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Abstract. Population transmission models have been helpful in studying the

spread of HIV. They assess changes made at the population level for different
intervention strategies. To further understand how individual changes affect

the population as a whole, game-theoretical models are used to quantify the

decision-making process. Investigating multiplayer nonlinear games that model
HIV transmission represents a unique approach in epidemiological research. We

present here 2-player and multiplayer noncooperative games where players are

defined by HIV status and age and may engage in casual (sexual) encounters.
The games are modelled as generalized Nash games with shared constraints,

which is completely novel in the context of our applied problem. Each player’s

HIV status is known to potential partners, and players have personal pref-
erences ranked via utility values of unprotected and protected sex outcomes.

We model a player’s strategy as their probability of being engaged in a ca-

sual unprotected sex encounter (USE), which may lead to HIV transmission;
however, we do not incorporate a transmission model here. We study the sen-
sitivity of Nash strategies with respect to varying preference rankings, and the
impact of a prophylactic vaccine introduced in players of youngest age groups.
We also study the effect of these changes on the overall increase in infection

level, as well as the effects that a potential prophylactic treatment may have
on age-stratified groups of players. We conclude that the biggest impacts on

increasing the infection levels in the overall population are given by the vari-
ation in the utilities assigned to individuals for unprotected sex with others
of opposite HIV status, while the introduction of a prophylactic vaccine in
youngest age group (15-20 yr olds) slows down the increase in HIV infection.
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1. Introduction. Since the beginning of the HIV epidemic, it is estimated that
75 million people have been infected with HIV and 36 million have died [40]. HIV
spans the globe, affecting every country, although some have fared worse than oth-
ers. This is especially apparent in sub-Saharan Africa, with an estimated 5% of all
adults infected [40]. HIV is not restricted to certain age groups, and, despite pre-
vention programs and awareness campaigns, HIV incidence continues to increase,
particularly amongst men who have sex with other men (MSM).

Fortunately, there have been numerous medical advancements since AIDS and
HIV were defined in 1982–85. In 1986, the first antiretroviral therapy (ART) was
introduced to prolong the life of individuals affected with HIV and reduce its spread.
This changed the perspective of HIV to that of a chronic disease. Questions are
now raised as to why the incidence rate continues to increase amongst certain popu-
lation groups. Numerous surveys attempt to explain an individuals’ reasoning, but
the results have been varied, showing evidence of increased risky behaviour as well
as decreased or no change in behaviour. [12, 22, 28, 32]. The imminence of pro-
phylactic HIV vaccines (such as one being developed at The University of Western
Ontario [39]) would have an enormous impact worldwide, but also raises some new
interesting questions, chief among them being how to asses its impact on individuals
contemplating whether to engage in casual sex, specifically in unprotected casual
sex.

Population models have been useful in understanding and predicting the spread
of HIV [20, 36, 18, 31, 19]. To better understand how one individual can affects
change at population level game-theoretical models have been used [30, 33] These
models illuminate a feedback mechanism where individual’s choices may affect the
population, which in turn affect the choices an individual is likely to make.

Game theory dates back to late 1940s with the works of von Neumann and Mor-
genstern [37] and later those of Nash [26] in the early 1950s. A game is a mathemat-
ical framework to describe decision-making by individuals engaged in competitive
situations, where they can behave noncooperatively or cooperatively. Noncooper-
ative game theory is nowadays widely used in applied areas such as economics,
engineering, operations research, evolutionary biology and social sciences (psychol-
ogy and cognitive sciences) see [4, 15, 16] and many references therein. The question
of existence and computation of Nash strategies for a given game can be tackled
with various methods, such as the reaction-curves method, optimization techniques,
variational inequalities, computational methods (such as genetic algorithms, evolu-
tionary computation), or a replicator-dynamics equilibrium, etc. [4, 10, 21, 3, 11].

Generalized Nash games (GN) with finite dimensional strategy sets were first
studied by Arrow and Debreu in [1], followed by [29, 23, 34, 27], with a recent
review in [14]. The formulation of the generalized Nash game as a variational
inequality problems dates back to Bensoussan [5], while [34] gives first equivalence
results for finite-dimensional GN games and quasivariational inequalities.

In this paper, we model casual (sexual) encounters as a noncooperative gener-
alized Nash game between 2, 3, or 4 players, where each player’s HIV status is
known to both one’s self, and to the player they choose to interact with. We do
not model in this paper a population-level transmission process. All players have
personal preferences ranked in utility of unprotected and protected sex outcomes,
and they are given expected utilities of the casual encounter, depending on possible
outcomes: unprotected sex outcome (USE), or protected/no-sex outcome (PSE).
We model a player’s strategy vector as their probabilities of being engaged in USE
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with other players. We further introduce multiplayer GN games to analyze casual
encounters between players belonging to different age groups, where partner choice
is closely tied to a player’s age. This age-stratified game model is introduced here to
investigate the possibility of offering a prophylactic HIV vaccine to the youngest age
group, perhaps before they become sexually active (similar to the HPV vaccine).
Then we study the effects of individual choices on HIV transmission where different
age groups interact and have differing levels of access to treatment options.

