
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2016035
AND ENGINEERING
Volume 13, Number 6, December 2016 pp. 1143–1158

MATHEMATICAL MODEL OF THE ATRIOVENTRICULAR

NODAL DOUBLE RESPONSE TACHYCARDIA AND

DOUBLE-FIRE PATHOLOGY

Beata Jackowska-Zduniak ∗

Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences

Nowoursynowska 159, 02-776 Warsaw, Poland

Urszula Foryś
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Abstract. A proposed model consisting of two coupled models (Hodgkin-

Huxley and Yanagihara-Noma-Irisawa model) is considered as a description of

the heart’s action potential. System of ordinary differential equations is used to
recreate pathological behaviour in the conducting heart’s system such as double

fire and the most common tachycardia: atrioventricular nodal reentrant tachy-

cardia (AVNRT). Part of the population has an abnormal accessory pathways:
fast and slow (Fujiki, 2008). These pathways in the atrioventricular node (AV

node) are anatomical and functional contributions of supraventricular tachy-

cardia. However, the appearance of two pathways in the AV node may be a
contribution of arrhythmia, which is caused by coexistent conduction by two

pathways (called double fire). The difference in the conduction time between
these pathways is the most important factor. This is the reason to introduce

three types of couplings and delay to our system in order to reproduce various

types of the AVNRT. In our research, introducing the feedback loops and cou-
plings entails the creation of waves which can correspond to the re-entry waves

occurring in the AVNRT. Our main aim is to study solutions of the given equa-

tions and take into consideration the influence of feedback and delays which
occur in these pathological modes. We also present stability analysis for both

components, that is Hodgkin-Huxley and Yanagihara-Noma-Irisawa models, as

well as for the final double-fire model.

1. Introduction. The paper concerns a research of an electrical conduction system
of the human heart. Modeling the formation and conduction of electrical impulses
in the heart is one of the most developed areas of mathematical biology. For years
the most common models of action potentials that occur in the heart have included
the Hodgkin-Huxley [14], van der Pol [7] and the Purkinje cells model [17]. These
models allow to reconstruct the dynamic of action potential which occurs in the
cardiac conduction system. In this paper we propose ordinary differential system
which is based on the Hodgkin-Huxley models and allows to reconstruct patho-
logical behaviors in the conducting heart’s system, such as rare arrhythmia and

2010 Mathematics Subject Classification. Primary: 37N25, 92C30; Secondary: 70K20, 70K50.
Key words and phrases. Hodgkin-Huxley model, ordinary differential equations with delay,

feedback, couplings, action potential, double-fire pathology, AVNRT.
The first author is supported by grant of Rector of the Warsaw University of Life Sciences.

