiasis co-infection, in order to understand the
effect that controlling for one disease may have on the other. Our model includes
five control strategies: malaria prevention (treated bednets), schistosomiasis preven-
tion (water treatment), malaria treatment, schistosomiasis treatment and combined
therapy for malaria–schistosomiasis infection. We consider these as time-dependent
control strategies, in order to determine the optimal strategy for the control of the
diseases.

The paper is organised as follows: Section 2 is devoted to the model description
and the underlying assumptions. In Section 3, we analyse the schistosomiasis-
only model, the malaria-only model and the co-infection model. In Section 4, we
perform numerical simulations to illustrate our theoretical results. We conclude
with a Discussion in Section 5.

2. Model formulation. Our model subdivides the total human population, de-
noted by Nh, into subpopulations of susceptible humans Sh, individuals infected
only with malaria Im, individuals infected with only schistosomiasis Isc, individuals
infected with both malaria and schistosomiasis Cms, individuals who recovered from
malaria Rm and individuals who recovered from schistosomiasis Rs. We make the
assumption that co-infected individuals recover from either malaria or schistosomi-
asis first but not both simultaneously. Hence Nh = Sh + Im + Is +Cms +Rs +Rm.

The total mosquito vector population, denoted by Nv, is subdivided into suscep-
tible mosquitoes Sv and mosquitoes infected with malaria Iv. Thus Nv = Sv + Iv.
Similarly, the total snail vector population, denoted by Nsv, is subdivided into sus-
ceptible snails Ssv and snails infected with schistosomiasis Isv. ThusNsv = Ssv+Isv.

Sh

Λh

Isc

Im

Cms Rm

Rs

Ssv

Λs

Isv

SvIv

β1Sh

λ1Sh

ψIm

τδCms

λ1Im

gCms

ωIsc

β1Isc

β2Sv

λ2Ssv

µhSh

µhIm

µhRm

(η + µh)Cms

µsvSsv

µhIsc

µhRs

µvSv

µvIv

µsvIsv

Figure 1. Flow diagram for the co-infection model. Dashed
curves represent cross-species infection.
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The model is given by the following system of ordinary differential equations:

S′h = Λh + εRs + αRm − β1Sh − λ1Sh − µhSh
I ′m = β1Sh − λ1Im − (ψ + µh + φ)Im

I ′sc = λ1Sh − β1Isc − (ω + µh + η)Isc

C ′ms = β1Isc + λ1Im − (δ + µh + η + φ)Cms

R′m = ψIm − (α+ µh)Rm + τδCms

R′s = ωIsc − (ε+ µh)Rs + (1− τ)δCms

S′v = Λv − β2Sv − µvSv
I ′v = β2Sv − µvIv
S′sv = Λs − λ2Ssv − µsvSsv
I ′sv = λ2Ssv − µsvIsv,

(1)

with the transmission rates given by

β1 =
βhIv
Nh

, λ1 =
λIsv
Nh

, β2 =
βv(Im + Cms)

Nh
, λ2 =

λs(Isc + Cms)

Nh
.

Here η is the schistosomiasis-related death rate and φ is the malaria-related death
rate. We make the simplifying assumption that the death rate for co-infected in-
dividuals is the sum of the death rates for each disease. While obviously not true
in general, the death rate due to schistosomiasis is much smaller than the death
rate due to malaria (i.e., η � φ) [9, 43]. It follows that the malaria death rate will
swamp the death rate due to schistosomiasis for co-infected individuals, who will
die at a rate only very slightly higher than malaria-infected individuals. Hence the
sum is a reasonable approximation when η is small.

The immunity-waning rates for malaria and schistosomiasis are α and ε respec-
tively, while the recovery rates from malaria, schistosomiasis and co-infection are ψ,
ω and δ respectively; the term τδ accounts for the portion of co-infected individuals
who recover from malaria, while (1 − τ)δ accounts for co-infected individuals who
recover from schistosomiasis. Mortality rates for humans, mosquitos and snails are,
respectively, µh, µv and µsv. The model is illustrated in Figure 1.

We assume that mosquitoes do not suffer disease-induced death and that indi-
viduals infected with both malaria and schistosomiasis can only infect mosquitoes
with malaria parasites and snails with schistosomiasis parasites.

3. Analysis of the malaria–schistosomiasis model.

3.1. Positivity and boundedness of solutions. For the malaria transmission
model (1) to be epidemiologically meaningful, it is important to prove that all
solutions with nonnegative initial data will remain nonnegative for all time.

Theorem 3.1. If Sh(0), Im(0), Isc(0), Cms(0), Rm(0), Rs(0), Sv(0), Iv(0), Ssv(0),
Isv(0) are nonnegative, then so are Sh(t), Im(t), Isc(t), Cms(t), Rm(t), Rs(t), Sv(t),
Iv(t), Ssv(t) and Isv(t) for all time t > 0. Moreover,

lim sup
t→∞

Nh(t) ≤ Λh
µh

and lim sup
t→∞

Nv(t) ≤
Λv
µv

and lim sup
t→∞

Ns(t) ≤
Λs
µsv

. (2)

Furthermore, if Nh(0) ≤ Λh
µh
, then Nh(t) ≤ Λh

µh
. If Nv(0) ≤ Λv

µv
, then Nv(t) ≤ Λv

µv
. If

Ns(0) ≤ Λs
µsv

, then Ns(t) ≤ Λs
µsv

.
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The feasible region for system (1) is therefore given by

D = Dh ×Dv ×Ds ⊂ R6
+ × R2

+ × R2
+ (3)

where

Dh = {(Sh, Im, Isc, Cms, Rm, Rs) ∈ R6
+ : Sh + Im + Isc + Cms +Rm +Rs ≤

Λh
µh
}

Dv = {(Sv, Iv) ∈ R2
+ : Sv + Iv ≤

Λv
µv
}

Ds = {(Ssv, Isv) ∈ R2
+ : Ssv + Isv ≤

Λs
µsv
}.

Note that D is positively invariant.

Proof. Let

t1 = sup {t > 0 : Sh, Im, Isc, Cms, Rm, Rs, Sv, Iv, Ssv and Isv are positive on [0, t]} .

