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Abstract. We propose a new mathematical modeling framework to inves-
tigate the transmission and spread of foot-and-mouth disease. Our models

incorporate relevant biological and ecological factors, vaccination effects, and

seasonal impacts during the complex interaction among susceptible, vaccinated,
exposed, infected, carrier, and recovered animals. We conduct both epidemic

and endemic analysis, with a focus on the threshold dynamics characterized by

the basic reproduction numbers. In addition, numerical simulation results are
presented to demonstrate the analytical findings.

1. Introduction. Foot-and-mouth disease (FMD) remains one of the most conta-
gious transboundary animal disease affecting cloven hoofed animals [15, 16]. Infec-
tion with the disease, caused by the FMD virus (FMDV), is characterized by fever
and vesicles in or around the mouth, the digits of the feet, and the teats or mam-
mary glands. FMD is endemic in Zimbabwe and several other African countries
and constitutes a significant constraint to international trade in live animals and
animal products [20]. The disease can be controlled through vaccination of suscep-
tible animals and treatment or culling of infectious animals. During the 2001 FMD
outbreak in the United Kingdom (UK), it is estimated that more than 2000 farms
with approximately six million animals were culled. Further, the total loss, com-
posed of agriculture and food chain as well as compensation for slaughtered animals
and clean-up costs, summed up to about 3.1 billion pounds and 2.5 billion pounds,
respectively [7]. Thus, disease management and control are essential in order to
minimize such risks as well as prevent large economical loss. Designing effective
control measures entails the knowledge of the patterns of movements and contacts
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and infection spread among the hosts, which define the fundamental transmission
dynamics of the disease.

Since the 2001 UK outbreak, several mathematical models have been proposed
to explore the FMD transmission dynamics (see [4, 5, 8–11, 19], to mention a few).
Dekker et al. [5] investigated the rate of FMDV transmission by carriers using pub-
lished experimental data. Kao et al. [8] introduced a static network-based framework
for analyzing the epidemic spread and corroborated the results with a stochastic
epidemic model. Keeling et al. [9] investigated the role of national prophylactic vac-
cination campaigns and culling strategies during an FMD outbreak. Their study
revealed, among other findings, that in the presence of sufficient resources and
adequate preparation, a combination of reactive vaccination and culling may effec-
tively control FMD transmission. Recently, Ringa and Bauch (2014) [19] developed
an SEIRVC (Susceptible-Exposed-Infectious-Recovered-Vaccinated-Culled) pair ap-
proximation model of FMD transmission in near-endemic populations. Their work
suggested that optimal long-term control of FMD by vaccination in near-endemic
settings can be achieved by rolling out prophylactic vaccine as much as possible,
especially if resources are limited.

Despite these efforts in modeling and analyzing FMD dynamics, several impor-
tant questions regarding the transmission and spread of the disease remain to be
answered. For example, how to characterize the role of disease carriers in an FMD
outbreak? How to measure the epidemic risk under disease control measures, partic-
ularly vaccination? And how does the interaction between infected animals and oth-
ers (susceptible, vaccinated, carriers, etc.) shape the short- and long-term dynam-
ics of FMD? In addition, like many other infectious diseases, FMD is significantly
impacted by environmental and climatic factors. Particularly, seasonal variation
causes periodic changes in pastures and the movement and contact patterns of ani-
mals, which results in disease dynamics not captured by mathematical models with
constant parameters. Currently, very little work has been devoted to investigating
FMD dynamics under seasonal impact.

In this paper, we propose a mathematical framework to study the intrinsic dy-
namics of FMD, incorporating relevant biological details, vaccination effects, and
seasonal oscillation. We will start with a basic compartment model represented by
an autonomous ODE system that depicts the interaction among susceptible, vacci-
nated, exposed, infected, carrier, and recovered animals. We conduct epidemic and
endemic analysis and investigate disease threshold dynamics characterized by the
basic reproduction number. We then proceed to study FMD dynamics under sea-
sonal impact, by computing the basic reproduction number for the periodic model
and establishing it as a sharp threshold for disease dynamics in periodic environ-
ments. In addition, numerical results are presented to demonstrate the analytic
prediction, and conclusions are drawn in the end of the paper.