1143

http://dx.doi.org/10.3934/mbe.2016035


1144 BEATA JACKOWSKA-ZDUNIAK AND URSZULA FORYŚ

various types of AVNRT. A problem with making the appropriate diagnosis, and
therefore the problem of effective treatment of the disease was the motivation of
our research. This kind of problem is observed in various types of AVNRT and
double-fire. The reasons of those problems lie in not fully known and understood
mechanisms of these pathologies. Also the symptoms are often mistakenly taken
for other heart disease (double-fire phenomena are often recognized as one of the
types of AVNRT, atrial fibrillation or bigeminia). It should be emphasized that the
clinical pictures of these diseases are also non-specific. In the last few years we have
understood that the construction of the AV node has a multilevel architecture in
which there may be many pathways (slow and fast) at different locations in the AV
node [16, 13]. It helped to recognize many types of AVNRT, which until now were
understood as one, although the mechanisms of action were different. In the litera-
ture, there are no mathematical models that would specifically model various types
of AVNRT. There were attempts of modeling AVNRT only as a single pathology
having the pathway of slow and fast type [23, 18]. Part of the population has abnor-
mal accessory pathways: fast and slow; cf. [9, 15]. These pathways in the AV node
are anatomical and functional contributions of the most common supraventricular
tachycardia, which is a re-entry tachycardia from the AV node. Clearly, the atri-
oventricular nodal re-entrant tachycardia is caused by re-entries. AVNRT appears
when two electric pathways occur in and around the AV node (for example slow
and fast pathways). That gives a way to the occurrence of re-entry. We can dis-
tinguish five different forms of the AVNRT; typical: slow/fast, athypical: fast/slow
and other forms: slow/slow, more than two re-entry waves, one fast pathway with
depolarization of slow pathway [4, 8, 19]. It depends on multilevel architectonics of
the AV node. AVNRT circuit involves larger areas including atrioventricular junc-
tion, adjacent atrial structures and in particular so called atrial inputs including at
least antero-superior and postero-inferior entries, sometimes also left atrial entry.
However, the appearance of two pathways in the AV node may be a contribution of
rare arrhythmia, which is caused by coexistent conduction of two pathways. It is
called double fire [11] and was first described by Wu et al. in 1975 [21]. It leads to
doubling the frequency of ventricle’s rhythm. An electrophysiological defect of the
AV node is the cause of the doubling conduction and the aforementioned arrhyth-
mia. It is connected with an unidirectional (backward) block in the slow pathway,
which prevents backward depolarization. The conduction in the slow pathway is
very delayed because the His-Purkinje system must step out with a refraction pe-
riod after excitation by the fast pathway. The difference in the conduction time
between these pathways is the most important factor. Double-fire tachycardia is
an uncommon and under-recognized entity with approximately 50 cases reported in
the literature [12]. In [11], the author suggests that this is not a rare arrhythmia
but rarely recognized and that the main problem lies in the lack of bibliography on
the subject, as well as the lack of a precise description of this phenomenon even in
text-books of cardiology. Recent articles [6, 2, 13] about this arrhythmia consider
individual clinical cases which are recognized as double-fire mainly on the basis of
resistance to pharmacological treatment and for ablation (in the case of double-fire
a different type of ablation must be carried out than for atrial fibrillation and other
arrhythmias such as AVNRT). Up to our knowledge, there is no mathematical model
of the phenomenon of double-fire. In order to better understand the mechanisms
that causes these arrhythmias in the paper we propose mathematical models of the
AVNRT and double-fire.
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2. Mathematical model. In this paper we propose a model consisting of two
coupled models. The first model is basic Hodgkin-Huxley model (HH) which recon-
structs the pacemaker potential, and the second one is Yanagihara-Noma-Irisawa
model (YNI) which reconstructs a sino-atrial node pacemaker potential based on the
voltage clamp experiments [22]. We understand that, in our system, YNI model de-
scribes the slow pathway which has sinusoidal rhythm (characteristic of this rhythm
is similar to the rhythm in the AV node). We also introduce three types of cou-
plings (bidirectional coupling, unidirectional coupling and feedback) and delays in
order to reproduce various types of the AVNRT. Introducing feedback loops en-
tails the creation of waves which can correspond to re-entry waves. The aim of
this research is to recreate physiological properties of the biological system using
differential equations.

2.1. Hodgkin-Huxley model. The classical Hodgkin-Huxley model treats each
component of an excitable cell as an electrical element: batteries, resistors and
capacitors [10, 5]. Current can be carried through the circuit as ions passing through
the membrane or by charging the capacitors of the membrane. From the definition
of capacity and the second Kirchoff’s law we obtain the first equation of this model:

CmV̇ + Iion = Iext,

where Cm is the membrane capacitance, V is the intracellular potential, V̇ is its
derivative with respect to time t, Iion is the net ionic current flowing across the
membrane and Iext is the externally applied current.

The ionic current is divided into three currents: sodium, potassium and leakage
current. The movement of each of these currents is proportional to the conductance
what is presented by the given dependency: Ik = Gk(V − Ek). The conductance
is caused by the opening of many microscopic channels in the membrane. Each
individual membrane contains many gates and when all gates are in the permissive
state then the channel is considered to be open. The probability of a gate being
in the permissive state depends on the current value of the membrane voltage. To
develop the differential equations that describe the conductance, the probability of
a gate being open is defined as pi for any ion, i. The probability of a gate being close
is therefore 1− pi. From these assumptions we obtain an equation of the first order
kinetics which scheme is similar to the kinetics of chemical reactions characterized
by rate constants between the given states:

ṗi = αi(V )(1− pi)− βi(V )pi,

where αi and βi are the rate constants dependent on the voltage that describes the
transient rates of permissive and non-permissive gates. In this model, we have three
types of gates denoted by m, n and h. In each channel we have a specific amount of
these gates. Summarizing aforementioned assumptions, we can create the classical
Hodgkin-Huxley model, which consists of four equations that reads:

V̇1 =
(
Iext − gNam3h (V1 − ENa)− gKn4 (V1 − EK)− gl (V1 − El)

)
/Cm,

ṅ = αn(V1)(1− n)− βn(V1)n,

ṁ = αm(V1)(1−m)− βm(V1)m,

ḣ = αh(V1)(1− h)− βh(V1)h,

(1)

where V1 is the membrane potential, n, m, h are gating variables, αx, βx denote
the rate constants of opening and closing of the ionic channel x. The forms of the
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rate constants were proposed on the basis of experimental studies [10] and read:

αn = 0.01(V1+50)
1−exp(−0.1(V1+50)) , αm = 0.1(V1+35)

1−exp(−0.1(V1+35)) , αh = 0.07e−0.05(V1+60),

βn = 0.125e−0.0125(V1+60), βm = 4e−0.0556(V1+60), βh = 1
1+exp(−0.1(V1+30)) .

