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Abstract. We investigate a spatial model of growth of a tumor and its sen-

sitivity to radiotherapy. It is assumed that the radiation dose may vary in
time and space, like in intensity modulated radiotherapy (IMRT). The change

of the final state of the tumor depends on local differences in the radiation

dose and varies with the time and the place of these local changes. This leads
to the concept of a tumor’s spatiotemporal sensitivity to radiation, which is

a function of time and space. We show how adjoint sensitivity analysis may

be applied to calculate the spatiotemporal sensitivity of the finite difference
scheme resulting from the partial differential equation describing the tumor

growth. We demonstrate results of this approach to the tumor proliferation,

invasion and response to radiotherapy (PIRT) model and we compare the ac-
curacy and the computational effort of the method to the simple forward finite

difference sensitivity analysis. Furthermore, we use the spatiotemporal sensi-
tivity during the gradient-based optimization of the spatiotemporal radiation

protocol and present results for different parameters of the model.

1. Introduction. Intensity modulated radiotherapy (IMRT) is an advanced type
of radiation therapy used to treat tumors. It is a type of conformal radiation, which
shapes radiation beams to closely approximate the shape of the tumor. In general,
it allows to deliver a different radiation dose to different points in 3D space. The
goal of IMRT is to adjust the radiation dose to the target and to reduce exposure of
healthy tissue to minimize the side effects of treatment. Conformal radiation may
be used in one or more sessions. Radiotherapy can also be a component of more
advanced combined anticancer therapies [14].

In current clinical practice IMRT is planned based on the current state (shape and
volume) of the tumor and there are very few studies which try to use mathematical
modeling to predict the response to the therapy. One of the first such attempts
is an approach proposed by Corwin and co-authors in [1]. They used a spatial
mathematical model of tumor growth to simulate and predict the response to a
dose of particular shape, and based on this information they optimized the therapy
using an evolutionary optimization algorithm. It is important to stress that in [1]
the mathematical model was simulated only forward in time, which is, of course, a
typical way of using any mathematical model.
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The problem of optimizing therapy is related to the problem of sensitivity of
an objective function, measuring the quality of the response, with respect to the
therapy protocol.

In this work we use adjoint sensitivity analysis, which is a sensitivity method
that utilizes the adjoint system constructed based on the analyzed model and simu-
lated backward in time. Adjoint sensitivity analysis, in a special structural form, is
especially useful for models described by block diagrams and was originally devel-
oped for neural networks [2] and afterwards was used for different models described
by ordinary differential equations [3, 4, 8, 9], systems with delays [5] and age-
structured models [7]. Adjoint sensitivity analysis is especially useful in analyzing
MISO (Multiple-Input Single-Output) systems due to the much lower computa-
tional complexity when compared to forward sensitivity analysis. For example, it
is useful in a parameter estimation process where the system analyzed has many
inputs (parameters) and usually one scalar output describing the system (objective
function). In the present work adjoint sensitivity analysis is used to compute the
spatiotemporal gradient of the objective function with respect to the input signal of
the finite difference scheme being the result of the discretization of a given partial
differential equation.

2. Mathematical model of growth of a tumor. In this paper we derive the
spatiotemporal sensitivity to radiation for a mathematical model for tumor prolif-
eration, invasion and response to radiotherapy (PIRT model) published previously
in [1, 10, 11]. The model is formalized as the following reaction-diffusion equation:

∂c

∂t
= ∇ · (D∇c) + ρc

(
1− c

kt

)
−Rc

(
1− c

kt

)
(1)

where: D is a diffusion coefficient (tumor invasiveness), ρ means proliferation co-
efficient, kt is a environment capacity for tumor cells and R is a term describing
the effect of radiation on the tumor cells. In this work R is formalized as a linear-
quadratic term:

R = 1− e−αd−βd
2

(2)

where d is the radiation dose or, more precisely, spatiotemporal radiation dose
distribution. Later in this article d is called shorter as the radiation dose distribution
or simply as the dose distribution. In this work we use and optimize radiation as a
continuous function of time, hence the term R has interpretation of rate constant
with units 1/time. The interpretation of the term R has been a topic of a recent
discussion — see articles [12, 13] and the discussion therein. α and β are parameters
of the linear-quadratic model.