Since Sh(0), Im(0), Isc(0), Cms(0), Rm(0), Rs(0), Sv(0), Iv(0), Ssv(0) and Isv(0) are
nonnegative, t1 > 0. If t1 < ∞, then, by using the variation of constants formula
on the first equation of the system (1), we have

Sh(t1) = U(t1, 0)Sh(0) +

∫ t1

0

ΛU(t1, τ)dτ,

where U(t, τ) = e−
∫ t
τ

(λ1+β1+µh)(s)ds.
This implies that Sh(t1) > 0. It can be shown in the same manner that this is

the case for the other variables. This contradicts the fact that t1 is the supremum,
because at least one of the variables should be equal to zero at t1. Therefore t1 =∞,
which implies that Sh, Im, Isc, Cms, Rm, Rs, Sv, Iv, Ssv and Isv are positive for all
t > 0.

For the second part of the proof, adding the last two equations of system (1), we
obtain dNs

dt = Λs−µsvNs. This implies that Ns(t) = Ns(0)e−µsvt + Λs
µsv

(1− e−µsvt).
Thus lim supt→∞Ns(t) = Λs

µsv
. Moreover, if Ns(0) ≤ Λs

µsv
, then Ns(t) ≤ Λs

µsv
.

Adding the two mosquito equations of system (1), we obtain dNv
dt = Λv − µvNv.

This implies that Nv(t) = Nv(0)e−µvt+ Λv
µv

(1−e−µvt). Thus lim supt→∞Nv(t) = Λv
µv
.

Moreover, if Nv(0) ≤ Λv
µv

, then Nv(t) ≤ Λv
µv

.

From the first seven equations of (1), we have dNh
dt = Λh−µhNh−φIm−mIsc−

(φ+ η)Cms. Since 0 < Im + Isc + Cms ≤ Nh, then

Λh − (µh + φ+ η)Nh ≤
dNh
dt
≤ Λh − µhNh.

By using a standard comparison theorem [24], we obtain

Nh(0)e−(µh+φ+η)t +
Λh

µh + φ+ η
(1− e−(µh+φ+η)t)

≤Nh ≤ Nh(0)e−µht +
Λh
µh

(1− e−µht).

This implies that

Λh
µh + φ+ η

≤ lim inf
t→∞

Nh(t) ≤ lim sup
t→∞

Nh(t) ≤ Λh
µh
.

The other cases are similar.
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Moreover, if Nh(0) ≤ Λh
µh
, then Nh(t) ≤ Λh

µh
. This establishes the invariance of D

as required.

From this theorem, we see that system (1) is epidemiologically feasible and math-
ematically well-posed in D.

3.2. Schistosomiasis-only model. First we consider the schistosomiasis-only
model.

S′h = Λh + εRs − λ1Sh − µhSh
I ′sc = λ1Sh − (ω + µh + η)Isc

R′s = ωIsc − (ε+ µh)Rs

S′sv = Λs − λ2Ssv − µsvSsv
I ′sv = λ2Ssv − µsvIsv,

(4)

where

λ1 =
λIsv
Nh

, λ2 =
λsIsc
Nh

. (5)

3.3. Stability of the disease-free equilibrium. The schistosomiasis-only model
(4) has a disease-free equilibrium (DFE), given by

E0c = (S∗h, I
∗
sc, R

∗
s , S
∗
sv, I

∗
sv) =

(
Λh
µh
, 0, 0,

Λs
µsv

, 0

)
.

The linear stability of E0c can be established using the next-generation operator
[46] on the system (4). We thus have

Rsc =

√
λλsΛsµh

Λh(η + ω + µh)µ2
sv

. (6)

Note, however, that the value obtained by the next-generation method when several
states are involved is the geometric mean of sub-reproduction numbers and not the
true reproduction number. See [26] for more discussion.

Using Theorem 2 in van den Driessche and Watmough [46], the DFE is locally
asymptotically stable if Rsc < 1 and unstable if Rsc > 1.

3.3.1. Existence of endemic equilibrium.

Lemma 3.2. The schistosomiasis-only model has a unique endemic equilibrium if
and only if Rsc > 1.

Proof. Using the schistosomiasis force of infection λ∗ from (5), the endemic equi-
librium point satisfies the following polynomial:

P (λ∗) = λ∗
[
A(λ∗)2 +B(λ∗) + C

]
= 0, (7)

where

A = Λhµsv(µh + ε+ ω)[λs(ε+ µh) + (ε+ ω + µh)µsv]

B = (ε+ µh)Λh(m+ ω + µh)
µ2
sv

µh

(
ε(m+ µh) + µh(η + ω + µh)

)
[Rg −R2

sc]

C = µ2
svΛh(ε+ µh)2(η + ω + µh)2(1−R2

sc)

Rg =
µh[λs(ε+ µh) + 2(ε+ ω + µh)µsv]

µsv(ε(η + µh) + µh(η + ω + µh))
.

(8)
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Proposition 1. 1. If Rg ≥ 1, then system (4) exhibits a transcritical bifurca-
tion.

2. If Rg < 1, then system (4) exhibits a backward bifurcation.

Proof. 1. For Rg ≥ 1, we obtain when Rsc > 1 that C < 0. This implies that
system (4) has a unique endemic steady state. If Rsc ≤ 1, then C ≥ 0 and
B ≥ 0. In this case, system (4) has no endemic steady states.

2. For Rg < 1, we have the following cases:
i. If Rsc > 1, then C < 0, so system (4) has a unique endemic steady

state.
ii. If Rsc ≤

√
Rg, then both B and C are positive, implying that system

(4) has no endemic steady states.
iii. If

√
Rg < Rsc < 1, then C > 0 and B < 0, while the discriminant

of (7), ∆(Rsc) ≡ B2 − 4AC, can be either positive or negative. We have
∆(1) = B2 > 0 and ∆(

√
Rg) = −4AC < 0; it follows that there exists R0sc

such that ∆(R0sc) = 0, ∆(Rsc) < 0 for
√
Rg < Rsc < R0sc and ∆(Rsc) > 0 for

R0sc < Rsc. This, together with the signs of B and C, implies that system (4)
has no endemic steady states when

√
Rg < Rsc < R0sc, one endemic steady

state when Rsc = R0sc and two endemic steady states when R0sc < Rsc < 1.

3.4. Malaria-only model. We next consider the malaria-only model:

S′h = Λh + αRm − β1Sh − µhSh
I ′m = β1Sh − (ψ + µh + φ)Im

R′m = ψIm − (α+ µh)Rm

S′v = Λv − β2Sv − µvSv
I ′v = β2Sv − µvIv,

(9)

where

β1 =
βhIv
Nh

, β2 =
βvIm
Nh

.