Parameters used in the classical Hodgkin-Huxley model [10] are the following:

ENa = 115, EK = −12, El = 10.6, gNa = 1.2, gK = 0.36, gl = 0.003, Cm = 1, (2)

while Iext = I(t) is a function of t. In the model we propose in the next section,
the HH model is used with the parameters proposed in [1], that is:

ENa = 55.17, EK = −72.14, El = −49.4, gNa = 1.2, gK = 0.36,

gl = 0.003, I = 0.1, Cm = 0.01.
(3)

2.1.1. Stability analysis of the HH model. There are many papers focused on specific
properties of the HH model. Below we present some interesting results concerning
Eqs. (1). However, it should be noticed that they were obtained for various param-
eter values, not necessarily proposed in [10].

In the analysis of differential equations, stability and equilibrium points are one
of the most important aspects. We mainly focus on finding equilibria as they may
be the final states of the system. For Eqs. (1) equilibria are uniquely defined by
zeros of the following function:

F (V1) = Iext − gNa
(

αm(V1)

αm(V1) + βm(V1)

)3
αh(V1)

αh(V1) + βh(V1)
(V1 − ENa)

− gK
(

αn(V1)

αn(V1) + βn(V1)

)4

(V1 − EK)− gl (V1 − El) .

For the classical parameter values (2) and the chosen by us value of Iext = 0.1, there
is one equilibrium point (V ∗

1 , n
∗,m∗, h∗) ≈ (−7.9213, 0.8676, 0.9292, 0.0057). On the

other hand, as in the classical model the applied current depends on time, we can
also choose different values. For comparison we take Iext = 6, and then we obtain
another equilibrium point (V ∗

1 , n
∗,m∗, h∗) ≈ (11.7481, 0.9239, 0.9845, 0.0020). From

the characteristic equation we are able to calculate eigenvalues for both equilibrium
points, which are respectively:

λ1 ≈ −0.4623, λ2 ≈ −0.2042 + 0.0685i, λ3 ≈ −0.2042− 0.0685i, λ4 ≈ 0.0341,

and

λ1 ≈ −0.5543, λ2 ≈ −0.3532, λ3 ≈ −0.0380 + 0.0089i, λ4 ≈ −0.0380− 0.0089i.

For parameter values given in (3), there is again only one equilibrium point of
Eqs. (1). Uniqueness of this point with coordinates

(V ∗
1 , n

∗,m∗, h∗) ≈ (−54.6192, 0.4023, 0.09765, 0.405)

could be seen from the graph of the function F (V1) (cf. Fig. 1 left), because this
function is monotonically decreasing. For this case eigenvalues read:

λ1 ≈ −4.7679, λ2 ≈ 0.002 + 0.5873i, λ3 ≈ 0.002− 0.5873i, λ4 ≈ −0.1387.

According to the stability theory, the equilibrium point is unstable, and this is the
main reason of oscillatory dynamics of the HH model; cf. Fig. 1 right.

Now, we focus on another results that could be found in the literature. In [20],
the authors used nonlinear systems theory to look for equilibrium points of the HH
model and analyse their stability. They focused on the influence of temperature on
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Figure 1. Left: Graph of the function F (V1) determining equilib-
rium. Right: Exemplary solutions of Eqs. (1) for parameter values
defined in (3) and initial values equal to equilibrium point and two
other initial values of V1 showing instability of the equilibrium and
oscillatory dynamics of the HH model.

the model parameters. Varying temperature they also varied parameters, such that
they obtained up to 3 equilibrium points (A, B, C), where the point A remains stable
when the parameters are varied, B changes stability, while C is always unstable, but
can be an unstable node or focus.