In our previous work on the topic, we modelled a similar setup of casual encoun-
ters with an agent-based model of the population [33, 35], and we analyzed how
groups can emerge from coevolution of HIV spread with partner choices and risk
perception, where we also assumed that a player’s true HIV status is only known
to themselves. In this model, unlike our previous simulation-based work, we con-
struct a theoretical model to identify and analyze Nash equilibria with respect to
the decisions players make. This allows us to better understand: a) the impact
of personal preferences for unprotected sex; and b) the impact of heterogeneity of
players (division in age groups) and initial HIV age composition both in presence
and absence of a prophylactic vaccine.

To the best of our knowledge, modelling HIV transmission with age-stratified
multiplayer GN games models is absolutely novel in the literature. There are a
handful of examples of multiplayer GN games in applied problems (the River Basin
problem, electricity markets [25], cap-and-trade agreements [14], voluntary vaccina-
tion models [11]), so our work here is unique in pushing the boundaries of modelling
using GN games.

The structure of the paper is as follows: In Section 2, we present a 2-player game
while in Section 3 we formulate the multiplayer games of casual encounters between
players in age groups. Throughout, we investigate the sensitivity of players’ Nash
strategies and of HIV transmission when changes in utility rankings, efficacy of
prophylactic treatment and group-specific initial HIV age composition are taken
into account. We close with a few conclusions and future work.

2. Casual encounter games as generalized Nash games. In general, a multi-
player game involves a finite number of players, denoted here by N > 0. A generic
player i ∈ {1, ..., N} is thought to have a strategy set Si ⊂ Rni , whose strategies
are vectors xi ∈ Si, and a payoff function fi : Si → R. A Nash equilibrium of a
multiplayer game is defined as follows:

Definition 2.1. Assume each player is rational and wants to maximize their payoff.
Then a Nash equilibrium is a vector x∗ ∈ K := S1 × ... × SN which satisfies the
inequalities:

∀i, fi(x∗i , x∗−i) ≥ fi(xi, x∗−i), ∀xi ∈ Si
where x−i := (x1, ..., xi−1, xi+1, ..., xN ).

For several decades, there exists, in the game theoretic literature, the concept of
a generalized Nash (GN) game [1, 29], which in brief is a game such as above, where
however each player’s strategy set Si is in fact dependent on the vector of strategies
of other players [14]. It is known that in general a GN game has entire sets of Nash
equilibria (as defined above), and it is also known that very few solution methods
exist to date to compute all these for a given game. In particular, the subclass of
GN games with shared constraints (SC) [27, 13] has developed more than its generic
GN games counterparts. These are GN games where each player has an individual
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constraint set (applied only to their vector of strategies, such as Si := Si(xi) here),
however all players in a game have to also obey a shared constraint, i.e., a set of
inequalities involving other players’ strategies. This class of games is detailed in
[27, 13, 14] and most recent work by the first author developed a theory and a
computational method for finding the entire solutions set of a GNSC [9].

In this paper, we need to use the framework of GN theory, as our player interac-
tions lead to casual sexual encounters in a closed population, thus the encounters
have to obey a counting rule from both an HIV+ and and HIV− player viewpoint.
This constraint is in fact a shared constraint by all players, which naturally leads
us to consider multiplayer GN games.

There are results asserting existence of generalized Nash equilibria for the type
of games we model (see for instance [13, 34, 29] and references therein). One such
approach is that of finding a small subset of solutions of a GN game by reformulating
the GN game into a variational problem as below in Definition 2.2. Once the VI is
proven to have solutions, computational methods are employed to find its solution
set.

Definition 2.2. Given a set K ⊂ Rn, closed and convex, and given F : K → Rn a
continuous function, the variational inequality (VI) problem is to find a vector x∗

∈ K such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ K.

The existence of a solution to the VI problem in Definition 2.2 can be shown in
many mathematical contexts (see [24]) but, specifically for our cases here, we use
the results in [13]. Specifically, we solve for generalized Nash strategies of players

where F (x) := (−∂f1(x)∂x1
, ....,−∂fN (x)

∂xN
) and where K = {S1 × ... × SN | g(x) ≤ 0},

where g(x) is the shared constraint.
To solve the VI problem we compute its solution set as the set of critical points

of a projected dynamical system (see [2, 8]) given by

dx

dτ
= PTK(x(τ))(F (x(τ))), x(0) ∈ K, (1)

where F (x) := (∇x1
f1, ...,∇xN

fN ). The advantages are three-fold: we can assert
existence of solutions to the game (given known results of existence of solutions to
(1); we can use computational methods developed for projected systems to analyze
and compute Nash equilibria for the game; and we can check if/when uniqueness of
Nash strategies can be asserted.