3.5. Stability of the DFE. The DFE is given by

E0m = (S∗h, I
∗
m, R

∗
m, S

∗
v , I
∗
v ) =

(
Λv
µh
, 0, 0,

Λv
µv
, 0

)
.

Similar to the previous section, we calculate

R0m =

√
Λvβhβvµh

Λhµ2
v(ψ + φ+ µh)

. (10)

The DFE is locally asymptotically stable if R0m < 1 and unstable if R0m > 1.

3.5.1. Existence of endemic equilibrium.

Lemma 3.3. The malaria-only model has a unique endemic equilibrium if and only
if R0m > 1.
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Figure 2. Simulations of the submodels to illustrate the occur-
rence of a backward bifurcation

Proof. The endemic equilibrium satisfies the following polynomial:

Pm(I∗m) = β∗
(
Aa(β∗)2 +Bb(β

∗) + Cc

)
= 0. (11)

where

Aa = Λhµv(α+ ψ + µh)[βv(α+ µh) + (α+ µh + ψ)µv]

Bb = Λh(α+ µh)(φ+ ψ + µh)
µ2
v

µh
[αφ+ µh(α+ φ+ ψ + µh)][RD −R2

0m]

Cc = Λhµ
2
v(α+ µh)2(φ+ ψ + µh)2(1−R2

0m)

RD =
µh[βv(α+ µh) + 2(α+ ψ + µh)µv]

µv[αφ+ µh(α+ φ+ ψ + µh)]
.

(12)

Proposition 2. 1. If RD ≥ 1, then system (9) exhibits a transcritical bifurca-
tion.

2. If RD < 1, then system (9) exhibits a backward bifurcation.

Proof.

1. For RD ≥ 1, we obtain when R0m > 1 that Cc < 0. This implies that system
(9) has a unique endemic steady state. If R0m ≤ 1, then Cc ≥ 0 and Bb ≥ 0.
In this case, system (9) has no endemic steady states.

2. For RD < 1, we discuss the following cases:
i. If R0m > 1, then Cc < 0 and system (9) has a unique endemic steady

state.
ii. If R0m ≤

√
RD, then both Bb and C are positive, implying that system

(9) has no endemic steady states.
iii. If

√
RD < R0m < 1, then Cc > 0 and Bb < 0, while the discriminant

of (11), ∆(R0m) ≡ B2
b − 4AaCc, can be either positive or negative. We have

∆(1) = B2
b > 0 and ∆(

√
RD) = −4AaCc < 0, so there exists R00m such

that ∆(R00m) = 0, ∆(R0m) < 0 for
√
RD < R0m < R00m and ∆(R0m) > 0

for R00m < R0m. This, together with the signs of Bb and Cc, implies that
system (9) has no endemic steady states when

√
RD < R0m < R00m, one

endemic steady state when R0m = R00m and two endemic steady states when
R00m < R0m < 1.
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3.6. Co-infection model. The malaria–schistosomiasis model (1) has a DFE,
given by

E0 = (S∗h, I
∗
m, I

∗
sc, C

∗
ms, R

∗
m, R

∗
s , S
∗
v , I
∗
v , S

∗
sv, I

∗
sv) =

(
Λh
µh
, 0, 0, 0, 0, 0,

Λv
µv
, 0,

Λs
µsv

, 0,

)
.

The linear stability of E0 can be established using the next-generation method [46]
on system (1).

It follows that the reproduction number of the malaria–schistosomiasis model
(1), denoted by Rmsc, is given by

Rmsc = max{Rsc, R0m},

where

R0m =

√
Λvβhβvµh

Λhµ2
v(ψ + φ+ µh)

Rsc =

√
λλsΛsµh

Λh(m+ ω + µh)µ2
sv

.

We thus have the following theorem.

Theorem 3.4. The DFE E0 is locally asymptotically stable whenever Rmsc < 1
and unstable otherwise.

3.7. Impact of schistosomiasis on malaria. To analyse the effects of schistoso-
miasis on malaria and vice versa, we begin by expressing Rsc in terms of R0m. We
solve for µh to get

µh =
D1R

2
0m

D2 −D3R2
0m

,

where

D1 = Λhµ
2
v(ψ + φ)

D2 = Λvβhβv

D3 = Λhµ
2
v.

Substituting into the expression for Rsc, we obtain

Rsc =

√
λλsΛsD1R2

0m

[(η + ω)D2 + (D1 − (η + ω)D3)R2
0m]Λhµ2

sv

. (13)

Differentiating Rsc partially with respect to R0m leads to

∂Rsc
∂R0m

=
(η + ω)D2

√
λλsΛsD1R2

0m

[(η+ω)D2+(D1−(η+ω)D3)R2
0m]Λhµ2

sv

[(η + ω)D2R0m + (D1 − (η + ω)D3)R3
0m]

. (14)

Whenever (14) is strictly positive, it implies that malaria enhances schistosomiasis
infection; that is, an increase in malaria cases results in an increase of schisto-
somiasis cases in the community. If (14) is equal to zero, malaria cases have no
significant effect on the transmission dynamics of schistosomiasis. If (14) is less
than zero, an increase in malaria cases results in decrease of schistosomiasis cases
in the community.
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Similarly, expressing µh in terms of Rsc, we get

µh =
D4R

2
sc

D5 −D6R2
sc

, (15)

where

D4 = Λhµ
2
sv(η + ω)

D5 = λλsΛs

D6 = Λhµ
2
sv.

Substituting into the expression for R0m, we obtain

R0m =

√
D4βhβvΛvR2

sc

[(φ+ ψ)D5 + (D4 − (φ+ ψ)D6)R2
sc]Λhµ

2
sv

. (16)

Differentiating R0m with respect to Rsc, we get

∂R0m

∂Rsc
=

(φ+ ψ)D5

√
D4βhβvΛvR2

sc

[(φ+ψ)(D5−D6R2
sc)+D4R2

sc]Λhµ
2
sv

[(φ+ ψ)Rsc(D5 −D6R2
sc) +D4R3

sc]
. (17)

Whenever (17) is greater than zero, an increase in schistosomiasis cases results in
an increase of malaria cases in the community. If (17) is equal to zero, this implies
that schistosomiasis cases have no effect on the transmission dynamics of malaria.
If (17) is less than zero, an increase in schistosomiasis cases results in decrease of
malaria cases in the community.

