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Abstract. The goal of this study is automated discrimination between early

stage Alzheimer′s disease (AD) magnetic resonance imaging (MRI) and healthy
MRI data. Unsupervised Diffusion Component Analysis, a novel approach

based on the diffusion mapping framework, reduces data dimensionality and

provides pattern recognition that can be used to distinguish AD brains from
healthy brains. The new algorithm constructs coordinates as an extension of

diffusion maps and generates efficient geometric representations of the com-

plex structure of the MRI data. The key difference between our method and
others used to classify and detect AD early in its course is our nonlinear and lo-

cal network approach, which overcomes calibration differences among different

scanners and centers collecting MRI data and solves the problem of individual
variation in brain size and shape. In addition, our algorithm is completely

automatic and unsupervised, which could potentially be a useful and practical
tool for doctors to help identify AD patients.

1. Background. Alzheimer′s disease (AD), the most common type of dementia,
currently affects approximately 5.2 million people in the US, with a significant
increase predicted in the near future. Over 35 million people worldwide are living
with AD; this number is expected to double by 2030 and more than triple by
2050 to 115 million [1]. In AD patients, neurons along with their connections are
progressively destroyed, leading to loss of cognitive function and eventually death
[15]. Therapeutic intervention is generally considered more likely to be beneficial
in the early stages of the disease. Thus, it is extremely important to identify the
disease as early as possible in order to administer treatments that will effectively
stop the disease.
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Mild Cognitive Impairment (MCI), a transitional stage between normal aging
and the development of dementia, has been defined to account for the intermediate
cognitive state where patients are impaired on one or more standardized cognitive
tests but do not meet the criteria for clinical diagnosis of dementia [10]. MCI has
attracted increasing attention lately since it offers an opportunity to target the
disease process early.

Neuroimaging has been shown to be a powerful tool for studying changes in
the progression of AD as well as therapeutic efficacy in AD patients. Magnetic
resonance imaging (MRI) scans can reveal features that are predictive of a patient
developing AD. Our goal is to use these features to distinguish brains of patients in
early stages of AD from brains of healthy patients.

A novel approach based on the diffusion map framework is used [3]; diffusion
mapping provides dimensionality reduction of the data as well as pattern recognition
that can be used to distinguish AD brains from non-AD brains. A new algorithm,
Unsupervised Diffusion Component Analysis, which is an extension of diffusion
maps, constructs coordinates that generate efficient geometric representations of
the complex structures in the MRI. The diffusion map approach has been effective
in other classifications using brain data, in particular, preseizure states of patients
with epilepsy [4]. Diffusion maps have also been effective in classifications in various
nonmedical areas, such as finance and military applications.

There have been other studies on classifying AD and non-AD patients; some of
them use principal components analysis (PCA) or independent component analysis
(ICA). Recently more work has been done using multivariate approaches rather than
the traditional voxel-by-voxel approach [5]. However, the key difference between our
method and other methods that have been used to classify and detect onset of AD
in early stages is the nonlinear and local network approach, which is necessary for
eliminating the calibration differences of MRI of patients with different shapes and
sizes of brains as well as different scanners and centers collecting data. Furthermore,
another major difference and improvement in our algorithm is that it is completely
automatic and unsupervised, which could potentially be an incredibly useful tool
for doctors to help identify AD patients.

2. Data. Data used in the preparation of this article were obtained from the
Alzheimer′s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI was launched in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies, and non-profit
organizations, as a 60 million, 5-year public-private partnership. The Principle In-
vestigator of this initiative is Michael W. Weiner, M.D., VA Medical Center and
University of California-San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and private corporations.
Presently, more than 800 participants, aged 55 to 90 years, have been recruited from
over 50 sites across the United States and Canada, including approximately 200 cog-
nitively normal older individuals (i.e., healthy controls or HCs) to be followed for
3 years, 400 people with MCI to be followed for 3 years, and 200 people with early
AD to be followed for 2 years. Baseline and longitudinal imaging, including struc-
tural MRI scans collected on the full sample and PIB and FDG PET imaging on
a subset are collected every 612 months. Additional baseline and longitudinal data
including other biological measures (i.e. cerebrospinal fluid (CSF) markers, APOE
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Figure 1. An example of a normal MRI and an AD MRI, showing
differences in the hippocampal region

and full-genome genotyping via blood sample) and clinical assessments including
neuropsychological testing and clinical examinations are also collected as part of
this study. Written informed consent was obtained from all participants and the
study was conducted with prior institutional review board’s approval. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer′s disease (AD). Determination
of sensitive and specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials. For further and updated
information, see www.adni-info.org.