It is known that the system (1) is well-defined if F is Lipschitz continuous on
K, where K is a closed and convex set. Under these assumptions, solutions to this
system exist and are unique through each initial point x(0) ∈ K. A projection-type
algorithm can be used to compute its trajectories and its stationary points such as
the ones in [2, 8]. To answer the uniqueness question, we numerically explore the
set of initial conditions of system (1) and study how many (and what values of)
Nash strategies we uncover.

2.1. Two-player casual encounter game. Let us consider now a casual en-
counter between two individuals from a general population of individuals aged 15
and over. A player can have one of two statuses: HIV negative (HIV−) or HIV
positive (HIV+). Let us then denote by ε−, respectively ε+, the proportion of HIV
negative, respectively HIV positive individuals so that ε− + ε+ = 1. Now, let us de-
fine by P1 and P2 respectively two players such that their statuses are s1 := HIV+
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and s2 := HIV−. Define by xi ∈ [0, 1]2, xi = (xi−, x
i
+), i ∈ {1, 2} a player’s prob-

ability vector of having unprotected sex, where xi− is probability of unprotected

sex (USE) with an HIV− player and xi+ is the probability of USE with an HIV+
player. We try to find out, via our game model, what are the probabilities of having
unprotected sex as a result of a casual encounter, based on their preference of sex
outcomes.

Utility ranking of preferences of each player is given based on the HIV status of
the individual they might engage with, which is considered known to them, as well
as based on the type of sexual outcome they may find themselves in, namely USE,
or PSE (where by PSE we amalgamate preferences of either protected sex or no
sex outcomes).

Specifically, we assign as a numerical value for the utility of a sexual encounter
the range of [0, 1]. We consider throughout the paper that USE(+,+) = 1,
USE(−,−) = 1 and that, as in [33], USE(+,−) < 1 and USE(−,+) < 1. This
is to say that players are rational, and prefer unprotected sexual encounters with
players of same status over all other outcomes.

Let us define the expected utilities for Pi, i ∈ {1, 2} out of a casual encounter as:
Ei−: = expected utility from interacting with an HIV− player and Ei+: = expected
utility from interacting with an HIV+ player. For P1, who is HIV+, these are:

E1
− = ρ[x1−USE(+,−) + (1− x1−)PSE(+,−)] and

E1
+ = ρ[x1+USE(+,+) + (1− x1+)PSE(+,+)]

where ρ is the activity parameter of P1. This represents a multiplicative factor
controlling overall sexual activity level. It is outlined further in Section 3.

Then the overall expected utility of the encounter for P1 is:

E1(x1−, x
1
+) = ε+E

1
− + (1− ε+)E1

+.

Similarly, for P2, whose status is HIV−, we have:

E2
− = ρ[x2−USE(−,−) + (1− x2−)PSE(−,−)],

E2
+ = ρ[x2+USE(−,+) + (1− x2+)PSE(−,+)].

Thus E2(x2−, x
2
+) = ε+E

2
− + (1− ε+)E2

+.

Now let us recall that ε+ depends on the probabilities of players P1 and P2 to have
unprotected sex. Consequently, we express ε+ as:

ε+ = ε+(0) + [x1−ε+(0) + x2+ε−(0)]τ (2)

where ε+(0) is the initial (before the game) fraction of HIV+ people in the popu-
lation, and τ = 0.02 is the known transmission probability of HIV [17].

Last but not least, we need to make sure that the number of possible sexual
encounters that lead to transmission is the same whether counted from the P1 or
P2 perspective. This leads us to the constraint:

ε−
∑

i∈HIV−

xi+ = ε+
∑

i∈HIV+

xi− ⇔ (1− ε+)x2+ = ε+x
1
−,

with ε+ as in (2).
Players P1 and P2 want to maximize their expected utilities E1(x1, x2) and

E2(x1, x2) subject to (x1, x2) in the set

K := {S1 × S2 | (1− ε+)x2+ = ε+x
1
−}
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where

Si = {xi = (xi−, x
i
+) ∈ [0, 1]2, 0 ≤ xi− + xi+ ≤ 1, i = 1, 2}.

Due to expression (2) we see that these utilities have actual dependencies on the
other player’s choices, so our model is a 2-player game with nonlinear payoffs.

2.2. Base case scenarios, parameter values and uniqueness of Nash strate-
gies. At this stage, a discussion of parameter values we define as our “base case sce-
nario” throughout the rest of the manuscript is needed. We outlined above our start-
ing assumptions on the utility ranking values for USE(+,+) and USE(−,−). Fur-
thermore, we also assume USE(+,−) = 0 and USE(−,+) = 0 and PSE(s1, s2) =
0, for any status values s1 6= s2 ∈ {+,−} and PSE(−,−) = USE(+,+) = 0.25 > 0.
The latter values mean that a protected sex outcomes or no sex outcome is less pre-
ferred than USE by all players, but a PSE outcome with a partner of same status
has a positive utility for all players.