The paper [3] discusses the role of change of the external current (Iext) for an
unique steady state voltage in the HH model. It occurs that for the rest of param-
eters fixed as in [10] this model has a unique steady state voltage Vss for each value
of the current Iext. Then the model is linearized around the steady state. The de-
pendence of eigenvalues on Iext is shown in Fig. 2, which is reproduced from [3]. In

Figure 2. Stability of steady states and periodic orbits in the HH
model. A: Real part of the complex pair of eigenvalues Re(λ1,2)
and third negative eigenvalue λ3. λ4 is even more negative such
that it is out off the scale of this plot. For I1 < Iext < I2, <(λ1,2) is
positive (dashed), showing instability of the steady state. B: Values
of the leading non-trivial Floquet multiplier along the branch of
periodic solutions in log-log axes. The part of the curve with σ1 > 1
(dashed) indicates instability of the orbit [3].

general the system is stable, but there is a narrow range of the current I1 < Iext < I2
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for which the steady state is unstable. In this problem there are two Hopf bifurca-
tions; the first bifurcation appears when the steady state loses stability for the value
of Iext increasing from minimal values to the left end of the range (I1). The second
one takes place when Iext increases through top value of the given range I2 and the
steady state regains stability [3]. The stability of periodic solutions is also described
in [3], where it is determined according to the Floquet theory. In this case we also
linearize the HH model, but about the periodic solution. The linearized equation
has the form ẏ = Joscy, where Josc has entries that are T -periodic. The solutions
have the form exp(λt)q(t), where q is periodic and exp(λT ) = σ is the Floquet
multiplier. If any σ has an absolute value greater than 1 it means that the periodic
solution is unstable. In Fig. 2 the non-trivial multiplier σ1 is plotted vs. Iext along
the branch of periodic solutions. In the graph we see two periodic solutions, stable
and unstable one. From the analysis presented in [3] we can conclude that the
system is bistable, that is the stable steady state and the stable limit cycle coexist.

Stable states indicate that the electrophysiological activity of cell will get to
corresponding resting state at last, while periodic phenomena look like a response
of pathological cell’s action potentials caused by cardiac arrhytmias [24].

2.2. Yanagihara-Noma-Irisawa model. The next model which is used in our
research is Yanagihara-Noma-Irisawa model [22]. The pacemaker activity of the
S-A node cell was explained by reconstructing the pacemaker potential using the
Hodgkin-Huxley type mathematical model which was based on the reported volt-
age clamp data. In this model five dynamic currents are taken into account: the
sodium current, INa, the slow inward current, Is, the potassium current, IK , and
the hyperpolarization-activated current, Ih, including a time-independent leak cur-
rent, Il. The main difference between this model and the classical HH model is
connected with more types of currents flowing through ion channels and, what goes
with it, also more types of gates. Hence, the character and the idea of equations
are analogous to the case of the reference HH model, although it is particularized,
and hence the model consists of seven equations describing membrane potential V2,
and gating variables d, f , m1, h1, q, p. As before, we denote by αx and βx the rate
constants of opening and closing of the ionic channel (where x = d, f , m1, h1, q,
p), and by Im the total current passing through the unit membrane. With these
notations the differential model YNI reads:

V̇2 = (Im − (IS + INa1 + IK1 + Ih + Il1)) /Cm1,

ḋ = αd(V2)(1− d)− βd(V2)d,

ḟ = αf (V2)(1− f)− βf (V2)f,

ṁ1 = αm1
(V2)(1−m1)− βm1

(V2)m1,

ḣ1 = αh1(V2)(1− h1)− βh1(V2)h1,

q̇ = αq(V2)(1− q)− βq(V2)q,

ṗ = αp(V2)(1− p)− βp(V2)p,

(4)
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where:

αd = 0.01045(V2+35)

1−exp

(
−V2+35

2.5

) + 0.03125V2

1−exp

(
− V2

4.8

) , αf = 0.000355(V2+20)

exp

(
V2+20
5.633

)
−1
, αm1

= V2+37

1−exp

(
−V2+37

10

) ,

αh1
= 0.001209e

(
−V2+20

6.534

)
, αq = 0.00034(V2+100)

exp

(
V2+100

4.4

)
−1

+ 4.95 · 10−5,

αp = 0.009

1+exp(−V2+3.8
9.71 )

+ 6 · 10−4, βd = 0.00421(V2−5)

exp

(
V2−5
2.5

)
−1
, βf = 0.000944(V2+60)

1+exp

(
−V2+29.5

4.16

) ,
βm1 = 40 exp(−0.056(V2 + 62)), βh1 = 1

exp

(
−V2+30

10

)
+1
,

βq = 0.0005(V2+40)

1−exp

(
−V2+40

6

) + 8.45 · 10−5, βp = 0.000225(V2+40)

exp

(
V2+40
13.3

)
−1
.