We used the finite-difference method to discretize the model (1) which gives the
following difference equation:

cj+1
i = cji + ∆t

(
D
cji−1 − 2cji + cji+1

∆x2
+ ρcji

(
1− cji

kt

)
−Rji c

j
i

(
1− cji

kt

))
(3)

Rji = 1− e−αd
j
i−β(dji )2

where: cji means the density of tumor cells at spatial point i and at time j and dji
is the radiation dose at time j and at spatial point i. The space step ∆x is equal to
1 and the final space point is 200, therefore imax = 200. The time step ∆t is 0.01
and the final time is 2 which gives jmax = 200. The parameters (in arbitrary units)
of the model are: D = 10, ρ = 10, kt = 2.4e5. The initial condition for the model
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Figure 1. Initial condition c1i for the model (3)

is shown in Fig. 1. The parameters for the linear-quadratic model of response to
irradiation are: α = 1, β = 1.

Simulations of the model without irradiation and with uniform irradiation are
shown in Fig. 2.

The discretized model (3) is an example of a one dimensional finite difference
scheme usually used in numerical simulations of spatiotemporal models. The sim-
plest form of such a difference scheme is as follows:

yj+1
i = f(yji , y

j
i−1, y

j
i+1, u

j
i ), j = 1, 2, . . . , jmax − 1, i = 1, 2, . . . , imax (4)

where: yji is a discretized scalar variable of the original PDE at the time j and at

the spatial point i, uji is the value of an input signal affecting the system (if such
a signal exists) at the time j and at the spatial point i, f(·) is a general non-linear
scalar function, imax is the number of spatial points, and jmax is the final discrete
time.

The difference scheme (4) is very simple: it is only one dimensional, y and f(·)
are scalar, and yj+1

i depends on the state of the difference scheme only at the
previous j-th time and only in the closest neighborhood (i− 1, i, i+ 1). In general,
the difference scheme resulting from the PDE may be more complicated; it may be
higher dimensional, y and f(·) may be multidimensional, and yj+1

i may depend on
a longer history horizon of the difference scheme and a larger neighborhood.

The difference scheme (4) can also be viewed as a coupled map lattice or a special
case of a cellular automaton with continuous state.

3. Problem formulation. Let us consider the difference equation (4) and let us
assume that the minimized objective function is a functional and depends on the
solution of this equation as follows:

J =

jmax∑
j=1

gj(yj) (5)

where yj is the state of the difference scheme at time j

yj = [yj1, y
j
2, . . . , y

j
imax

]T (6)
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and gj(·) are given non-linear scalar functions.
The whole spatiotemporal input signal U can be aggregated and presented as a

matrix:

U =



u1
1 . . . . . . . . . u1

imax

...
. . .

...
... uji

...
...

. . .
...

ujmax

1 . . . . . . . . . ujmax

imax


(7)

The problem formulated and solved in this paper consists of finding a gradient G
of an objective function J in a space of the spatiotemporal input signal:

G = ∇UJ (8)

which is a matrix of partial derivatives:

G =



∂J
∂u1

1
. . . . . . . . . ∂J

∂u1
imax

...
. . .

...
... ∂J

∂uj
i

...

...
. . .

...
∂J

∂ujmax
1

. . . . . . . . . ∂J

∂ujmax
imax


(9)

Once the gradient G is obtained it may be utilized during a gradient-descent iter-
ative minimization procedure of the objective function appearing, for example, in
parameter estimation or control optimization problems.

4. Problem solution. To calculate the spatiotemporal gradient of the objective
function J with respect to the whole input signal U we will utilize the concept of
the adjoint system and adjoint variables known from the discrete formulation of the
Pontryagin maximum principle.

Let us introduce a scalar function called Hamiltonian:

H(yj , uj , pj+1) = gj(yj) +

imax∑
i=1

pj+1
i f(yji , y

j
i−1, y

j
i+1, u

j
i ) (10)

where pji , i = 1, 2, . . . , imax, j = 1, 2, . . . , jmax are adjoint variables (or Lagrange
multipliers), each corresponding to one scalar constraint (4) and satisfying the fol-
lowing equations of the adjoint system:

pji =
∂H(·)
∂yji

, j = 1, 2, . . . , jmax, i = 1, 2, . . . , imax (11)

Now, let us calculate pji based on (10) and taking into account that yji appears

under the sum symbol in (10) three times: for i as yji , for i− 1 as yji+1 and for i+ 1

as yji−1. This observation leads to the following equation of the adjoint system

pji =
∂gj(·)
∂yji

+ pj+1
i ·

(
∂f(·)
∂yji

)j
i

+ pj+1
i−1 ·

(
∂f(·)
∂yji+1

)j
i−1

+ pj+1
i+1 ·

(
∂f(·)
∂yji−1

)j
i+1

. (12)
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The adjoint system (12) should be solved backward in time with the initial condition

pjmax

i =
∂gjmax(·)
∂yjmax

i

, i = 1, 2, . . . , imax (13)

Then the elements of the searched gradient (9) can be calculated as partial deriva-

tives of the Hamiltonian with respect to uji :