2. Mathematical modeling, analysis and results.

2.1. Basic model. Let S(t), H(t), E(t), I(t), C(t) and R(t) represent the pro-
portion of susceptible, vaccinated, exposed, infected, carrier and recovered animals
at time t, respectively, with a (normalized) total population N(t) = S(t) +H(t) +
E(t)+I(t)+C(t)+R(t). FMD dynamics in this study are governed by the following
nonlinear system:
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Ṡ(t) = µ− λS(t)− (µ+ φ)S(t) + αH(t),

Ḣ(t) = φS(t)− (1− ε)λH(t)− (µ+ α)H(t),

Ė(t) = λ(S(t) + (1− ε)H(t))− (µ+ γ)E(t),

İ(t) = (1− κ)γE(t)− (µ+ σ)I(t),

Ċ(t) = κγE(t) + σπ0I(t)− (µ+ d)C(t),

Ṙ(t) = σπ2I(t) + (1− p)dC(t)− µR(t).

(1)

Figure 1 illustrates the model flow chart for the system.
The constant parameter µ denotes the constant rate of entry for new animals

into the susceptible class. We assume that it also equals the non-FMD related
exit rate and is assumed to be the same for all classes. Susceptible animals are
vaccinated at rate φ, while vaccinated animals lose vaccine-induced immunity at
constant rate α. The average period of natural and vaccine protection depends on
a number of factors such as the virus serotype, affected species, and the type of
vaccine administered. Prior studies estimate this period to range from 6 months
to 5.5 years [19]. Susceptible animals are exposed to FMD through direct contact
with infectious animals, with a bilinear incidence representation

λ = βI ,

where β denotes the disease transmission rate. Meanwhile, vaccinated animals are
assumed to acquire FMD at a reduced rate modeled by (1 − ε)βI. Here, (1 − ε)
represents the vaccine protective factor, and ε represents the vaccine efficacy which
depends on the type of vaccine used. In a recent study conducted by Knight-Jones
et al. [12], it was observed that FMD vaccination can be 89% effective to protect
susceptible animals against FMDV.

FMD exposed animals remain in the exposed state for γ−1 days on average (in-
cubation) after which a fraction (1 − κ) become infected and the complementary
fraction κ become FMD carriers. The incubation period for FMD can vary depend-
ing on the species of the infected animal, the dose of the virus, the viral strain and
the route of inoculation [1]. In particular, for cattle population, the reported incu-
bation period ranges between 2-14 days [15,19]. Prior studies suggest that animals
can become FMD carriers whether or not they had clinical signs [1]. Although there
are anecdotal reports of apparent transmission from these animals in the field, and
esophageal-pharyngeal fluid is infectious if it is injected directly into an animal,
all attempts to demonstrate transmission between domesticated livestock in close
contact during controlled experiments have failed [1].

Further, the proportion of exposed and infected cattle which become carriers is
estimated to range from 15-50% [2]. Infected animals remain in this state for σ−1

days. Depending on the FMDV strain and the animal species, infected animals
remain symptomatic of FMD and infectious for about 7 -10 days before they either
become carriers, succumb to FMD-induced death, or recover [19]. Model param-
eters π0, π1 and π2 denote the proportions of infected animals which progress to
the carrier population, suffer FMD-related mortality, and successfully recover from
infection, respectively. Thus, π0 +π1 +π2 = 1. FMD-related mortality, though gen-
erally low, varies with species, age of the animal, breed, and pre-existing immunity
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as well as the dose of the virus and a host of other factors. In adult live stock, the
fatality is estimated to be between 0-5% [1]. Carrier animals remain in the carrier
state for d−1 days. Prior studies suggest that cattle can be in the carrier state for a
period as long as 3.5 years [1,2]. We may assume that a fraction p of carrier animals
succumb to FMD-related death and the remainder (1− p) successfully recover from
the disease.

In Table 1, we present the values for the model parameters.