The impact of malaria treatment on schistosomiasis is evaluated by partially
differentiating Rm with respect to ω. We have

∂R0m

∂ω
=

(φ+ ψ)(D5 −D6R
2
sc)
√

D4βhβvΛvR2
sc

[(φ+ψ)(D5−D6R2
sc)+D4R2

sc]Λhµ
2
sv

2D4[(φ+ ω)(D5 −D6R2
sc) +D4R2

sc]
. (18)

Whenever (18) is negative, R0m is strictly a decreasing function of ω, so the treat-
ment of schistosomiasis will have a positive impact on the dynamics of malaria and
schistosomiasis co-infection. If (18) is positive, then the treatment of schistosomi-
asis will have a negative impact on the dynamics of malaria and schistosomiasis
co-infection. If (18) is zero, then the treatment of schistosomiasis will have no im-
pact on the dynamics of malaria and schistosomiasis co-infection. These results are
summarised in the following lemma.

Lemma 3.5. Treatment of schistosomiasis only in the co-infection model, will have

1. a positive impact on the malaria and schistosomiasis co-infection if (18) < 0
2. no impact on the malaria and schistosomiasis co-infection if (18) = 0
3. a negative impact on the malaria and schistosomiasis co-infection if (18) > 0.

3.8. Sensitivity indices of Rsc when expressed in terms of R0m. We next
derive the sensitivity of Rsc in (13) (i.e. when expressed in terms of R0m) to each of
the 13 different parameters. However, the expression for the sensitivity indices for
some of the parameters are complex, so we evaluate the sensitivity indices of these
parameters at the baseline parameter values as given in Table (3). The sensitivity
index of Rsc with respect to λ, for example is,

ΥRsc
λ ≡ ∂Rsc

∂λ
× λ

Rsc
= 0.5. (19)
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The detailed sensitivity indices of Rsc resulting from the comparison to the other
parameters of the model are shown in Table 1.

Parameter Description Sensitivity index Sensitivity index
if R0m < 1 if R0m > 1

µsv snail mortality −1 −1
µv mosquito mortality 0.56 0.07
λs prob. of snail getting infected with schisto 0.5 0.5
Λs snail birth rate 0.5 0.5
βh prob. of human getting infected with malaria −0.28 −0.03
βv prob. of mosquito getting infected −0.28 −0.03
Λv mosquito birth rate −0.28 −0.03
Λh human birth rate −0.22 −0.47
φ malaria-induced death 0.12 −0.31
ω recovery from schisto −0.10 0.26
m schisto-induced death −0.02 0.05
ψ recovery from malaria 0.003 −0.0084

Table 1. Sensitivity indices of Rsc expressed in terms of R0m

Table 1 shows the parameters, arranged from the most sensitive to the least. For
R0m < 1, the most sensitive parameters are the snail mortality rate, the mosquito
mortality rate, the probability of a snail getting infected with schisto and the snail
birth rate (µsv, µv, λs and Λs, respectively). Since ΥRsc

µsv = −1, increasing (or
decreasing) the snail mortality rate µsv by 10% decreases (or increases) Rsc by
10%; similarly, increasing (or decreasing) the mosquito mortality rate, µv, by 10%
increases (or decreases) Rsc by 5.6%. In the same way, increasing (or decreasing)
the prob. of snails getting infected with schistosomiasis, λs, increases (or decreases)
Rsc by 5%. As the malaria parameters βh, βv and Λv increase/decrease by 10%,
the reproduction number of schistosomiasis, Rsc, decreases by 2.8%.

For R0m > 1, the most sensitive parameters are the snail mortality rate, the
probability of a snail getting infected with schistosomiasis, the snail birth rate, the
human birth rate, malaria-induced death and recovery from schistosomiasis (µsv,

λs, Λs, Λh, φ, ω, respectively). Since ΥRsc
λs

= 0.5, increasing (or decreasing) by

10% increases (or decreases) Rsc by 5%; similarly, increasing (or decreasing) the
recovery rate, ω, by 10% increases (or decreases) Rsc by 2.6%. Also, as the malaria
parameters βh, βv and Λv increase/decrease by 10%, the reproduction number of
schistosomiasis Rsc, decreases by only 0.3%.

It is clear that Rsc is sensitive to changes in R0m. That is, the sensitivity of Rsc
to parameter variations depends on R0m; whenever, R0m < 1, Rsc is less sensitive
to the model malaria parameters.

3.9. Sensitivity indices of R0m when expressed in terms of Rsc. Similar to
the previous section, we derive the sensitivity of R0m in (16) (i.e. when expressed
in terms of Rsc) to each of the different parameters. The sensitivity index of R0m

with respect to βh, for example, is

ΥRom
βh
≡ ∂R0m

∂βh
× βh
R0m

= 0.5. (20)

The detail sensitivity indices of Rom resulting from the evaluation to the other
parameters of the model are shown in Table 2. It is clearly seen from Table 2
that the malaria reproduction number, Rm, is not sensitive to any variation in the
schistosomiasis reproduction number Rsc.



388 KAZEEM OARE OKOSUN AND ROBERT SMITH?

Parameter Description Sensitivity index Sensitivity index
if Rsc < 1 if Rsc > 1

βv prob. of mosquito getting infected 0.5 0.5
Λv mosquito birth rate 0.5 0.5
λ prob. of human getting infected with schisto −0.5 −0.5
λs prob. of snail getting infected with schisto −0.5 −0.5
Λs snail birth rate −0.5 −0.5
φ malaria-induced death −0.49 −0.49
ω recovery from schisto 0.41 0.41
m schisto-induced death 0.09 0.09
ψ recovery from malaria −0.01 −0.01
µsv snail mortality 0.0000002 0.000007
Λh human birth rate 0.0000001 0.000004

Table 2. Sensitivity indices of R0m expressed in terms of Rsc
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Figure 3. Simulations of the malaria–schistosomiasis model with
varying initial values

3.10. Existence of backward bifurcation. The existence of a backward bifurca-
tion can be proved by applying the centre manifold theorem to a bifurcation analysis
on system (1).
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First, we consider the transmission rate βh and λ as bifurcation parameters so
that R0m = 1 and Rsc = 1 if and only if

βh = β∗h =
µ2
vΛh(ψ + φ+ µh)

Λvµhβv

and

λ = λ∗ =
µ2
svΛh(m+ ω + µh)

µhΛsλs
.

Next we make the following change of variables: Sh = x1, Im = x2, Isc = x3, Cms =
x4, Rm = x5, Rs = x6, Rms = x7, Sv = x8, Iv = x9, Ssv = x10, Isv = x11 and
N = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10.