3. Methods. We assume that the features differentiating patients with AD are
represented in the MRI data. We would like to detect these features and distinguish
brains of patients in the early stages of AD from brains of non-AD patients.

Figure 1 shows an example of a normal MRI and an AD MRI; sometimes it is
not straightforward to identify such small changes in the images, so it would be
useful to have an automatic way to identify AD patients using only structural MRI.
Figure 2 is another example that shows the MRI of 3 different 75 year old patients:
normal, MCI, and AD.

Diffusion maps [3] have been a useful tool in reducing the dimensionality of the
data as well as providing a measure for pattern recognition and feature detection.
Since diffusion mapping may detect special features in the data, it can be used to
determine differences in brains of patients with AD compared to normal, healthy
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Figure 2. An example of 3 different MRI: 75 year old control, 75
year old MCI, and 75 year old AD

brains. However, diffusion maps assume access to the process that they aim to
classify. In MRI data, the relationship between the pixels of the images and the
underlying brain activity may be stochastic, and the data are assumed to be noisy
due to the calibration. Hence, diffusion mapping is not the most effective direct
approach to use with MRI data. A recently developed algorithm, which is an
extension of diffusion maps, may be more applicable in the case of classifying AD
[12, 2]. This new algorithm assumes a stochastic mapping between the underlying
processes and the measurements, so the mapping is inverted, and a kernel is used
to recover the underlying activity [12]. Thus it seems that this proposed algorithm
is more appropriate than diffusion maps for our data.

We introduce an algorithm that relies on the work by Talmon and Coifman [12] to
extract the underlying brain structure from the MRI. The algorithm is an extension
of diffusion maps and uses local PCA [9]. PCA is another dimensionality reduction
method, in which the goal is to compute the most meaningful basis to re-express a
large and noisy dataset. This new basis can reveal hidden patterns and structure in
the data as well as remove the noise. An orthogonal linear transformation converts
the data to a new coordinate system for more effective analysis. The largest variance
in the data is represented by the first coordinate or the first principal component.
An important difference between the proposed algorithm and PCA is the use of
nonlinear local analysis in the extension as opposed to PCA, which assumes the
linear global information of the data. For the MRI data, we perform PCA on local
regions of the images and then integrate the local information using a kernel and
obtain a single model for all of the data. We use a data-driven adapted distance
between blocks of MRI to approximate the Euclidean distance between the features
from the MRI that are considered noisy due to calibration differences.

The MRI data form 3D matrices, because the scanner records 2D slices of the
brain. Slices cannot be considered in isolation because of variance in their number
and thickness across different scanners and scanning protocols. The full brain 3D
matrices are subdivided into vectors that are composed of overlapping neighbor-
hoods around pixels of size 8x8x8, and these submatrices are overlapped by 50% for
smoothing purposes and to account for the fact that our submatrix size may split
a particular brain structure that we would prefer remain whole. This overlapping
is natural from the nonlinear assumptions in the approach. These submatrices are
reshaped into vectors of length 512 (8x8x8). Then the vectors from the MRI of
patients with AD are compared to the vectors from the MRI of healthy patients to
determine if certain features are different and can be used to identify AD.
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For each set of feature vectors for the 4 MRI datasets that we consider, we
compute histograms using 20 bins to approximate the probability distributions,
because the MRI data are assumed to be stochastic from various effects. After
combining the results for the 4 MRI, we calculate the Earth Mover’s Distance [11]
rather than computing Euclidean distances between pixels or between boxes. This is
a method to evaluate dissimilarity between multi-dimensional distributions in some
feature space where a distance measure between single features is given. The Earth
Mover’s Distance is called the Wasserstein metric in optimal transport where the
problem is to transport a mass from one location to another. Using this method
in our algorithm is useful, because it naturally extends the notion of a distance
between elements to that of a distance between sets of elements. Furthermore, it
is applicable to MRI data, because it allows for partial matches in a natural way,
which helps to deal with occlusions and clutter in image retrieval applications.

To reduce the chance of bias in the construction, we introduce a random shuffle
in the columns of the matrix composed of feature vectors and apply a random
projection as a method to reduce the large amount of data. Then we apply the
Discrete Cosine Transform [13]. If the data are uncorrelated, we expect to obtain
some approximation of a delta function with a spike at the origin after applying the
Discrete Cosine Transform.

Given one of these feature vectors, Sy(m), we compute the empirical local co-
variance matrix Σm within a fixed interval, J ,

Σm =
1

J

m∑
m′=m−J+1

(Sy(m′)− µm)(Sy(m′)− µm)T , (1)

where µm is the empirical local mean of the feature vectors in the interval, and m
describes the data that have been classified in cells by a histogram.