Figure 1. Model flowchart

Parameter Definition Symbol Baseline value Units Source

Exit rate µ 0.001 day−1 [13]
Vaccination rate φ 0.006 day−1 [19]
Incubation period γ−1 4 days [15,19]
Vaccine waning rate α 0.0056 day−1 [19]
Average carrier period d−1 3.5 years [1, 2]
FMD transmission rate β 0.6 day−1 [19]
Average infectious period σ−1 7 days [19]
Vaccine efficacy ε 0.89 (0.5-0.89) - [12]
Proportion of infectious animals
which progress to carrier population π0 0.35 (0.15-0.5) - [1, 2]
Proportion of infectious animals
which succumb to FMD-induced death π1 0 (0.0-0.05) - [1]
Proportion of infectious animals
which recover from FMD π2 0.65 (0.45-0.85) - [1, 2]
Proportion of exposed animals
which become FMD carriers κ 0.5 (0.15-0.5) - [2]
Proportion of FMD carriers
which succumb to disease related death p 0 (0.0-0.05) - [1]

Table 1. Model parameters and their interpretations.

It can be easily verified that all solutions of the system (1) with non-negative
initial conditions remain positive. Moreover, considering that the death rates for
the infected and carrier animals, π1 and p respectively, are typically very low [1,2],
in what follows we will assume that π1 = p = 0. With this assumption, we can easily
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observe from the system (1) thatN(t) = S(t)+H(t)+E(t)+I(t)+C(t)+R(t) = 1 for
all t . Meanwhile, consider the first equation from system (1). Since S(t)+H(t) ≤ 1,
it follows that

dS

dt
≤ µ− (µ+ φ)S(t) + αH(t) ≤ (µ+ α)− (µ+ φ+ α)S(t). (2)

Thus,

S(t) ≤ µ+ α

µ+ φ+ α
, S0 (3)

provided that S(0) ≤ S0. Similarly, from the second equation of system (1) we
obtain

dH

dt
≤ φS(t)− (µ+ α)H(t) ≤ φ− (µ+ α+ φ)H(t). (4)

Thus,

H(t) ≤ φ

µ+ α+ φ
, H0 (5)

as long as H(0) ≤ H0. We conclude that the feasible region

Ω =
{

(S,H,E, I, C,R) ∈ [0, 1]6 : S ≤ S0, H ≤ H0, S +H + E + I + C +R = 1
}
(6)

is positively invariant with respect to the system (1).

2.2. The reproductive number. In the absence of FMDV in the community,
system (1) exhibits an equilibrium point known as the FMD-free (denoted by E0):

E0 =
(
S0, H0, E0, I0, C0, R0

)
=
( α+ µ

α+ µ+ φ
,

φ

α+ µ+ φ
, 0, 0, 0, 0

)
. (7)

In infectious disease modeling, the basic reproductive number often denoted as R0

plays a crucial role on exploring the power of the disease to invade the population.
The basic reproduction number is defined as the average number of secondary cases
caused by a typical infected animal throughout its entire course of infection in a
completely susceptible population and in the absence of control interventions [6].
In the context of a partially susceptible population owing to prior exposure or
vaccination, the basic (or, effective) reproduction number quantifies the potential
risk for infectious disease transmission. If the effective reproductive number is less
than or equal to unity, then transmission chains are not self-sustaining and are
unable to generate a major epidemic. By contrast, an epidemic is likely to occur
whenever the effective reproductive number is greater than unity.

Using the next generation matrix approach outlined in [21], the effective repro-
ductive number Re of system (1) can be found as

Re =
βγ(1− κ)(α+ µ+ (1− ε)φ)

(µ+ γ)(µ+ σ)(µ+ α+ φ)
. (8)

Clearly, Re depends on several model parameters, particularly the FMD transmis-
sion rate, β , and the vaccination protective factor, ε . A contour plot of Re as a
function of β and ε is presented in Figure 2. The values of other model parameters
are based on Table 1. We observe that when β becomes larger or when ε is reduced,
Re increases, implying a higher disease risk. In particular, when the transmission
rate is sufficiently high (> 0.45 per day), the value of Re is always higher than 1
regardless of the efficacy of the vaccination, an indication that FMD would persist
in the community. In what follows we mathematically justify these observations
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and establish Re = 1 as a sharp threshold for the disease dynamics of the model
(1).
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Figure 2. Contour plot of Re as a function of β (FMD transmission
rate) and ε (FMD vaccine protective factor). Other parameters are fixed
and their values are provided in Table 1.

The local stability of the disease-free equilibrium E0 when Re < 1, and the
instability of E0 when Re > 1, can be directly obtained from the standard result
in [21]. We now claim the following result.

Theorem 2.1. When Re ≤ 1, the FMD-free equilibrium E0 is globally asymptoti-
cally stable in Ω .