Using vector notation ~x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)T , the malaria–
schistosomiasis model can be written in the form ~x ′ = F (~x), with
F = (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10)T , as shown below:

x′1 = Λh + εx6 + αx5 − β1x1 − λ1x1 − µhx1

x′2 = β1x1 − λ1x2 − (ψ + µh + φ)x2

x′3 = λ1x1 − β1x3 − (ω + µh + η)x3

x′4 = β1x3 + λ1x2 − (δ + µh + η + φ)x4

x′5 = ψx1 − (α+ µh)x5 + τδx4

x′6 = ωx3 − (ε+ µh)x6 + (1− τ)δx4

x′8 = Λv − β2x8 − µvx8

x′9 = β2x8 − µvx9

x′10 = Λs − λ2x10 − µsvx10

x′11 = λ2x10 − µsvx11,

(21)

where

β1 =
βhx9

x1 + x2 + x3 + x4 + x5 + x6
λ1 =

λx11

x1 + x2 + x3 + x4 + x5 + x6

β2 =
βv(x2 + x4)

x1 + x2 + x3 + x4 + x5 + x6
λ2 =

λs(x3 + x4)

x1 + x2 + x3 + x4 + x5 + x6
.

This method involves evaluation of the Jacobian of system (21) at the DFE E0,
denoted by J(E0). This becomes

J(E0) =



−µh 0 0 0 α ε 0 −βh 0 −λ
0 −J1 0 0 0 0 0 βh 0 0
0 0 −J2 J1 0 0 0 0 0 λ
0 0 0 −J3 0 0 0 0 0 0
0 ψ 0 J4 −J5 0 0 0 0 0
0 0 ω J6 0 −J7 0 0 0 0
0 −Jq 0 −Jq 0 0 −µv 0 0 0
0 Jq 0 Jq 0 0 0 −µv 0 0
0 0 −Jb −Jb 0 0 0 0 −µsv 0
0 0 Jb Jb 0 0 0 0 0 −µsv


,
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where

J1 = ψ + φ+ µh J2 = ω + µh + η J3 = δ + η + µh + φ

J4 = τδ J5 = α+ µh J6 = (1− τ)δ

J7 = ε+ µh Jq =
βvΛvµh
Λhµv

Jb =
βvΛsvµh
Λhµsv

.

J(E0) has a simple zero eigenvalue, with other eigenvalues having negative real
parts. Hence the centre manifold theorem [7] can be applied.

We first start by calculating the right and the left eigenvectors of J(E0), denoted
respectively by ~w = [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10]T and ~v = [v1, v2, v3, v4,
v5, v6, v7, v8, v9, v10]. We obtain

w1 = −Λh(αφ+ µh(α+ φ+ ψ + µh))µ2
v

βvΛvµ2
h(α+ µh)

w2 =
Λhµ

2
v

βvΛvµh
w3 = w4 = 0

w5 =
w2ψ

(α+ µh)
w6 = 0 w7 = −w8 w9 = w10 = 0

and

v1 = 0 v2 =
βvΛvµh

Λh(φ+ ψ + µh)µv
v3 = 0

v4 =
βvΛvµh

Λh(φ+ δ + η + µh)µv
v5 = v6 = v7 = 0 v9 = v10 = 0,

with w8 and v8 free. After rigorous computations, it can be shown that

a = 2v8w2

(
w7
βvµh
Λh

− w5
Λvµ

2
h

µvΛ2
h

− w1
Λvµ

2
h

µvΛ2
h

)
b = v2

(
w8 − w5

µh
Λh

)
.

(See [7].) Whenever the coefficient b is positive, it follows from Castillo-Chavez and
Song [7] that we have the following lemma.

Lemma 3.6. Suppose b > 0. Then we have the following:

1. System (1) will undergo a backward bifurcation if the coefficient a is positive.
2. System (1) will undergo transcritical bifurcation if the coefficient a is negative.

Remark. In the first case, the DFE is locally asymptotically stable but not globally
stable. In the second, it may be globally stable.

3.11. Analysis of optimal control. In this section, we apply Pontryagin’s Maxi-
mum Principle to determine the necessary conditions for the optimal control of the
malaria–schistosomiasis co-infection. We incorporate time-dependent controls into
model (1) to determine the optimal strategy for controlling the disease. Hence we



MALARIA-SCHISTOSOMIASIS CO-INFECTION DYNAMICS 391

have

S′h = Λh + εRs + αRm − (1− u1)β1Sh − (1− u2)λ1Sh − µhSh
I ′m = (1− u1)β1Sh − (1− u2)λ1Im − (u3ψ + µh + φ)Im

I ′sc = (1− u2)λ1Sh − (1− u1)β1Isc − (u4ω + µh + η)Isc

C ′ms = (1− u1)β1Isc + (1− u2)λ1Im − (u5δ + µh + η + φ)Cms

R′m = u3ψIm − (α+ µh)Rm + u5τδCms

R′s = u4ωIsc − (ε+ µh)Rs + u5(1− τ)δCms

S′v = Λv − (1− u1)β2Sv − µvSv
I ′v = (1− u1)β2Sv − µvIv
S′sv = Λs − (1− u2)λ2Ssv − µsvSsv
I ′sv = (1− u2)λ2Ssv − µsvIsv,

(22)

where

β1 =
βhIv
Nh

λ1 =
λIsv
Nh

β2 =
βv(Im + Cms)

Nh
λ2 =

λs(Isc + Cms)

Nh
.

For this, we consider the objective functional

J(u1, u2, u3, u4, u5)

=

∫ tf

0

[z1Im + z2Isc + z3Cms + z4Iv + z5Isv −Au2
1 −Bu2

2 + Cu2
3 +Du2

4 + Eu2
5]dt.

(23)

The control functions u1(t), u2(t), u3(t), u4(t) and u5(t) are bounded, Lebesgue-
integrable functions. Our choice of control functions agrees with other literature
on control of epidemics [1, 18, 21, 25, 37]. The controls u1(t) and u2(t) represent
the amount of effort required to prevent malaria and schistosomiasis infections, re-
spectively. The control on treatment of malaria-infected individuals u3(t) satisfies
0 ≤ u3 ≤ g2, where g2 is the drug efficacy for treatment of malaria-infected individ-
uals. The control on treatment of schistosomiasis-infected individuals u4(t) satisfies
0 ≤ u4 ≤ g3, where g3 is the drug efficacy for treatment of schistosomiasis-infected
individuals. The control on treatment of co-infected individuals u5(t) satisfies
0 ≤ u5 ≤ g4, where g4 is the drug efficacy for treatment of co-infected individuals.
Our control problem involves a situation in which the number of malaria-infected in-
dividuals, schistosomiasis-infected individuals, co-infected individuals and the cost
of applying treatments controls u3(t), u4(t) and u5(t) are minimised, while preven-
tions efforts u1(t), u2(t) are maximised subject to the system (22).