The base values used in our simulations, unless otherwise noted, are listed in
Table 1.

P1 P2 Utility for USE Utility for PSE Range
HIV+ HIV+ USE(+,+) = 1 PSE(+,+)=0.25 [0, 1]
HIV+ HIV– USE(+,−) = 0 PSE(+,−)=0 [0, 1]
HIV– HIV+ USE(−,+) = 0 PSE(−,+)=0 [0, 1]
HIV– HIV– USE(−,−) = 1 PSE(−,−)=0.25 [0, 1]

Table 1. This table outlines the base case preferences for different
sexual acts given a players’ status.

In general, it is expected that a Nash game will have multiple equilibria. We took
a numerical approach to investigate the type of Nash equilibria we get in the game
above. We first set the rest of our game parameters as described in Table 2 below.
We then vary the initial conditions of the game reformulated as in equation (1), us-

Term Definition Baseline
value

Range

τ Probability of HIV spread from an HIV+
player to an HIV− player through USE

0.02 –

ε+(0) Initial proportion of HIV+ individuals in
the population.

0.05 5% of population

ε−(0) Initial proportion of HIV− individuals in
the population.

0.95 95% of population

Table 2. Parameter definitions and parameter values for baseline
scenario. Here τ is a fixed probability of transmission per contact.

ing experiments with uniformly distributed points from K. We ran 100 simulations,
each starting with 50 uniformly distributed initial values (x1−, x

1
+, x

2
−, x

2
+) ∈ K, and

the only resulting Nash equilibrium strategies are the ones pictured in Figure 1.
This specifically shows a (unique) Nash point (0, 1, 1, 0) regardless of the initial
conditions, i.e., players have USE with others from same status groups only. How-
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Figure 1. Heat map for 2-player game showing
(x1−, x

1
+, x

2
−, x

2
+) = (0, 1, 1, 0) equilibrium values for the respective

initial conditions.

ever, this base case, though ideal in the sense of the type of behaviour suggested, is
not realistic, since under Nash strategies (0, 1, 1, 0) no one would have unprotected
sex with a positive partner, thus HIV would die out in the population.

In the next section, we investigate the sensitivity of these results with respect to
changes in utilities for casual sex with players of opposite status.

2.2 Analysis of the 2-player encounter game. In this section we are interested
in investigating the effects of varying base utilities on the equilibrium strategies
of both players to have unprotected sex in a casual encounter, namely on x1∗− and
x2∗+ . This question was not investigated in our previous works [33, 35]. We then
track the effect of these changes on the overall fraction of infected individuals, ε+.
We use Table 2 to describe the values of our parameters. We compute the general
Nash equilibrium points as described in the previous Section 2.1. Figure 2 shows
the impact that changing utilities has on x1∗− , x

2
+, as these strategies relate to HIV

spread. We plotted 3-dimensional surfaces that observes these changes while varying
both USE(−,+) and USE(+,−) over the range [0, 1]. We also plotted the change
in ε+ according to the same changes in utilities.

We see a change in the equilibrium solution for both x1∗− and x2∗+ as we vary
USE(+,−) values, and a similar impact on values of ε+. In contrast, varying
USE(−,+) values has no effect on the equilibrium values of players’ strategies. A
new set of Nash strategies, obtained for instance for a value of USE(+,−) = 0.5
is (x1−, x

1
+, x

2
−, x

2
+) = (1, 0, 0.9463, 0.0537) as seen in Figure 2, whereas the equilib-

rium strategies for instance for USE(+,−) = 0.08 are (x1∗− , x
1∗
+ , x

2∗
− , x

2∗
+ )=(0.4282,

0.5718,0.9773,0.0227).

3. Multiplayer game. We extend next the 2-player game presented in Section 2.2
to a multiplayer game, to capture interactions between players belonging to different
age groups, as a possibly important factor in HIV transmission [7]. We consider
here a population with 5 age cohorts, 15–20, 20–30, 30–40, 40–50 and 50+. Age
group 1 (G1), representing 15–20 year-old individuals, interacts with individuals
from their age group plus with individuals of the 20–30 age cohort (G2). Age
group 2 (G2), representing 20–30 year-old individuals, interacts with individuals
from their own age cohort, plus with individuals in their adjacent age groups, i.e.
G1 and 30–40 year-olds (G3). This continues for the 3rd and 4th age groups, with
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Figure 2. The 2-player game showing x1∗− , x2∗+ and ε+ varying
USE(−,+) and USE(−,+).

the 5th age group (G5) interacting with themselves and the 40– 50 (G4) age cohort.
Surveys have shown that HIV prevalence varies greatly by age group, with youth
accounting for a substantial amount of infections [6]. In general, interactions can
be modeled in a variety of ways, subject to differing assumptions. We guided our
groups interactions here following our previous model [35].