Proof. Consider the following Lyapunov function

L(t) =
βγ(1− κ)

(µ+ γ)(µ+ σ)
E(t) +

β

(µ+ σ)
I(t) .

Differentiating L along the solutions of the system (1) yields

dL

dt
=

βγ(1− κ)

(µ+ γ)(µ+ σ)

dE

dt
+

β

(µ+ σ)

dI

dt

= β

[
βγ(1− κ)[S + (1− ε)H]

(µ+ γ)(µ+ σ)
− 1

]
I(t)

≤ β

[
βγ(1− κ)(α+ µ+ (1− ε)φ)

(µ+ γ)(µ+ σ)(µ+ α+ φ)
− 1

]
I(t)

= −β(1−Re)I(t).

(9)

Thus, L̇ ≤ 0 as long as Re ≤ 1. When Re < 1, L̇ = 0 yields I = 0. Then it can
be easily observed from the system (1) that as t → ∞, E → 0, C → 0, R → 0,

and S → S0, H → H0. Hence, the only invariant set when L̇ = 0 is the singleton
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E0 = (S0, H0, 0, 0, 0, 0). It follows from Lasalle’s Invariance Principle [14] that every
solution of the system (1), with initial conditions in Ω, approaches E0 as t→∞.

When Re = 1, L̇ = 0 implies either I = 0, or

1 =
βγ(1− κ)[S + (1− ε)H]

(µ+ γ)(µ+ σ)
≤ βγ(1− κ)(α+ µ+ (1− ε)φ)

(µ+ γ)(µ+ σ)(µ+ α+ φ)
= Re = 1.

The latter case yields S = S0 = α+µ
α+µ+φ and H = H0 = φ

α+µ+φ and, consequently,

E = I = C = R = 0. Hence, in either case, the only invariant set for L̇ = 0 is the
singleton E0 = (S0, H0, 0, 0, 0, 0), and the conclusion again follows from LaSalle’s
Invariance Principle.

2.3. Endemic equilibrium. In order to investigate the long-term dynamics of
FMD, we conduct an endemic analysis when Re > 1. The following theorem shows
the existence and uniqueness of the endemic equilibrium.

Theorem 2.2. When Re > 1, there exists a unique endemic equilibrium of the
system (1).

Proof. Let us denote the endemic equilibrium of the system (1) by E∗ = (S∗, H∗, E∗,
I∗, C∗, R∗), where

S∗ =
µ ((1− ε)βI∗ + (µ+ α))

[βI∗ + (µ+ φ)][(1− ε)βI∗ + (µ+ α)]− αφ

H∗ =
φµ

[βI∗ + (µ+ φ)][(1− ε)βI∗ + (µ+ α)]− αφ

I∗ =

(
(µ+ γ)(µ+ σ)

(1− κ)γβ[S∗ + (1− ε)H∗]

)
I∗

E∗ =
(µ+ σ)

(1− κ)γ
I∗

C∗ =
1

µ+ d

[
κ(µ+ σ)

1− κ
+ σπ0

]
I∗

R∗ =
1

µ

[
σπ2 +

(1− ρ)d

µ+ d

(
κ(µ+ σ)

1− κ
+ σπ0

)]
I∗

It is easily observed that C, R and E are constant multiples of I. Furthermore, we
may treat S and H as implicit functions of I, and let

g(I) = S(I)+(1−ε)H(I) , g1(I) = βI+(µ+φ) , and g2(I) = (1−ε)βI+(µ+α).

Therefore, we have that at an equilibrium,

S(I) =
µg2(I)

g1(I)g2(I)− αφ
, H(I) =

φµ

g1(I)g2(I)− αφ
, (10)

and

I =

(
(µ+ γ)(µ+ σ)

(1− κ)γβg(I)

)
I . (11)

From equation (11) and I 6= 0, it follows that for an endemic equilibrium to exist
we must have,

(µ+ γ)(µ+ σ)

(1− κ)γβ
= g(I) (12)

for some I = I∗ > 0.
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Clearly, g is differentiable for all I ≥ 0. Taking the derivative of g yields the
following

g′(I) = S′(I) + (1− ε)H ′(I)

= −
(
µ[αφ+ g′1(I)(g2(I))2]

[g1(I)g2(I)− αφ]2
+ (1− ε)φµ[g′1(I)g2(I) + g1(I)g′2(I)]

[g1(I)g2(I)− αφ]2

)
.