The final time tf and the coefficients z1, z2, z3, z4, z5, A,B,C,D,E are the bal-
ancing cost factors due to scales and importance of the ten parts of the objective
functional. We seek to find optimal controls u∗1, u∗2, u∗3, u∗4 and u∗5 such that

J(u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5) = min{J(u1, u2, u3, u4, u5)|u1, u2, u3, u4, u5 ∈ U}, (24)

where U = {(u1, u2, u3, u4, u5) such that u1, u2, u3, u4, u5 are measurable with 0 ≤
u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ g2, 0 ≤ u4 ≤ g3 and 0 ≤ u5 ≤ g4, for t ∈ [0, tf ]} is the
control set.
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The necessary conditions that an optimal solution must satisfy come from the
Pontryagin Maximum Principle [38]. This principle converts (22)–(23) into a prob-
lem of minimising pointwise a Hamiltonian H, with respect to u1, u2, u3, u4 and u5.
The Hamiltonian is given by

H = z1Im + z2Isc + z3Cms + z4Iv + z5Isv −Au2
1 −Bu2

2 + Cu2
3 +Du2

4 + Eu2
5

+MSh {Λh + εRs + αRm − (1− u1)β1Sh − (1− u2)λ1Sh − µhSh}
+MIm {(1− u1)β1Sh − (1− u2)λ1Im − (u3ψ + µh + φ)Im}
+MIsc {(1− u2)λ1Sh − (1− u1)β1Isc − (u4ω + µh + η)Isc}
+MCms {(1− u1)β1Isc + (1− u2)λ1Im − (u5δ + µh + η + φ)Cms}
+MRm {u3ψIm − (α+ µh)Rm + u5τδCms}
+MRs {u4ωIsc − (ε+ µh)Rs + u5(1− τ)δCms}
+MSv {Λv − (1− u1)β2Sv − µvSv}
+MIv {(1− u1)β2Sv − µvIv}
+MSsv {Λs − (1− u2)λ2Ssv − µsvSsv}
+MIsv {(1− u2)λ2Ssv − µsvIsv} ,

(25)

where MSh ,MIm ,MIsc ,MCms ,MRm ,MRs ,MSv ,MIv ,MSsv and MIsv are the adjoint
variables or co-state variables. The system of equations is found by taking the ap-
propriate partial derivatives of the Hamiltonian (25) with respect to the associated
state variable.

Theorem 3.7. Given optimal controls u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5 and solutions Sh, Im, Isc,

Cms, Rm, Rs, Sv, Iv, Ssv and Isv of the corresponding state system (22)–(23) that
minimise J(u1, u2, u3, u4, u5) over U , there exist adjoint variables MSh , MIm , MIsc ,
MCms , MRm , MRs , MSv , MIv , MSsv and MIsv satisfying

− dMi

dt
=
∂H

∂i
, (26)

where i = Sh, Im, Isc, Cms, Rm, Rs, Sv, Iv, Ssv, Isv and with transversality conditions

MSh(tf ) = MIm(tf ) = MIsc(tf ) = MCms(tf ) = MRm(tf ) = MRs(tf )

= MSv (tf ) = MIv (tf ) = MSsv (tf ) = MIsv (tf ) = 0
(27)

and

u∗1 = max

{
1,min

(
0,
βhIvSh(MSh −MIm) + βhIvIsc(MIsc −MCms) +Gy

2ANh

)}
(28)

u∗2 = max

{
1,min

(
0,
λIsv(MSh −MIsc)Sh + λIsv(MIm −MCms)Im +Dx

2BNh

)}
(29)

u∗3 = min

{
1,max

(
0,
ψ(MIm −MRm)Im

2C

)}
(30)

u∗4 = min

{
1,max

(
0,
ω(MIsc −MRs)Isc

2D

)}
(31)

u∗5 = min

{
1,max

(
0,
δCmsMCms − τδCmsMRm − (1− τ)δCmsMRs

2E

)}
, (32)
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where Gy = βv(Im+Cms)Sv(MSv−MIv ) and Dx = λs(Isc+Cms)Ssv(MSsv−MIsv ).

Proof. Corollary 4.1 of Fleming and Rishel [14] gives the existence of an optimal
control due to the convexity of the integrand of J with respect to u1, u2, u3, u4

and u5, a priori boundedness of the state solutions and the Lipschitz property of
the state system with respect to the state variables. The differential equations
governing the adjoint variables are obtained by differentiation of the Hamiltonian
function, evaluated at the optimal control.

Solving for u∗1, u∗2, u∗3, u∗4 and u∗5 subject to the constraints, the characterisation
(28)–(32) can be derived. We have

0 =
∂H

∂u1

= −2Au1 +
βhIvSh(MSh

−MIm ) + βhIvIsc(MIsc −MCms ) + βv(Im + Cms)Sv(MSv −MIv )

Nh

0 =
∂H

∂u2

= −2Bu2 +
λIsv(MSh

−MIsc )Sh + λIsv(MIm −MCms )Im + λs(Isc + Cms)Ssv(MSsv −MIsv )

Nh

0 =
∂H

∂u3

= 2Cu3 + ψ(MRm −MIm )Im

0 =
∂H

∂u4

= 2Du4 + ω(MRsc −MIsc )Isc

0 =
∂H

∂u5

= 2Eu5 + δCmsMCms + τδCmsMRm + (1 − τ)δCmsMRs .

(33)

Hence we obtain (see Lenhart and Workman [25])

u∗
1 =

βhIvSh(MSh −MIm) + βhIvIsc(MIsc −MCms) +Gy
2ANh

u∗
2 =

λIsv(MSh −MIsc)Sh + λIsv(MIm −MCms)Im + λs(Isc + Cms)Ssv(MSsv −MIsv )

2BNh

u∗
3 =

ψ(MIm −MRm)Im
2C

u∗
4 =

ω(MIsc −MRs)Isc
2D

u∗
5 =

δCmsMCms − τδCmsMRm − (1− τ)δCmsMRs

2E
.