A game is defined by choosing one HIV+ player (always taken to be Player 1)
in one of the groups at a time; the other players in a game will have an HIV−
status and will belong to the age cohorts allowed to interact with the age cohort P1

belongs to. Following the age-group interactions allowed above, if P1 belongs to G1

or G5, then the HIV− players will be from the same or adjacent groups; thus we
model these interactions as a 3-player game. Whenever P1 is chosen in one of the
G2, G3, or G4, then we model their interactions as a 4-player game.

Let us denote by gamei, i ∈ {1, ..., 5} one of the games describes above, such that

P1 in gamei belongs to Gi.

We assume first that HIV+ individuals are spread among the five groups; thus
each age group has a subgroup of HIV+ individuals of size εGi

+ (0), i ∈ {1, ..., 5} so

that

5∑
i=1

εGi
+ (0) = ε+(0) = 5% as in Section 2. We start first by assuming an even

spread of HIV+ individuals among age groups: εGi
+ (0) = 0.01.

Finally, each age group has a differing activity parameter ρi, i ∈ {1, ..., 5} given
by: ρ1 = 0.5, ρ2 = 1, ρ3 = 0.8, ρ4 = 0.6, ρ5 = 0.3, representing a multiplicative
factor controlling overall sexual activity level relative to the second age group, by
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age. Each Pi has an expected utility Ei of unprotected sex in a casual encounter,
assuming they are aware of their partner status:

Ei := ε+E
i
+(x) + (1− ε+)Ei−(x), ∀i ∈ {1, 2, 3}.

3.1. 3-player game. We start by setting up the game concerning age cohort 15–
20, where we choose P1 to be HIV+ in G1. Then P2 and P3 are HIV− players
from age groups G1, G2 respectively. The vector of strategies of player Pi is xi =
(xi1−, x

i
1+, x

i
2−), where by xij− we denote the probability of Pi to have unprotected

sex with an HIV− individual in Gj , and by xij+ the probability of unprotected sex
with an HIV+ individual in Gj .

We define their expected utilities as:

E1
− = ρ1

[
(x11− + x12−)USE(+,−) + (1− (x11− + x12−))PSE(+,−)

]
E1

+ = ρ1

[
(x11+)USE(+,+) + (1− x11+)PSE(+,+)

]
Then P1’s strategies have to satisfy: 0 ≤ x11−, x

1
1+, x

1
2− ≤ 1 and that x11− + x11+ +

x12− = 1.
Similarly for P2 an HIV− individual ∈ G1, and P3 an HIV− individual ∈ G2,

we get (for j = {2, 3}):

Ej− = ρj−1

[
(xj1− + xj2−)USE(−,−) + (1− (xj1− + xj2−))PSE(−,−)

]
Ej+ = ρj−1

[
(xj1+)USE(−,+) + (1− xj1+)PSE(−,+)

]
Each player strategies have to satisfy (j ∈ {2, 3}): 0 ≤ xj1−, x

j
1+, x

j
2− ≤ 1 and

xj1− + xj1+ + xj2− = 1.
As a consequence of the interaction between players, the fractions of HIV+

individuals in G1 and G2 change now as follows (note that ε
Gj

+ (game1) = ε
Gj

+ (0), j ∈
{3, 4, 5}):

εG1
+ (game1) = εG1

+ (0) + τ
[
x11−ε

G1
+ (0) + x21+ε

G1
− (0)

]
, and

εG2
+ (game1) = εG2

+ (0) + [x12−ε
G1
+ (0) + x31+ε

G2
− (0)]τ

Then we compute

ε+(game1) :=

5∑
i=1

εGi
+ (game1). (3)

Last but not least, we need to impose the shared constraint that the number of
possible sexual encounters that lead to transmission is the same when counted from
each of the + and − players’ perspective. This leads us to the constraint:

(1− ε+(game1))(x21+ + x31+) = ε+(game1)(x11− + x12−),

with ε+(game1) as in (3).
We investigate uniqueness of solutions for the generalized Nash equilibrium strate-

gies computed as in Section 2.2. Figure 3 shows a non-unique Nash point while
varying initial conditions of system (1). We ran 100 simulations each starting with
50 uniformly distributed initial values and the compiled results are always as in
Figure 3. As expected, the equilibrium strategies are not unique, however, the
equilibrium strategies for players engaging in USE with players of opposite status
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Figure 3. Heat map for 3-player game showing (x1∗, x2∗, x3∗)
equilibrium values for a uniform spread of initial conditions.

(namely x1∗1−, x
1∗
2− for P1 and respectively x2∗1+ for P2 and x3∗1+ for P3) are always

unique, and all equal to 0.

3.2. Results & discussion: 3-player game. Similar to studying the 2-player
game, we study the effects of varying USE(−,+) and USE(+,−) on the choices of
players and on the fraction ε+ of the population, with baseline values of Table 2.
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Figure 4. Results for 3-player game. The three upper panels show
the (x1∗1− x

1∗
1+, x

1∗
2−) choices of P1, whereas the lower left panels show

the x2∗1+ choice of P2, x3∗1+ for P3 dependent on USE(−,+) and
USE(+,−). Lower right panel shows the ε+(game1) variation.