The dynamics of the controlling factors from the data are described by normalized
independent Ito processes described in the stochastic differential equation below:

dθi(t) = ai(θi(t))dt+ dwi(t), (2)

where i = 1, 2, ..., d. (a1, ..., ad) in the above equation are (possibly nonlinear)
unknown drift coefficients and w = (w1, ..., wd) is a d−dimensional independent
white noise. An n-dimensional process (Y (t), t ≥ 0) is the observation and a noisy
measurement process Z arises as Z(t) = g(Y (t), V (t)), where V is a stationary noise
process with unknown distribution.

We define a nonsymmetric distance known as the Mahalanobis distance using
the covariance matrices, a2

Σ, and a symmetric distance d2
Σ. Mahalanobis distances

between empirical distribution estimators (e.g., histogram vectors) are used to con-
struct the affinity measure between segments in the series. Then anisotropic kernels
are constructed and diffusion maps are applied to obtain a low-dimensional embed-
ding, which uncovers the intrinsic representation. It has been shown in [3] that
this distance approximates the Euclidean distance between the underlying factors
in the data by local linearization of the nonlinear transformation. These distances,
between points m and m′ in the dataset M , are defined as follows:

a2
Σ(m,m′) = (Sy(m)− Sy(m′))T Σ−1

m′ (Sy(m)− Sy(m′)), (3)

d2
Σ(m,m′) =

1

2
(a2

Σ(Sy(m),Sy(m′)) + a2
Σ(Sy(m′),Sy(m))). (4)

We are able to recover these underlying factors using an eigendecomposition of an
appropriate Laplace operator (kernel). A kernel is used to compare the underlying
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factors, and ε is the kernel scale set according to the Mahalanobis distance. This
kernel is used to define the local geometries of the graph between m and m′ from
the dataset M .

We construct an NxN nonsymmetric affinity matrix A, whose (m,m′) element
is given by

Am,m′
= exp−

a2∑(Sy(m),Sy(m′))

ε
(5)

where ε > 0 is the kernel scale that is calculated by taking the median of all pairwise
distances of the original data matrix.

The matrix formed from the elements with the above exponential converges to
a low dimensional manifold and the eigenvectors parametrize the underlying struc-
tures in the data.

The kernel is normalized by a diagonal density matrix, which enables us to con-
sider the sampling as uniform. The normalized matrix can be viewed as a Markov
transition probability matrix for a jump process over the measurements. We then
define an NxN symmetric matrix W as

Wm,m′
=

∑
r∈R

Am,rAm′,r. (6)

Then an eigendecomposition is performed to address the nonuniform sampling
of the data. The ` eigenvectors found from the eigendecomposition corresponding
to the few largest eigenvalues provide a parametrization of the features, allowing
for significant data dimensionality reduction and capturing the features that may
identify patients with AD.

Sy(m) 7→ [ψ1(m), ψ2(m), ..., ψ`(m)]T , (7)

where ψi(m) is the ith eigenvector. To determine which eigenvectors to use for
this classification problem, we pick the optimal eigenvector embedding with a com-
putable, reproducible criterion instead of visual inspection. All possible combina-
tions of 3 or 4 eigenvectors are considered. We compute the center of mass of the
new embedded points. Then to choose which embedding provides the best separa-
tion with AD points separated from the rest of the embedded points, we calculate
the variance of all points in the embedding that correspond to the normal MRI data
to that center of mass. The variance of the normal points is divided by the variance
of all points in the embedding that correspond to the AD MRI data to the center
of mass for each case. We choose the maximum variance ratio and consider the top
3 cases and choose those sets of eigenvectors.

The details are summarized in the following table with algorithmic listing.
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Algorithm

1: Obtain MRI data of n brains,
2: Partition each 3-dimensional matrix of data into overlapping submatrices,
3: Reshape each small submatrix into a vector; place each vector side by side to

form a matrix,
4: Compute histograms (along matrix columns) using 20 bins,
5: Calculate the Earth Mover’s Distance between consecutive feature vectors,
6: To reduce the chance of bias, introduce a random shuffle in the columns of the

matrix and apply a random projection,
7: Apply the Discrete Cosine Transform,
8: Calculate local covariance matrices for overlapping windows,
9: Compute the eigenvalue decomposition to obtain eigenvalues and corresponding

eigenvectors,
10: Calculate inverse covariance matrices to calculate the Mahalanobis Distance,
11: Use the median of all pairwise distances of the data matrix to choose epsilon,

the Gaussian kernel scale,
12: Compute the affinity matrix and build a Gaussian kernel according to (5),
13: Normalize the kernel by a diagonal density matrix and employ eigenvalue de-

composition to obtain the eigenvalues and eigenvectors,
14: Consider all possible combinations of 3 or 4 eigenvectors for the embeddings;

compute the center of mass for each embedding as well as the variance of the
embedded points (specifically, the ratio of the variance of the normal points
divided by the variance of the AD points) to determine the optimal embedding.