Currents are defined as:

INa1 = 0.5m3
1h1(V2 − 30),

Is = 12.5(0.95d+ 0.05)(0.95f + 0.05)(exp(V2 − 30)/15)− 1,

Ik1 = p(0.7(exp(0.0277(V2 + 90))− 1))/(exp(0.0277(V2 + 40))),

Il1 = 0.8(1− exp(−(V2 + 60)/20)), Ih = 0.4q(V2 + 25),

and the other parameters values are: Im = 0.1 and Cm1 = 0.001.

2.2.1. Stability analysis of the YNI model. Similarly to the classic HH model, look-
ing for equilibrium points we need to find zeros of some function, that now reads

G(V2) = Im −
(
IS(V2) + INa1(V2) + IK1

(V2) + Ih(V2) + Il1(V2)
)
,

where the currents are treated as functions of V2 with other variables calculated at

the steady state, that is x = αx(V2)
αx(V2)+βx(V2) for any x representing gating variable.

Fig. 3 shows the graph of G. We see that G is monotonic, and therefore there is
only one equilibrium. In the case we study the equilibrium point has coordinates

Figure 3. Graph of the function G(V2) determining equilibrium.

(V ∗
2 , d

∗, f∗,m∗
1, h

∗
1, q

∗, p∗) ≈
(−33.1174, 0.1924, 0.4077, 0.6032, 0.0209, 0.0096, 0.3085).
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Looking for stability of this equilibrium we obtain the following eigenvalues:

λ2 ≈ −1.265247287 + 2.414999107i, λ3 ≈ −1.265247287− 2.414999107i,

λ1 ≈ −39.38757528, λ4 ≈ −0.1612191777, λ5 ≈ −0.01723831904,

λ6 ≈ −0.004105133551 + 0.003261127804i,

λ7 ≈ −0.004105133551− 0.003261127804i,

implying stability of the equilibrium. Although the equilibrium is stable, we should
remember that it is local stability, and we can expect also other model dynamics,
like oscillatory behaviour shown in Fig. 4.

Figure 4. Exemplary solutions of Eqs. (4) for parameter values
considered by us; we see equilibrium and two solutions for different
initial V0 – to obtain oscillatory behaviour we also need to vary
another initial value, here: p0.

On the other hand, the YNI model does not possess any stable equilibrium, but
have a stable periodic solution for parameters given in [5]. One-parameter bifurca-
tion diagram was created, were INa is the bifurcation parameter. We reproduce this
diagram in Fig. 5. The solid and broken curves in Fig. 5 show stable and unstable

Figure 5. One-parameter bifurcation diagram for Eqs. (4). INa
is the bifurcation parameter. In the graph the value of V2 in the
steady state was plotted for each value of INa [5].

equilibrium points, respectively. For each value of INa between Hopf bifurcation
(HB1) and Hopf bifurcation (HB2), a periodic solution (stable or unstable) exists.
Moreover, there can be many bifurcations and chaotic solutions are possible [5].
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3. Construction and analysis of proposed models. In this section we turn to
constructing new models for specific pathologies we would like to describe. All the
models we propose below consist of two basic models, namely the classic HH model
and the YNI model with various types of couplings and feedback loops. Parameters
for the part described by the HH model are defined in (3) and for the part described
by the YNI model are defined in the subsection above. We use initial conditions in
the following form:

V1 = −60, V2 = −30, m = αm(V1)
αm(V1)+βm(V1) , n = αn(V1)

αn(V1)+βn(V1) ,

h = αh(V1)
αh(V1)+βh(V1) , d = αd(V2)

αd(V2)+βd(V2) , f =
αf (V2)

αf (V2)+βf (V2) ,

m1 =
αm1 (V2)

αm1
(V2)+βm1

(V2) , h1 =
αh1

(V2)

αh1
(V2)+βh1

(V2) , q =
αq(V2)

αq(V2)+βq(V2) , p =
αp(V2)

αp(V2)+βp(V2) .