We know from our previous section that equilibrium strategies found for this
game are not unique, thus initial conditions for the computation of equilibrium
strategies under varying parameters are important. In order to derive our analysis,
we use as initial conditions one of the equilibrium points computed in the subsection
above:

x∗ =
(

(0, 1, 0), (0.6369, 0, 0.3631), (0.62, 0, 0.38)
)
, (4)

relying on the fact that all equilibrium strategies for players engaging in USE with
players of opposite status in the baseline scenario are 0. The new equilibrium
strategies pictured above are:

x∗ =
(

(0.5, 0, 0.5), (0.62, 0.02, 0.36), (0.62, 0, 0.38)
)
.
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Figure 4 shows more refined results than those in the 2-player scenario. Choices
for P3 interacting with the HIV+ player are not shown, as they are not changed
from the initial values. Varying USE(+,−) affects the strategies of P1 interacting
with both P2 and P3 (upper left and upper right panels of Figure 4), while varying
USE(−,+) affects the strategies of P2 interacting with P1 (upper middle panel
of Figure 4). We see a switch in strategy of P2 as USE(−,+) increases from
0 to 1. With increase in both utilities of USE with players of opposite status,
P1’s choices move to unprotected sex with both P2, while P2, engages with P1,
though not exclusively (they maintain nonzero strategies of unprotected sex with
players of HIV− status as well). The impact on the infection levels from such
a game alone is shown to have an increasing direction. The infected fraction in
the population (lower left panel of Figure 4) increases from the baseline value of
0.05% to ε+(game1) = 0.05028%, most affected by values of USE(−,+) beyond a
threshold of ≈ 0.5.

3.2. 4-player game. We describe next the 4-player game arising from choosing
for instance P1 as an HIV+ player in G2 (the game will be identical for a choice
of P1 in either G3 or G4).

We denote P1 as HIV+ from G2 and P2, P3 and P4 as HIV− players from G1,
G2 and G3 respectively. The vectors of strategies are as follows:

P1 : 0 ≤ (x11−, x
1
2−, x

1
3−, x

1
2+) ≤ 1 s.tx11− + x12− + x13− + x12+ = 1

P2 : 0 ≤ (x21−, x
2
2−, x

2
2+) ≤ 1 s.t. x21− + x22− + x22+ = 1

P3 : 0 ≤ (x31−, x
3
2−, x

3
3−, x

3
2+) ≤ 1 s.t. x31− + x32− + x33− + x32+ = 1

P4 : 0 ≤ (x42−, x
4
3−, x

4
2+) ≤ 1 s.t. x42− + x43− + x42+ = 1

The expected utilities for these individuals are listed below, starting with P1 rep-
resenting HIV+ individuals from G2:

E1
− = ρ2

[
(x11− + x12− + x13−)USE(+,−) + (1− (x11− + x12− + x13−))PSE(+,−)

]
E1

+ = ρ2

[
x12+USE(+,+) + (1− x12+)PSE(+,+)

]
Similarly for P2 who is an HIV− individual ∈ G1 we have:

E2
− = ρ1

[
(x21− + x22−)USE(−,−) + (1− (x21− + x22−))PSE(−,−)

]
E2

+ = ρ1

[
x22+USE(−,+) + (1− x22+)PSE(−,+)

]
For P3 an HIV− individual ∈ G2:

E3
− = ρ2

[
(x31− + x32− + x33−)USE(−,−) + (1− (x31− + x32− + x33−))PSE(−,−)

]
E3

+ = ρ2

[
x32+USE(−,+) + (1− x32+)PSE(−,+)

]
Finally, for P4, an HIV− individual ∈ G3 we have:

E4
− = ρ3

[
(x42− + x43−)USE(−,−) + (1− (x42− + x43−))PSE(−,−)

]
E4

+ = ρ3

[
x42+USE(−,+) + (1− x42+)PSE(−,+)

]
As a result of interactions allowed in this game, the fraction of the infected individ-

uals changes in groups 1,2,3 (note that ε
Gj

+ (game2) = ε
Gj

+ (0), j ∈ {4, 5} ):

ε
Gj

+ (game2) = ε
Gj

+ (0) + τ
[
xj1−ε

G2
+ (0) + xj+1

2+ ε
Gj

− (0)
]
, j ∈ {1, 2, 3}
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Then we compute

ε+(game2) :=

5∑
i=1

εGi
+ . (5)

Last but not least, we need to impose the shared constraint that the number of
possible sexual encounters that lead to transmission is the same when counted from
each of the + and − players’ perspective. This leads us to the constraint:

(1− ε+(game2))(x22+ + x32+ + x42+) = ε+(game2)(x11− + x12− + x13−),

with ε+(game2) as in (5).
We again investigate uniqueness of solutions as we did in Section 2.2. Figure 5

shows non-unique Nash points while varying initial conditions of (1). We ran 100
simulations each starting with 50 uniformly distributed initial values and the com-
piled results are always as in Figure 5. As expected, the equilibrium strategies are
not unique, however, the equilibrium strategies for players engaging in US with
players of opposite status (namely x1∗1−, x

1∗
2−, x

1∗
3− for P1 and respectively x2∗2+ for P2,

x3∗2+ for P3 and x4∗2+ for P4) are always unique, and all equal to 0.
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Figure 5. Heat map for 4-player game showing (x1, x2, x3, x4)
equilibrium values for the respective initial conditions.