∂J

∂uji
=
∂H(·)
∂uji

= pj+1
i

∂f(·)
∂uji

. (14)

5. Results of gradient calculation — spatiotemporal sensitivity. The ob-
jective function J is defined as the total density of tumor cells at the final time
jmax:

J =

imax∑
i=1

cjmax

i (15)

where jmax = 200, imax = 200. Acquired from adjoint sensitivity analysis, the
spatiotemporal gradient of the objective function (15) with respect to the radiation
dose distribution d for model (3) is shown in Fig. 2. We have calculated this gradient
twice, for two nominal spatiotemporal irradiation protocols: for zero irradiation (left
panels) and for uniform irradiation d ≡ 1 (right panels). The results of simulation
of the model compared to the antigradient (the gradient multiplied by −1) for
particular time moments j = 1, 100, and 200 are shown in Fig. 3.

In this Figure we can observe that the shape of the spatiotemporal sensitivity
of J is different from the shape of the growing tumor. This is in contradiction, to
some extent, with our intuition that J should be more sensitive for a higher tumor
density. This phenomena and its possible reasons will be discussed further in next
sections where the optimal spatiotemporal radiation will be presented.

In order to confirm that the gradient is properly calculated we compared it with
the gradient computed by the finite difference method. In this method we change
the radiation dose distribution only at one time j and one space point i by ∆dji
and check the resulting variation of the objective function ∆J . Then the gradient
at time j and space point i can be approximated by the following formula:

(∇dJ)ji ≈
∆J

∆dji
. (16)

This has to be repeated imax×jmax times to obtain the approximation of the whole
gradient. Comparisons of the gradient calculated by the finite difference method
and the adjoint sensitivity analysis for time j = 150 are shown in Figs. 4 and 5.

We can also compare the time needed to execute both methods. On a laptop with
Intel Core i7-4700MQ CPU and with implementation of the algorithms in MAT-
LAB, the execution time that is needed to calculate the spatiotemporal gradient is
about 2 minutes when using the finite difference method. Using the adjoint sensi-
tivity analysis described in this paper we can calculate the whole spatiotemporal
gradient in about 0.3 second. One can see that the adjoint sensitivity approach is
especially useful for this type of task, especially when we take into account that
during gradient-based therapy optimization the gradient has to be calculated many
times.

The MATLAB code of the adjoint sensitivity analysis and the finite difference
method used in this paper can be downloaded from the MathWorks File Exchange
site.

http://www.mathworks.com/matlabcentral/fileexchange/55745-spatiotemporal-sensitivity-of-a-tumor-growth-model
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Figure 2. Simulation of the model (3), and calculated from ad-
joint sensitivity analysis the spatiotemporal gradient of the objec-
tive function (15) with respect to the radiation dose distribution d
for different irradiation values. Left panels: radiation dose distri-
bution d equal to zero, right panels: uniform irradiation d ≡ 1

6. Spatiotemporal radiation optimization. To optimize the radiation dose dis-
tribution d we used the gradient descent method with additional constraints:

• Maximum cumulative dose Smax:

S =

jmax∑
j=1

imax∑
i=1

dji , S ≤ Smax (17)

• Maximum point dose dmax:

dji ≤ dmax, j = 1, 2, . . . , jmax, i = 1, 2, . . . , imax (18)

To incorporate these constraints during optimization we modified the defined objec-
tive function J and the way in which the input signal of radiation dose distribution
is generated.

In order to implement the maximum cumulative dose constraint (17) we applied
an external penalty function approach by adding an extra term to the objective
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Figure 3. Simulation of the model (3) compared with the antigra-
dient of objective function (15) with respect to the radiation dose
distribution d for particular time moments j = 1, 100, 200. Left
panels: radiation dose distribution d equal to zero, right panels:
uniform irradiation d ≡ 1

function J in cases when the minimization algorithm exceeds Smax:

J ′ =

{
J S ≤ Smax
J + 1

2k(S − Smax)2 S > Smax
(19)

where k is a scalar positive coefficient increasing during the optimization.
The maximum point dose constraint (18) was implemented by adding a new

signal v which is an argument of a hyperbolic tangent function (having an upper
limit equal to one). The value of this function multiplied by dmax gives us the
radiation dose distribution d at which all values do not exceed dmax:

dji = dmax tanh(vji ), j = 1, 2, . . . , jmax, i = 1, 2, . . . , imax (20)

After adding these modifications we calculated the spatiotemporal gradient of the
modified objective function J ′ (instead of J) with respect to the new signal v (in-
stead of d) during the optimization procedure.
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finite difference method and by adjoint sensitivity analysis

The optimization was done for two sets of parameters acquired from [1]:

• D = 27.7, ρ = 3.59
• D = 8.9, ρ = 50.29

We chose these two cases with the minimal and the maximal value of ρ (the least
and the most aggressive ones). Values of the constraints were Smax = 3.8e4 and
dmax = 4 (radiation dose of 4 Gy is often used in radiotherapy, especially for
palliative treatment [6]). The optimized radiation dose distribution and simulations
of the model are shown in Figs. 6 and 7.