3.1. Model of the double-fire pathology. The first model we would like to
propose reproduces the dynamics of action potential occurring in the phenomenon
of double-fire. In this case, we have a coexistent conduction by two pathways: slow
and fast. In this model we assume that the fast pathway is described by the HH
model, and the slow pathway is treated as an action potential in the AV node, so we
use the YNI model to describe the pathway. The conduction in the slow pathway
is delayed, because the His-Purkinje system must step out with a refraction period
after excitation by the fast pathway, such that there is a delay in this part. In this
case, we use positive bidirectional coupling with delay in our model, because during
the coexistence conduction by these pathways there are the interactions of the two
waves. The faster pathway influences the slower pathway and vice versa. But we
assume that the coupling coefficient is greater for the faster pathway. Therefore,
the considered model reads:

HH(V1) + k1(V2(t− τ)− V1),

Y NI(V2) + k2(V1 − V2(t− τ)),
(5)

where HH(V1) is the classical HH system, Y NI(V2) is the YNI system, k1, k2 are
coupling coefficients, τ is the delay and V1, V2 are membrane potentials. In the
following we shall use such short description also for other models, but to avoid
misunderstanding we write the full model of double-fire below.

V̇1 = Iext−gNam
3h(V1−ENa)−gKn4(V1−EK)−gl(V1−El)

Cm
+ k1

(
V2(t− τ)− V1

)
,

ṅ = αn(V1)(1− n)− βn(V1)n,

ṁ = αm(V1)(1−m)− βm(V1)m,

ḣ = αh(V1)(1− h)− βh(V1)h,

V̇2 =
Im−(IS+INa1

+IK1
+Ih+Il1)

Cm1
+ k2

(
V1 − V2(t− τ)

)
,

ḋ = αd(V2)(1− d)− βd(V2)d,

ḟ = αf (V2)(1− f)− βf (V2)f,

ṁ1 = αm1
(V2)(1−m1)− βm1

(V2)m1,

ḣ1 = αh1
(V2)(1− h1)− βh1

(V2)h1,

q̇ = αq(V2)(1− q)− βq(V2)q,

ṗ = αp(V2)(1− p)− βp(V2)p,
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Figure 6. Action potential of double-fire model described by
Eqs. (5) for parameters: τ = 0.51791, k1 = 2, k2 = 0.5.

where V1 = V1(t), n = n(t), m = m(t), h = h(t), V2 = V2(t), d = d(t), f = f(t),
m1 = m1(t), h1 = h1(t), q = q(t), p = p(t), and only the delayed variables are
written with their arguments V1(t− τ), V2(t− τ).

In Fig. 6 we present an action potential which is typical for double-fire pathol-
ogy. The characteristics of the action potential corresponds to atrial flutters and
has a rather irregular rhythm. We obtain doubling the rhythm in relation to the
original rhythm, also similar relationships were obtained in the electrophysiological
recording. After making accurate invasive tests, e.g. electrophysiology study (EP),
such a shape of the potential is diagnosed as double-fire tachycardia.

In the model without delay we obtain the regular rhythm which does not reflect
the pathology we would like to describe. The delay added to our couplings can
change the amplitude of oscillations and it will be non-physiological behaviour. In
fact, in this model we need delay in one type of the pathways to obtain required
patterns.

3.1.1. Stability analysis of the double-fire model. To find equilibrium points we as-
sume that τ = 0 and solve the system of equations

F (V1) + k1(V2 − V1) = 0, G(V2) + k2(V1 − V2) = 0.

Solutions of this system lie at the intersection of the curves V2 = V1−F (V1)/k1 and
V1 = V2−G(V2)/k2. Fig. 7 shows the unique intersection of these curves. The equi-
librium point of the model is around (−47.9240, 0.5075, 0.1931, 0.2114,−33.2167,
0.1893, 0.4141, 0.6008, 0.0213, 0.0096, 0.3067).

Typically, studying stability of the system with delay we start from checking the
dynamics for τ = 0; cf. [7]. Then we have ordinary differential equation system for
which we can calculate eigenvalues. For given equilibrium point we get the following
eigenvalues:

λ1 ≈ −39.8413, λ2 ≈ −7.3968, λ3 ≈ −1.2872 + 2.4666i, λ4 ≈ −1.2872− 2.4666i,

λ5 ≈ −0.1075 + 0.7787i, λ6 ≈ −0.1075− 0.7787i, λ7 ≈ −0.1885,

λ8 ≈ −0.1619, λ9 ≈ −0.0348, λ10 ≈ −0.0125, λ11 ≈ −0.0025.
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Figure 7. Intersection of the curves determining equilibrium of Eqs. (5).

All the real parts of λi, i = 1, 2, ..., 11, are negative which means that the equilibrium
point is stable in the case without delay. What is interesting, the full system has
the same stability property as the YNI model, and not inherit instability of the HH
model.