(34)

By standard control arguments involving the bounds on the controls, we conclude
that

u∗i =


0 if ξ∗i ≤ 0

ξ∗i if 0 < ξ∗i < 1

1 if ξ∗i ≥ 1

for i ∈ 1, 2, 3, 4, 5 and where

ξ∗1 =
βhIvSh(MSh −MIm) + βhIvIsc(MIsc −MCms) +Gy

2ANh

ξ∗2 =
λIsv(MSh −MIsc)Sh + λIsv(MIm −MCms)Im + λs(Isc + Cms)Ssv(MSsv −MIsv )

2BNh

ξ∗3 =
ψ(MIm −MRm)Im

2C

ξ∗4 =
ω(MIsc −MRs)Isc

2D

ξ∗5 =
δCmsMCms − τδCmsMRm − (1− τ)δCmsMRs

2E
.
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4. Numerical simulations. We now discuss numerical solutions of the optimality
system and the corresponding results of varying the optimal controls u1, u2, u3, u4

and u5, the parameter choices, as well as the interpretations from various cases.
The numerical solutions are illustrated using MATLAB. The optimality system,

which consists of the state system and the adjoint system, was solved to obtain the
optimal control solution. A fourth-order Runge–Kutta iterative scheme is used to
solve the optimality system. The adjoint equations were solved by the backward
fourth-order Runge–Kutta scheme using the current solutions of the state equations
because of the transversality conditions (27). Then the controls were updated by
using a convex combination of the previous controls and the value from the charac-
terisations. This process was repeated, and the iterations were stopped if the values
of the unknowns at the previous iterations were very close to the ones at the present
iteration ([2, 3, 21, 25]).

Table 3 lists the parameter descriptions and values used in the numerical sim-
ulation of the co-infection model. The following weight constants were used: A =
150, B = 230, C = 200, D = 250, E = 310 and z1 = 210, z2 = 310, z3 =
400, z4 = 260, z5 = 300.

Parameter Description value Reference

φ malaria-induced death 0.05–0.1 day−1 [43]
βh malaria transmissibility to humans 0.034 day−1 assumed
βv malaria transmissibility to mosquitoes 0.09 day−1 [5]
λ schistosomiasis transmissibility to humans 0.406 day−1 [45]
λs schistosomiasis transmissibility to snails 0.615 day−1 [9]
µh Natural death rate in humans 0.00004 day−1 [5]
µv Natural death rate in mosquitoes 1/15–0.143 day−1 [5]
µsv Natural death rate in snails 0.000569 day−1 [9, 45]
α malaria immunity waning rate 1/(60×365) day−1 [5]
ε schistosomiasis immunity waning rate 0.013 day−1 assumed
Λh human birth rate 800 people/day [9]
Λv mosquitoes birth rate 1000 mosquitoes/day [5]
Λs snail birth rate 100 snails/day [13]
δ recovery rate of co-infected individual 0.35 day−1 assumed
ω recovery rate of schistosomiasis-infected individual 0.0181 day−1 assumed
ψ recovery rate of malaria-infected individual 1/(2×365) day−1 [5]
τ co-infected proportion who recover from malaria only 0.1 assumed
η schistosomiasis-induced death 0.0039 day−1 [9]

Table 3. Parameters in the co-infection model

4.1. Prevention (u1) and treatment (u3) of malaria. The malaria prevention
control u1 (representing treated bednets) and the malaria treatment control u3

are used to optimise the objective functional J ; the other controls (u2, u4 and u5)
relating to schistosomiasis are set to zero. Figure 4(a) shows that the number of
malaria-infected humans Im is significantly different compared to cases without
control.

Figure 4(b) shows that this strategy for controlling the schistosomiasis-infected
individuals Isc yields no positive results, because there was no intervention put
in place against schistosomiasis. The effect of not controlling the schistosomiasis-
infected population is clearly depicted in Figure 4(e); this strategy was of no effect
in controlling the infected snails Isv.

The population of co-infected humans Cms illustrated in Figure 4(c) shows a
clear difference between the cases without control and the controlled cases. This
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Figure 4. Simulations of the malaria–schistosomiasis model show-
ing the effect of malaria prevention and treatment on transmission

same trend is also observed in Figure 4(d) in the control of the number of malaria-
infected mosquitoes Iv. Figure 4(f) show the control profile. This suggest that the
malaria-prevention control u1 should be at maximum for the entire duration of the
intervention, while malaria-treatment control u3 should be at 100% for approxi-
mately 25 days before being gradually reduced to zero.
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Figure 5. Simulations of the malaria–schistosomiasis model show-
ing the effect of schistosomiasis prevention and treatment on trans-
mission

4.2. Prevention (u2) and treatment (u4) of schistosomiasis. The
schistosomiasis-prevention control u2 and the schistosomiasis-treatment control u4

were used to optimise the objective functional J while we set the malaria-related
controls u1, u3 and u5 to zero. We observe from Figure 5(a) that this strategy shows
no significant effect in reducing the number of malaria-infected humans Im under
optimal control compared to cases without control. However, Figure 5(d) shows that
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the number of malaria-infected mosquitoes Iv is a bit lower under control compared
to cases without control.

The results depicted in Figure 5(b) clearly suggest that this strategy is very
effective in the control of the number of schistosomiasis-infected humans Isc, as
expected. Furthermore, there was significant control of infected snails Isv as shown
in Figure 5(e). The population of co-infected humans Cms shown in Figure 5(c) also
shows significant difference between the cases with and without control. Figure 5(d)
suggests that effective treatment and prevention of schistosomiasis infection would
contribute to a reduction in malaria-infected mosquitoes. The control profile in
Figure 5(f) suggests that the prevention control u2 and treatment control u4 of
schistosomiasis should both be maximised in the absence of any intervention for
malaria.

4.3. Malaria and schistosomiasis combined prevention (u1 and u2). We
next consider a prevention-only strategy, where the prevention is applied to both
infections. The malaria-prevention control u1 and the schistosomiasis-prevention
control u2 are used to optimise the objective functional J while u3, u4 and u5 are
set to zero.

Figure 6(a) shows that the number of malaria-infected humans Im was totally
controlled. This effect is also observed in Figure 6(d) for the control of the number of
malaria-infected mosquitoes Iv. Figure 6(b) shows that the impact of this strategy
in controlling schistosomiasis-infected individuals Isc also yielded significant results.