For I ≥ 0, it is obvious that g1(I) > 0 and g2(I) > 0, as well as g′1(I) > 0 and
g′2(I) > 0. Thus, g′(I) < 0, implying that g(I) is a decreasing curve on [0,∞].

To determine if the function g(I) intersects the constant function from the
lefthand side of equation (12), we must investigate g(0). We have that g(0) =

S(0) + (1 − ε)H(0) = α+µ+(1−ε)φ
α+µ+φ . Using equation (8), we can easily observe that

if Re > 1, then g(I) > (µ+γ)(µ+σ)
(1−κ)γβ , and there is a unique endemic equilibrium

I = I∗; however, if Re ≤ 1, then g(I) ≤ (µ+γ)(µ+σ)
(1−κ)γβ , and there is no endemic

equilibrium.

In order to investigate the local stability of the endemic equilibrium E∗, we will
make use of Theorem 3.1 (see the Appendix) based on the center manifold theory [3].

The Jacobian matrix of system (1) evaluated about the FMD-free equilibrium
(7) is

J(E0) =


−(µ+ φ) α 0 −β(α+µ)α+µ+φ 0 0

φ −(α+ µ) 0 β(1−ε)φ
α+µ+φ 0 0

0 −(µ+ γ) β(α+µ+(1−ε)φ
α+µ+φ 0 0

0 0 κγ σπ0 −(µ+ d) 0
0 0 0 σπ2 (1− p)d −µ

 . (13)

From (13), we can deduce that the left and right eigenvectors of system (1) are the
following:

w1 = −β(1− κ)γ[αφ(1− ε) + (α+ µ)2]w3

µ(µ+ σ)(µ+ α+ φ)2
,

w2 = −β(1− κ)γφ[α+ µ+ (1− ε)(µ+ φ)]w3

µ(µ+ σ)(µ+ α+ φ)2
, w3 > 0,

w4 =
(1− κ)γw3

µ+ σ
, w5 =

[
κγ +

σπ0(1− κ)γ

µ+ σ

]
w3

(µ+ d)
,

w6 =

[
σ(1− κ)γ

µ+ σ

(
π2 +

(1− p)π0d
µ+ d

)
+

(1− p)κγd
µ+ d

]
w3

µ
,

(14)

and 

v1 = v2 = 0, v3 > 0,

v4 =
β[µ+ α+ (1− ε)φ]v3
(µ+ σ)(µ+ φ+ α)

,

v5 = v6 = 0.

(15)
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Choosing model parameter β as the bifurcation parameter and solving Re = 1 gives

β =
(µ+ γ)(µ+ σ)(µ+ α+ φ)

γ(1− κ)(α+ µ+ (1− ε)φ
. (16)

Further, it can easily be verified that the bifurcation coefficients a and b, described
in Theorem 3.1, are

a = − β2(1− κ)2γ2

(µ+ σ)2

[
[αφ(1− ε) + (α+ µ)2] + φ[α+ µ+ (1− ε)(µ+ φ)]

µ(µ+ α+ φ)2

]
w3v3,

b =
β(1− κ)γ[α+ µ+ (1− ε)φ]

(µ+ σ)(µ+ φ+ α)

= w3v3(µ+ γ)Re.

It is clear that a < 0 and b > 0. Thus, from Theorem 3.1 we can establish the
following result.

Theorem 2.3. There is a forward transcritical bifurcation at Re = 1, and the
endemic equilibrium E∗ is locally asymptotically stable whenever Re > 1 but close
to unity.

2.4. FMD dynamics in periodic environments. In this section we investi-
gate the dynamics of FMD in periodic environments representing seasonal changes.
FMDV is transmitted when a susceptible animal comes into contact with an in-
fectious animal. It is worth noting that the movement of animals from one area
to another (searching for grazing pastures) heavily depends on seasonal variation,
among other factors. We hypothesize that the seasonal movement and daily grazing
activities of the mobile pastoralists have significant impacts on FMD transmission.
Thus, we extend system (1) to incorporate seasonal effects on FMD dynamics.