3.4. Results & discussion: 4-player game. Similar to studying the 2-player
and 3-player games, we vary USE(+,−) and USE(−,+) and study the Nash choices
of players, as well as the evolution of the ε+(game2) fraction. From our previous
section, equilibrium strategies found for this game are not unique, thus initial con-
ditions for the computation of equilibrium strategies under varying parameters are
important. In order to derive our analysis, we use as initial conditions one of the
equilibrium points computed in the subsection above

x∗ =
(

(0, 0, 0, 1), (0.2799, 0.7201, 0), (0.3174, 0.3651, 0.3175, 0), (0.5339, 0.4661, 0)
)
,

(6)
relying on the fact that all equilibrium strategies for players engaging in USE with
players of opposite status in the baseline scenario are 0.

Figure 6 shows results similar to the 3-player scenario, where HIV− individuals
engage with HIV+ individuals as USE(−,+) increases. Choices for P1 become
x1∗2+ = 0, x1∗1− = x1∗2− = x1∗3− ≈ 0.334, thus P1 engages in USE with opposite status
HIV players only, beyond a threshold of USE(−,+) ≈ 0.1 (note that P1 here is in
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G2, which is the most active group). Choices of P2 vary slightly into USE with P1,
with x2∗2+ ≈ .0.032, while maintaining positive strategies with P3, P4. Choices of P3

and P4 for USE with P1 do not change from 0 (not shown).
The impact on the infection levels from such a game alone is shown to have an

increasing direction. The infected fraction in the population (lower left panel of
Figure 6) increases from the baseline value of 0.05% to ε+(game2) = 0.5082%, most
affected by positive values of USE(−,+).
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Figure 6. 3-dimensional results for 4-player game2 showing
choices for varying USE(+,−) and USE(−,+) utilities. The upper
panels show the change in equilibrium strategies of P1: the upper
left panel shows the strategies x1∗2+ = 0, x1∗1− = x1∗2− = x1∗3− ≈ 0.334.
The likelihoods of P2 to engage in USE with P1 are shown in lower
left panel, while x3∗2+ = x4∗2+ = 0 are not shown. The effect on the
infected fraction due to this game is shown in lower right panel.

3.3. Compounded effect of multiplayer games on HIV transmission. Re-
call that by gamei, i ∈ {1, ..., 5} we denoted the game where P1 who is HIV+
belongs to Gi. We let pi, i ∈ {1, ..., 5} be the size of the age group Gi in the pop-
ulation (which was taken to be 20% for all groups in previous sections) so that

εgi+ (0) := piε+(0) = pi ·0.01, i ∈ {1, ..., 5}. We denote by γi the probability of gamei
taking place. Given that each game leads to possible unprotected sex among HIV+
and HIV− players, we estimate the infected fraction of individuals in each group,
after interactions occur, to be described as follows:

εGi
+ =

5∑
k=1

γkε
Gi
+ (gamek) where for each i, k ∈ {1, ..., 5} we have that εGi

+ (gamek)

are defined as in Section 3. The overall fraction of infected individuals in the pop-
ulation is obtained by adding the fractions above, after compiling the results for
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each game: ε+ = (

5∑
i=1

εGi
+ ). For two quick examples, we plot ε+ in Figure 7 using

p = (0.086, 0.173, 0.159, 0.170, 0.412) the estimated size of the age groups according
to U.S. census [40, 38], and p = (0.21, 0.313, 0.18, 0.12, 0.18) using Zimbabwe census
data [41], both assuming γk = 1, ∀k.

As we have stated in previous sections, in both analyses of game1 and game2,
we are dependent on initial meaningful states in order to evolve them while varying
USE(+,−) and USE(−,+). For consistency of all simulations presented here, we
use as initial data for the compounded games the points x∗ in (4) for the 3player
games, and the point x∗ in (6) for the 4player games. Figure 7 presents our results,
where clearly we see that the level of infection will be higher in the Zimbabwe
population, as it contains more numerous younger age groups.
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Figure 7. Compounded ε+ using U.S. census data (left ) over 5
games vs. the same using Zimbabwe data (right)