Now, we turn to the analysis for τ > 0. For the specific parameters it is possible
to check stability using so-called Mikhailov criterion; cf. [7]. Let W : C → C de-
note a characteristic quasi-polynomial for the system of delay differential equations
(DDEs) with discrete delays. In general W could be expressed as

W (z) =

m∑
k=0

Ak(z)e−hkz,

where 0 = h0 < h1 < . . . < hm are the delays, Ak(z) =
∑nk

j=0 ajkz
j , ajk ∈ R, are

polynomials with real coefficients, n0 ≥ 1 and nk < n0, for k = 1, . . . ,m. If W (z)
has no zeros on the imaginary axis, then W is stable (meaning that all roots lie
in the open left half-plane of the complex plane) if and only if ∆ = n0

π
2 , where

∆ denotes the change of the argument of W (iω) when ω increases from 0 to ∞.
The curve drawn by the vector W (iω) =

(
Re(W (iω)), Im(W (iω))

)
in the complex

plane, when ω increases from 0 to ∞ is called a Mikhailov hodograph.
The characteristic quasi-polynomial for Eqs. (5) is complicated and has the form

presented in Appendix. With increasing delay T the shape of Mikhailov hodograps
change a little. However, the total change of the argument remains the same and
equals 11π/2, independently of the value of the delay; we illustrate it for τ = 10, 20
and 50 in Fig. 8. In our case each hodograph starts on the real axis from negative
values, that is the argument for ω = 0 is equal to π, as shown in Fig. 8 top left;
here ω ∈ [0, 0.05]. In the consecutive graphs we see next turns around the origin,
for ω ∈ [0, 0.192] we have first complete turn, for ω ∈ [0, 1] we have the increase
of the argument of more than 3π, for ω ∈ [0, 3] we have more than 4π, and for
ω ∈ [0, 22] we have the increase of more than 5π. Eventually, as shown in Fig. 8
bottom right the hodograph remains in the first quadrant yielding the increase of
11π/2. The full hodograph is the curve plotted for ω from 0 to ∞, and for large
values of ω the changes near origin are not visible. This is the reason we plotted
several parts of the hodograph to show these changes. From this analysis of the
Mikhailov hodographs we observe that the number of turns gives stability of the
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Figure 8. Shape of the Mikhailov hodographs for τ = 10, 20,
50. Each sub-plot shows the part of the hodograph for increasing
interval of ω, that is ω ∈ [0, 0.05], ω ∈ [0, 0.192], ω ∈ [0, 1], ω ∈
[0, 3], ω ∈ [0, 22], from top left to bottom right.

steady state for all considered delays. Again this property is inherited from the YNI
model.

3.2. Model of AVNRT (fast pathway). Next we focus on such type of AVNRT
in which only one fast pathway with depolarization of slow pathway occurs. The
conduction is only out of the fast pathway, because descending depolarization of
slow pathway prevents conduction. To describe that situation, we add only one
unidirectional coupling to our model. This coupling does not change the rhythm
(cf. Fig. 9). In this case the model could be written in the following form:

HH(V1),

Y NI(V2) + kV1.
(6)

3.3. Model of typical and atypical AVNRT. Now we consider situation where
the difference in the refractive state of both pathways leads to excitation of one of
them causing the re-entry wave [23]. In Fig. 10 left result for a typical AVNRT
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Figure 9. Action potential of fast pathways described by Eqs. (6)
for k = 1

(fast/slow) is presented. We describe this type of AVNRT by the following system:

HH(V1)− k(V1(t− τ)− V1),

Y NI(V2).
(7)

Fig. 10 right shows atypical AVNRT (slow/fast type of AVNRT), which we describe
in the following way:

HH(V1)− k1(V2(t− τ)− V1),

Y NI(V2)− k2(V1 − V2(t− τ)).
(8)

In both of those types of AVNRT (fast/slow and slow/fast) we obtain regular fast
rhythm, which is a typical behaviour for this kind of pathology (during this type
of tachycardia the rhythm of the heart is about 35% more frequent than normal
rhythm, which is in accordance with our results).