For illustration, let us consider the time variation of the FMD transmission rate,
one of the key model parameters. We define

β(t) = β0

[
1 + a sin

(
2π

365
t+ ϕ

)]
, (17)

where β0 is the baseline value or the time average of β(t) , and a and ϕ denote the
(relative) amplitude and phase, respectively, of the seasonal oscillation in β(t). The
function β(t) has a period of ω = 365 days, or 1 year. To ensure the positivity
of β(t), we require 0 < a < 1. The new system describing FMD dynamics with
seasonal variation is given by

Ṡ(t) = µ− β(t)I(t)S(t)− (µ+ φ)S(t) + αH(t),

Ḣ(t) = φS(t)− (1− ε)β(t)I(t)H(t)− (µ+ α)H(t),

Ė(t) = β(t)I(t)(S(t) + (1− ε)H(t))− (µ+ γ)E(t),

İ(t) = (1− κ)γE(t)− (µ+ σ)I(t),

Ċ(t) = κγE(t) + σπ0I(t)− (µ+ d)C(t),

Ṙ(t) = σπ2I(t) + (1− p)dC(t)− µR(t)

(18)
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As shown earlier in (6), it can be easily verified that system (18) has a unique and
bounded solution with the initial value (S0, H0, E0, I0, C0, R0) ∈ Ω, and that the
compact set Ω is positively invariant with respect to system (18).

In what follows, we introduce the reproductive number of system (18) using the
techniques presented in [17,22]. It is evident that system (18) has exactly one FMD-
free equilibrium point M0 = E0. Now, we introduce the next-generation matrices

F (t) =

0
β(t)[α+ µ+ (1− ε)φ]

α+ µ+ φ

0 0

 , and V (t) =

 (µ+ γ) 0

−(1− κ)γ (µ+ σ)

 .

In order to analyze the threshold dynamics of epidemiological models in periodic
environments, Wang and Zhao [22] extended the framework in [21] by introducing
the next infection operator

(Lφ)(t) =

∫ ∞
0

Y (t, t− s)F (t− s)φ(t− s)ds , (19)

where Y (t, s), t ≥ s, is the evolution operator of the linear ω-periodic system
dy
dt = −V (t)y and φ(t), the initial distribution of infectious animals, is ω-periodic
and always positive. The effective reproductive number for a periodic model is then
defined as the spectral radius of the next infection operator,

R0 = ρ(L). (20)

The evolution operator Y (t, s), for system (18) is

Y (t, s) =

 e−(µ+γ)(t−s) 0

(1−κ)γ
σ−γ

[
e−(µ+γ)(t−s) − e−(µ+σ)(t−s)

]
e−(µ+σ)(t−s)

 . (21)

The next infection operator can be numerically evaluated by (see [17,18] for details)

(Lφ)(t) =

∫ ∞
0

Y (t, t− s)F (t− s)φ(t− s)ds =

∫ ω

0

G(t, s)φ(t− s)ds,

where

G(t, s) ≈
M∑
k=0

Y (t, t− s− kω)F (t− s− kω)

≈ α+ µ+ (1− ε)φ
α+ µ+ φ

β(t− s)
M∑
k=0

[
0 e−(µ+γ)(s+kω)

0 (1−κ)γ
σ−γ

[
e−(µ+γ)(s+kω) − e−(µ+γ)(s+kω)

] ] (22)

Now we proceed to investigate the global stability of the FMD-free equilibrium
for system (18), which will also provide a condition for the extinction of the disease.

Theorem 2.4. If R0 < 1, the FMD-free equilibrium for system (18) is globally
asymptotically stable in Ω.

Proof. Consider the matrix function F (t)− V (t) :

F (t)− V (t) =

−(µ+ γ)
β(t)[α+ µ+ (1− ε)φ]

α+ µ+ φ

(1− κ)γ −(µ+ σ)

 (23)
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One can easily deduce that (23) is continuous, cooperative, irreducible and ω-
periodic. Further, let Φ(F−V )(·)(t) be the fundamental solution matrix of the linear
ordinary differential system:

ẋ = [F (t)− V (t)]x, (24)

and ρ(Φ(F−V )(·)(ω)) be the spectral radius of Φ(F−V )(·)(ω). Based on Lemma 2.1
in [22] we have the following result:

Lemma 1. Let ν = (1/ω) ln ρ(Φ(F−V )(·)(ω). Then there exists a positive ω-periodic
function v(t) such that eνtv(t) is a solution to (24).