The effect of not treating the schistosomiasis-infected population is shown clearly
in Figure 6(e), making this strategy of no effect in controlling the infected snail
population Isv. Figure 6(c) shows significant difference between the population of
co-infected humans Cms in the cases with control and those without. This strategy
suggest that optimal preventive strategies against malaria and schistosomiasis in a
community would be an effective approach to controlling either disease. The control
profile in Figure 6(f) suggests that the prevention controls u1 and u3 should both
be maximised in the absence of any treatment intervention.

4.4. Malaria and schistosomiasis treatment (u3, u4 and u5). We next exam-
ined treatment for the two infections in the absence of prevention. The malaria- and
schistosomiasis-treatment controls u3, u4 and u5 were used to optimise the objective
functional J while the preventive controls (u1, u2) were set to zero.

Figure 7(a) shows that the number of malaria-infected humans Im is reduced but
not effectively controlled. The impact of this strategy is also shown in Figure 7(d),
where the number of malaria-infected mosquitoes Iv is reduced but not controlled by
the end of the intervention period. Conversely, Figure 7(b) shows that this strategy
is very effective in controlling the number of schistosomiasis-infected humans Isc.
Figure 7(e) similarly shows that the infected snail population is controlled.

The population of co-infected humans Cms shown in Figure 7(c) shows significant
difference between the cases with control and those without. This strategy suggests
that optimal treatment for malaria and schistosomiasis in a community where both
diseases co-exist would be an effective approach to control them both. The control
profile in Figure 7(f), suggest that the treatment controls u3, u4 and u5 of malaria
and schistosomiasis should all be at maximum in the absence of any prevention
interventions for the entire duration of the intervention strategy.

4.5. Malaria and schistosomiasis prevention and treatment. Finally, we ex-
amined the case where all controls, including both prevention and treatment, are
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Figure 6. Simulations of the malaria–schistosomiasis model show-
ing the effect of prevention of both infections on transmission

in place. In this strategy all the controls (u1, u2, u3, u4, u5) are used to optimise
the objective functional J .

Figure 8(a) shows that the number of malaria-infected humans Im is effectively
controlled. The impact of this strategy is also shown in Figure 8(d), where the
number of malaria-infected mosquitoes Iv is significantly reduced at the end of the
intervention period.
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Figure 7. Simulations of the malaria–schistosomiasis model show-
ing the effect of treatment of malaria and schistosomiasis transmis-
sion

Figure 8(b) suggests that this strategy is effective in controlling the number of
schistosomiasis-infected humans Isc, as well as the infected snail population Isv,
as shown in Figure 8(e). The population of co-infected humans Cms shown in
Figure 8(c) illustrates significant difference between the cases with control and those
without. This strategy suggests that utilising all controls (if logistically possible)
would be effective at controlling both diseases.
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Figure 8. Simulations of the malaria–schistosomiasis model show-
ing the effect of both prevention and treatment

The control profile in Figure 8(f) suggests that this strategy would require that
control u3 start at 30% before gradually decreasing to zero, while controls u4 and u5

should remain at maximum for 50 days and 20 days respectively before decreasing
gradually to zero. Controls u1 and u2 should maintain maximum efforts for the
entire period of intervention.

Figure 9(a)–(b) shows the effect of varying the schistosomiasis transmission pa-
rameter λ on the number of individuals infected with malaria, Im, and the number
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Figure 9. Simulations of the malaria–schistosomiasis model show-
ing the effect of varying transmission rates

of co-infected individuals, Cms. This illustrates that effective control of schistoso-
miasis would enhance the control of malaria. Conversely, Figure 9(c)–(d) shows the
effect of varying the malaria transmission parameter βh on the number of individuals
infected with schistosomiasis, Isc, and the number of co-infected individuals. This
illustrates that effective control of malaria would enhance control of co-infection but
have only minimal effect on schistosomiasis prevalence.

Figure 10 shows the effect of varying the death rate of mosquitoes µv (for example,
through spraying) on the number of individuals infected with schistosomiasis and
the number of co-infected individuals. As the mosquitos are controlled, the number
of individuals infected with malaria falls dramatically, as does the number of co-
infected individuals, while the number of schistosomiasis-infected individuals only
decreases slightly.

5. Discussion. In this paper, we formulated and analysed a deterministic model
for the transmission of malaria–schistosomiasis co-infection that includes use of pre-
vention and treatment of infectives for each disease. We determined reproduction
numbers for each submodel and used sensitivity analysis to show that malaria con-
trol will affect schistosomiasis. However, schistosomiasis control has little effect on
the prevalence of malaria. We also showed that a backward bifurcation is possible
under some circumstances, further complicating eradication efforts.
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Figure 10. Simulations of the malaria–schistosomiasis model
showing the effect of varying the mosquito death rate

Numerical simulations indicate that optimal control of schistosomiasis prevention
and treatment has a moderate effect on reducing infected mosquitoes. Conversely,
optimal malaria prevention and treatment plays no role in reducing infected snails.
Furthermore, the control strategies in each case are quite different: schistosomiasis
control should be maximised in the absence of any intervention for malaria, while
malaria-treatment control should begin at 100%, but gradually reduce to zero over
time.

We reconcile the differences between the results from the sensitivity analysis and
those of this sub-case by noting that the sensitivity analysis takes into account vari-
ation of all factors, whereas this sub-case focuses on varying only some parameters.
For example, optimal control of malaria prevention and treatment affects only the
transmission rate λ1 and the recovery rate ω, whereas R0m is also affected by birth
and death rates, which in practice may vary considerably.

We also showed that prevention-only strategies for both diseases are less effective
than treatment-only strategies. However, utilising both prevention and treatment
for both diseases is, unsurprisingly, the most effective option. Therefore, whenever
there is co-infection of malaria and schistosomiasis in the community, our model sug-
gests that control measures for both diseases should be administered concurrently
for effective control.
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Our model has some limitations, which should be acknowledged. We assumed
that co-infected individuals recovered from one or other of the infections first; that
is, there was no simultaneous recovery. We also assumed that the birth rates of
all populations were constant and that infection was not affected by seasonality
or migration. Spatial distributions of vector habitats may also be significant [10].
Finally, the existence of a backward bifurcation means that control efforts should
not just focus on reducing the reproduction numbers below unity.

Our results illustrate the importance of developing co-infection models: results
that apply to one disease may have unexpected consequences (or no consequences)
for the other. While a handful of models have been developed for co-infection of
diseases, we reiterate the urgency of the call for more modelling [19]. Only when a
multitude of voices are included can we begin to fully understand the complexities
of interacting controls against multiple infections.
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