For the first set of parameters D = 27.7, ρ = 3.59 the values of the objective
function J ′ before (for radiation equals zero) and after optimization were 1.12e3
and 163.90, respectively. For the second set of parameters D = 8.9, ρ = 50.29 (the
most aggressive tumor) the value of the objective function J ′ before optimization
was 3.30e7 and after optimization decreased only to 3.27e7. These results are sum-
marized in Table 1. One can see that in the second case the radiation therapy has
little effect on tumor progression.
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Figure 6. Simulations of the model (3) without irradiation, opti-
mized radiation dose distribution dopt and simulation of the model
(3) with optimized radiation dose distribution c(dopt) for two sets of
parameters; left panels: D = 27.7, ρ = 3.59, right panels: D = 8.9,
ρ = 50.29

Further, especially for the second (the worse) case, the shape of the optimal
spatiotemporal radiation dose distribution is visibly different than the tumor density
profile. This raises an interesting question: what is the reason for such an effect? In
general, the radiation is applied at points and times where the tumor density reaches
average values (non-zero and not saturated — less than kt). When the density of the
tumor reaches the maximal environment capacity kt then the optimal irradiation
level decreases. This is because of the form of the mathematical model of the tumor
growth; the last term in (1), responsible for the killing action, disappears at the
maximal density of the tumor and the optimal spatiotemporal radiation protocol



1140 KRZYSZTOF FUJAREWICZ AND KRZYSZTOF  LAKOMIEC

0 50 100 150 200

Space i

0

0.0332

0.0665

0.0997

0.1330
c

Time j = 1

0

1

2

3

4

d

c(d ≡ 0)

c(d
opt

)

d
opt

0 50 100 150 200

Space i

0

0.4158

0.8315

1.2473

1.6631

c

Time j = 100

0

1

2

3

4

d

c(d≡0)

c(d
opt

)

d
opt

0 50 100 150 200

Space i

0

10.3660

20.7320

31.0980

41.4641

c

Time j = 200

0

1

2

3

4

d

c(d≡0)

c(d
opt

)

d
opt

0 50 100 150 200

Space i

0

0.0332

0.0665

0.0997

0.1330

c

Time j = 1

0

1

2

3

4

d

c(d≡0)

c(d
opt

)

d
opt

0 50 100 150 200

Space i

0

0.6

1.2

1.8

2.4

c

×105 Time j = 100

0

1

2

3

4

d

c(d≡0)

c(d
opt

)

d
opt

0 50 100 150 200

Space i

0

0.6

1.2

1.8

2.4

c

×105 Time j = 200

0

1

2

3

4

d

c(d≡0)

c(d
opt

)

d
opt

Figure 7. Simulations of the model (3) without irradiation c(d ≡
0), optimized radiation dose distribution dopt and simulation of the
model (3) with optimized radiation dose distribution c(dopt) for
particular time moments j = 1, 100, 200. Left panels: D = 27.7,
ρ = 3.59, right panels: D = 8.9, ρ = 50.29.

is not applied to these places and times. Of course, this raises the question of the
need to further improve the model used here, and in our future work we plan to
apply our approach to different models and to assess the results.

Parameters D=27.7, ρ=3.59 D=8.9, ρ=50.29
J ′(d ≡ 0) 1.12e3 3.30e7
J ′(dopt) 163.90 3.27e7

Table 1. Values of the objective function J ′ without irradiation
and with optimized radiation dose distribution for two sets of model
parameters
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7. Conclusions. In this work we propose a novel approach to optimization of spa-
tiotemporal radiotherapy using a mathematical model of tumor growth described
by partial differential equations. This allows to control the radiation dose which
can be different for different points of the tumor and surrounding tissue and for
different times. The optimization is based upon adjoint sensitivity analysis which
gives information about the spatiotemporal sensitivity (being a function of time and
space) of a given scalar objective function characterizing the model’s solution. The
original partial differential model is transformed into a discrete difference scheme
and then the adjoint sensitivity analysis and the radiation protocol is optimized.
In future work, we plan to apply our approach to optimization of fractioned radio-
therapy which is more realistic and applicable in clinical reality. We will also try to
minimize other forms of the objective function by using the same adjoint sensitivity
analysis.
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