4. Prophylactic vaccine in youngest group. In this section we investigate im-
plementing a theoretical prophylactic vaccine within the population, with efficacy
µ. Consequently, we adjust some of the baseline utilities as follows: a) the utility
for an unvaccinated HIV− individual interacting with an HIV+ individual, i.e.,
USE(−,+) is increased from 0 to 0.25 due to the assumption that unvaccinated in-
dividuals aware of a vaccination program would place higher utility for USE given
an increased level of protection through treatment optimism [12]1; b) we define
USE(−,+, vacc) = 0.5 as the utility for HIV− vaccinated individuals engaging in
USE with HIV+; c) we define (1 − µ)τ to be the relative reduction in transmis-
sion. This will affect the variation of ε+(game1) and ε+(game2), as we assume P2

in game1 and P2 in game2 are now HIV− and vaccinated.
The population sizes are adjusted to fit p = (0.086, 0.173, 0.159, 0.170, 0.412) with

pi, i ∈ {1, ..., 5} the estimated size of the age group according to U.S. census [40, 38]
and p = (0.21, 0.313, 0.18, 0.12, 0.18) using Zimbabwe census data [41].

We investigate what impact these changes have on HIV transmission if HIV−
players in youngest age class are vaccinated. We run the compounded games of
Section 3 for both U.S. and Zimbabwe populations assuming that γk = 1 for all
k ∈ {1, ..., 5}. We now have:

game 1: P2 ∈ G1is HIV− vaccinated, P3 ∈ G2 is HIV− unvaccinated

1This is an assumption only; treatment optimism can in fact increase HIV transmission, as we
show in [35].
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game 2: P2 ∈ G1 is HIV− vaccinated, P3, P4 are HIV− unvaccinated.

Games 3, 4, 5 do not involve players in G1, by the rules of our interactions, hence
there is no vaccinated HIV− player in these games.

Results presented are dependent on varying the vaccine efficacy USE(+,−) ∈
[0, 1] and USE(−,+) ∈ [0.25, 1]. Figure 8 illustrates the compounded results for
the U.S. and Zimbabwe data. We see that the fraction ε+ show similar behaviour
for both populations, with Zimbabwe at higher overall prevalence. It is also notable
that if values of USE(−,+) > 0.4, the infection level reaches the same value as in
the unvaccinated population. Thus, too much confidence in the efficay of a vaccine
leads HIV− unvaccinated players to raise their preference for USE with HIV+
players, thus leading in fact to a nondecrease in HIV infection.
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Figure 8. Compounded ε+ using U.S. (left panel) and Zim-
babwe (right panel) census data comparing USE(+,−) ∈ [0, 1] and
USE(−,+) ∈ [0.25, 1] values, while with U(USE,−,+, vacc) = 0.5
and µ = 0.75.

The increase in ε+ remains less than 1% as a result of initial HIV prevalence,
transmission probability, as well as implementing a one-off game. In cases where
the games are repeated, then every repetition brings a small possible increase in the
value of ε+, which over time leads to potentially more significant increases.

5. Conclusions. The previous sections outlined a one-off casual sexual encounters
game for 2, 3 and 4 player variations dependent on status and age. Our most
interesting conclusions are that preferences of HIV− players towards unprotected
sex have the largest impact on HIV transmission in the population. In games
with age group interactions, and assumed treatment introduced for the youngest
group, populations with higher proportion of youth see a decrease in HIV prevalence
through a possible implementation of a theoretical prophylactic vaccine in these age
groups similar to the HPV case.

We showed that generalized Nash equilibria exist and can be computed for these
types of games. Moreover, we demonstrated the sensitivity of GN equilibria with
respect to varying players’ utilities of unprotected sex with partners of opposite
HIV status, giving an appreciation for how changes in individual decisions may
contribute to an increase in HIV transmission.

As we expanded from 2-player to 3- and 4-player games, we in fact refined the in-
teractions among the individuals in a population, previously regarded as one-on-one
positive–negative outcomes. Given that the sizes of groups and activity parameter
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values matter, we saw that the increase in transmission due to a single instance
of a 3-player or a 4-player game is smaller than in a 2-player game. However, the
biggest contributing factor in changing HIV transmission is found to be due to the
HIV− players’ ranking of USE with an HIV+ player. Compounding over the age
groups and adjusting for HIV prevalence in the population, we showed that a higher
increase in transmission arises in populations with a larger youth composition.

We need to stress again here that the value of this modelling framework depends
on the initial conditions of a population under observation, especially in the case
of multiplayer groups. Moreover, knowing specific equilibrium strategies within the
population of players can lead to sensitivity analyses having these specific equilib-
rium strategies as initial values. Last but not least, the fact that mathematically a
generalized Nash game has in fact sets of equilibria gives strength to this modelling
paradigm, in the sense that differing initial conditions in a players’ population can
give rise to different outcomes, which seems more appropriate to model real life
encounter outcomes.

As future work, it would be interesting to include incorporation of ART for
HIV+ individuals, which could show how adjusting their utilities may affect trans-
mission. It would also be interesting to conduct a repeated game in order to better
see how transmission evolves and how this evolution affects the overall risk assess-
ment and spread of HIV.
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