Figure 10. Left: Action potential of fast /slow type of AVNRT
for parameters: k = 2, τ = 0.75 (model with feedback and delay,
Eqs. (7)). Right: Action potential of atypical AVNRT, that is
Eqs. (8), for parameters: k1 = 3, k2 = 1, τ = 0.75.
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3.4. Model of AVNRT (slow-slow pathways). The last model is for the sit-
uation where there are two re-entry waves but both go through slow pathways
(slow/slow type of AVNRT). We reflect it by the following system of equations:

HH(V1)− k1(V2(t− τ)− V1),

Y NI(V2)− k2(V1 − V2(t− τ1))− k3(V1 − V2(t− τ2)).
(9)

In this variant we also observe shortening (like in Fig. 10) of the period of oscilla-
tions. In this pathology, the presence of more than two conduction paths is possible
which is associated with more re-entry waves. Increasing the number of feedbacks
modeling re-entry waves of slow pathways causes a progressive shortening of the
period of oscillation, while the rhythm remains regular.

For numerical analysis of the discussed systems numerical models were created
using Matlab Software. We used dde23 integration algorithm.

4. Conclusions. The main aim of our paper was to propose the system of dif-
ferential equations describing the dynamics of action potential that accompanies
double-fire tachycardia and five forms of AVNRT. In this work, by using the pro-
posed models we were able to reproduce the most important physiological properties
of the discussed pathologies. In the literature, Hodgkin-Huxley type models with
couplings and delays have been not considered till now. Also mathematical models
of AVNRT and double-fire are not known. Our model could serve as a basis of the
study of the influence of treatment. We can add an equation which is responsible
for modeling pharmacological treatment of given pathologies. In such a way, we
can help to determine optimal treatment. On the other hand, we should keep in
mind that this is a phenomenological model, so the results are accurate as far as a
simple model can describe the potential found in one of the most complex oscillators
appearing in real biological phenomena. Therefore, further validation of this model
using medical data (from invasive laboratory EP) is necessary. We hope that such
validation will be possible in the future.

Appendix. The exact form of the quasi-polynomial for Eqs. (7) reads:

W (iω) = ω11i+ 49.9278ω10 + 0.5ω10 cos(ωT )− 0.5ω10 sin(ωT )i

− 442.2662ω9i− 13.1837ω9 cos(ωT )i− 13.1837ω9 sin(ωt)

− 1358.6ω8 − 64.4345ω8 cos(ωT ) + 64.4345ω8 sin(ωT )i

+ 3290.1ω7i+ 14.9809ω7 cos(ωT )i+ 14.9809ω7 sin(ωT )

+ 2340.9ω6 + 20.1827ω6 cos(ωT )− 20.1827ω6 sin(ωT )i

− 1999.5ω5i− 21.8755ω5 cos(ωT )i− 21.8755ω5 sin(ωT )

− 620.4245ω4 − 6.0595ω4 cos(ωT ) + 6.0595ω4 sin(ωT )i

+ 69.9605ω3i+ 0.5327ω3 cos(ωT )i+ 0.5327ω3 sin(ωT )

+ 2.4328ω2 + 0.007ω2 cos(ωT )− 0.007ω2 sin(ωT )i

− 0.0244ωi− 0.0000015847ω cos(ωT )i− 0.0000015847ω sin(ωT )

+ 5.6326 · 10−10 cos(ωT )− 5.6326 · 10−10 sin(ωT )i− 4.7156 · 10−5.
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Real and imaginary parts of W read:

<
(
W (iω)

)
= 49.9278ω10 + 0.5ω10 cos(ωT )− 13.1837ω9 sin(ωt)

− 1358.6ω8 − 64.4345ω8 cos(ωT ) + 14.9809ω7 sin(ωT )

+ 2340.9ω6 + 20.1827ω6 cos(ωT )− 21.8755ω5 sin(ωT )

− 620.4245ω4 − 6.0595ω4 cos(ωT ) + 0.5327ω3 sin(ωT )

+ 2.4328ω2 + 0.007ω2 cos(ωT )− 1.5847 · 10−5ω sin(ωT )

+ 5.6326 · 10−10 cos(ωT )− 4.7156 · 10−5;

=
(
W (iω)

)
= ω11 − 0.5ω10 sin(ωT )− 442.2662ω9 − 13.1837ω9 cos(ωT )

+ 64.4345ω8 sin(ωT ) + 3290.1ω7 + 14.9809ω7 cos(ωT )

− 20.1827ω6 sin(ωT )− 1999.5ω5 − 21.8755ω5 cos(ωT )

+ 6.0595ω4 sin(ωT ) + 69.9605ω3 + 0.5327ω3 cos(ωT )

− 0.007 sin(ωT )ω2 − 0.0244ω − 1.5847 · 10−5ω cos(ωT )

− 5.6326 · 10−10 sin(ωT ).
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