With similar arguments as before, the first two equations of system (18) yield
S(t) ≤ S0 and H(t) ≤ H0 in Ω. Next, we consider the third and fourth equations
from the system (18), where it can now easily be seen that

d

dt

[
E
I

]
≤ (F − V )

[
E
I

]
. (25)

From the aforementioned lemma, there exists v(t) such that

x(t) = (Ẽ(t), Ĩ(t)) = eνtv(t)

is a solution to equation (24), with ν = (1/ω) ln ρ(Φ(F−V )(·)(ω). Hence,

(E(t), I(t)) ≤ (Ẽ(t), Ĩ(t))

when t is large, which would imply that

lim
t→∞

E(t) = 0 and lim
t→∞

I(t) = 0. (26)

Consequently, from the fifth and sixth equations of system (18) it is straightforward
to observe that

lim
t→∞

C(t) = 0 (27)

and

lim
t→∞

R(t) = 0. (28)

Meanwhile, we must return to the first two equations of the system (18). As
t→∞, we have I(t)→ 0, thus by adding the first two equations together, we find
that

d

dt
(S +H)→ µ− µ(S +H)

which yields

S(t) +H(t)→ 1. (29)

Hence,
dH

dt
→ φ(1−H(t))− (µ+ α)H(t) = φ− (φ+ µ+ α)H(t),

or

H(t)→ φ

φ+ µ+ α
= H0, (30)

which clearly leads to

S(t)→ 1−H0 = S0. (31)

Therefore,

lim
t→∞

x(t) = (S0, H0, 0, 0, 0, 0) (32)

for all solutions x(t).
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On the other hand, we study the dynamics of the system (18) when R0 > 1. We
will show that when R0 > 1, the disease persists and there exists a positive periodic
solution.

Theorem 2.5. If R0 > 1, then the solutions of the system (18) are uniformly
persistent, and the system admits at least one positive ω-periodic solution.

Proof. Define

X = [0, 1]6; X0 = [0, 1]× [0, 1]× (0, 1]× (0, 1]× [0, 1]× [0, 1]; ∂X0 = X\X0.

Clearly both X and X0 are positively invariant with respect to the system. Let
P : X → X be the Poincaré map associated with the system such that P (x0) =
u(ω, x0) for all x0 ∈ X, where u(t, x0) denotes the unique solution of the system
with u(0, x0) = x0.

Set

M∂ =
{(
S(0), H(0), E(0), I(0), C(0), R(0)

)
∈ ∂X0 :

Pm
(
S(0), H(0), E(0), I(0), C(0), R(0)

)
∈ ∂X0, ∀m ≥ 0

}
and

M̃∂ =
{(
S,H, 0, 0, C,R

)
: 0 ≤ S ≤ 1, 0 ≤ H ≤ 1, 0 ≤ C ≤ 1, 0 ≤ R ≤ 1

}
.

We first show that
M∂ = M̃∂ . (33)

It is clear that M∂ ⊇ M̃∂ . Meanwhile, consider any initial values (S(0), H(0), E(0),

I(0), C(0), R(0)) ∈ ∂X0\M̃∂ . If E(0) = 0 and I(0) > 0, then E′(0) > 0. Similarly,
I(0) = 0 and E(0) > 0, then I ′(0) > 0. It follows that (S(t), H(t), E(t), I(t), C(t),

R(t)) /∈ ∂X0 for 0 < t � 1. The positive invariance of X0 implies that M∂ ⊆ M̃∂ ,
and hence, equation (33) holds.

Now, consider the fixed point M0 =
(

α+µ
α+µ+φ ,

φ
α+µ+φ , 0, 0, 0, 0

)
and define

WS(M0) = {x0 : Pm(x0)→ M0,m→∞}. From the system (18), it is easy to ob-
serve that when E = I = 0, we have C(t)→ 0, R(t)→ 0, and S(t)→ S0 = α+µ

α+µ+φ ,

H(t) → H0 = φ
α+µ+φ , as t → ∞ . Thus every orbit in M̃∂ converges to M0 . We

now prove that
WS(M0) ∩X0 = ∅. (34)