4. Results. Initially, using the algorithm to compare 2 AD and 2 normal brains,
we found a distinct separation, as shown in Figure 3. We decided to analyze 10
examples, in which there is one different AD MRI in each example and the same
three normal MRI. This discrimination would be beneficial for doctors to identify
AD patients, because they could use a reference dataset of normal MRI data and
compare individual patient MRI data against this dataset. For each of these 10
cases, we produced the embeddings of all combinations of 3 eigenvectors, for exam-
ple, Figure 5. One example of this is Figure 4. In that figure, the large green dot
represents the center of mass of all of the points in the embedding, and this is used
to calculate the variance of the other points in the embedding.

From all iterations of possible combinations of 3 eigenvectors, we select the top
5 embeddings that produce the best separation for the AD points and show that
each time, our automatic and unsupervised algorithm is able to select as the best
embedding one of these top 5 options by checking the variance ratio (variance
of normal points divided by variance of AD points from the center of mass in
the embedding), displayed in Figure 6. We also checked all combinations of 4
eigenvectors and plotted the variance ratio, as in Figure 7 with similar results.
Furthermore, we were able to trace back the embeddings to the original data to
determine which areas in the brain seem to be most differentiating between healthy
and AD data, and we found these areas to be located in the temporal lobe.

5. Discussion. A method similar to the one proposed in this paper has already
proved to be effective in identifying preseizure states in intracranial EEG data by
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Figure 3. An example using 4 different MRI (2 normal and 2 AD)
of one embedding using 3 eigenvectors, and each color represents a
different MRI: blue are normal; yellow and red are AD.

Figure 4. An example using 4 different MRI (3 normal and 1 AD)
of one embedding using 3 eigenvectors, and each color represents a
different MRI: light blue is AD.
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Figure 5. An example using 4 different MRI (3 normal and 1
AD) of all embeddings with various combinations of 3 eigenvectors
representing the axes, and each color represents a different MRI:
light blue is AD.

providing a distinction between interictal (period between seizures) and preseizure
states of a patient with epilepsy [4].

Other studies that have focused on identifying and classifying AD patients have
used multivariate techniques, because they have attractive features that cannot be
discovered by the more commonly used univariate, voxel-wise, techniques [5].

ICA based methods have been used for analyzing neuroimaging data, such as
MRI data. Yang et al. [14] used ICA and a support vector machine (SVM) to
classify AD MRI data. They first aligned and normalized all MRI scans studied
using statistical parametric mapping. Next, ICA was applied to the images to
extract features used for classification. The SVM was then used to classify the
images based on the independent component coefficients.

6. Conclusions. Unsupervised Diffusion Component Analysis, a novel algorithm
which combines diffusion maps and PCA with other techniques, is used to study
the differences between healthy and AD patients. The extensions lead to efficiency
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Figure 6. An example using 4 different MRI (3 normal and 1 AD)
of the Variance Ratio for all embeddings with various combinations
of 3 eigenvectors

in use, in terms of reduced computational complexity, which have the potential to
become useful techniques for practitioners in the field.

The key difference between our method and others used to classify and detect AD
early in its course is our nonlinear and local network approach, which overcomes
calibration differences among different scanners and centers collecting MRI data
and solves the problem of individual variation in brain size and shape. Additionally,
our algorithm is completely automatic and unsupervised, which could potentially
be a very useful tool for doctors to help identify AD patients. Furthermore, we
have tried to address some disadvantages with multivariate approaches, such as the
higher demands of computational and mathematical literacy on the data analyst.
After the initial work of developing this algorithm and determining a reference
bank of healthy/normal brains, the remaining analysis is kept straightforward so
that Unsupervised Diffusion Component Analysis could present a simple tool for
doctors to use in diagnosing Alzheimer′s Disease.

Future work will include testing on a larger sample size as well as testing on
data from patients with mild cognitive impairment to see if the algorithm is able to
separate that data from the data of healthy patients, which would allow doctors to
diagnose patients prior to AD onset.
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Figure 7. An example using 4 different MRI (3 normal and 1 AD)
of the Variance Ratio for all embeddings with various combinations
of 4 eigenvectors
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