Based on the continuity of solutions with respect to the initial conditions, for any
ε̂ > 0, there exists δ > 0 small enough such that for all (S(0), H(0), E(0), I(0), C(0),
R(0)) ∈ X0 with ‖(S(0), H(0), E(0), I(0), C(0), R(0))−M0‖ ≤ δ, we have

‖u(t, (S(0), H(0), E(0), I(0), C(0), R(0)))− u(t,M0)‖ < ε̂, ∀t ∈ [0, ω]. (35)

We claim that

lim sup
m→∞

‖Pm(S(0), H(0), E(0), I(0), C(0), R(0))−M0‖

≥ δ, ∀(S(0), H(0), E(0), I(0), C(0), R(0)) ∈ X0.
(36)

Suppose by contradiction; that is, we suppose lim supm→∞ ‖Pm(S(0), H(0), E(0),
I(0), C(0), R(0)) − M0‖ < δ for some (S(0), H(0), E(0), I(0), C(0), R(0)) ∈ X0 .
Without loss of generality, we assume that ‖Pm(S(0), H(0), E(0), I(0), C(0), R(0))−
M0‖ < δ, ∀m ≥ 0. Thus,

‖u(t, Pm(S(0), H(0), E(0), I(0), C(0), R(0)))− u(t,M0)‖ < ε̂,

∀t ∈ [0, ω] and m ≥ 0.
(37)
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Moreover, for any t ≥ 0, we can write t = t′ + nω with t′ ∈ [0, ω) and n being the
greatest integer less than or equal to t/ω. Then we obtain

‖u(t, (S(0), H(0), E(0), I(0), C(0), R(0)))− u(t,M0)‖
= ‖u(t′, Pm(S(0), H(0), E(0), I(0), C(0), R(0)))− u(t′,M0)‖ < ε̂

(38)

for any t ≥ 0. Let
(
S(t), H(t), E(t), I(t), C(t), R(t)

)
= u

(
t, (S(0), H(0), E(0), I(0),

C(0), R(0))
)
. It follows that

α+ µ

α+ µ+ φ
− ε̂ < S(t) <

α+ µ

α+ µ+ φ
+ ε̂

φ

α+ µ+ φ
− ε̂ < H(t) <

φ

α+ µ+ φ
+ ε̂

0 < I(t) < ε̂

0 < E(t) < ε̂

0 < C(t) < ε̂

Then,

dE

dt
= β(t)I(t)(S(t) + (1− ε)H(t))− (µ+ γ)E(t)

≥ β(t)I(t)

(
α+ µ

α+ µ+ φ
− ε̂+ (1− ε)( φ

α+ µ+ φ
− ε̂)

)
− (µ+ γ)E(t)

= β(t)I(t)

(
α+ µ+ (1− ε)φ

α+ µ+ φ
− ε̂(2− ε)

)
− (µ+ γ)E(t)

= −(µ+ γ)E(t) + β(t)

(
α+ µ+ (1− ε)φ

α+ µ+ φ

)
I(t)− ε̂(2− ε)β(t)I(t)

Thus, we obtain,

d

dt

[
E
I

]
≥ [F − V − ε̂ ·K] ·

[
E
I

]
(39)

where F − V is given by equation (23) and

ε̂ ·K = ε̂ ·
[

0 (2− ε)β(t)
0 0

]
(40)

Note that R0 > 1 if and only if ρ(ΦF−V (ω)) > 1. Thus, for ε̂ > 0 small enough
we have ρ(ΦF−V−ε̂·K(ω)) > 1. Using Lemma 1 and the comparison principle, we
immediately obtain

lim
t→∞

E(t) =∞ and lim
t→∞

I(t) =∞, (41)

which is a contradiction.
Hence, M0 is acyclic in M∂ , and P is uniformly persistent with respect to

(X0, ∂X0), which implies the uniform persistence of the solutions to the original

system [23]. Consequently, the Poincaré map P has a fixed point (S̃(0), H̃(0), Ẽ(0),

Ĩ(0), C̃(0), R̃(0)) ∈ X0, and it can be easily seen that S̃(0), H̃(0), C̃(0), R̃(0) 6= 0.

Thus, (S̃(0), H̃(0), Ẽ(0), Ĩ(0), C̃(0), R̃(0)) ∈ (0, 1)6 and

(S̃(t), H̃(t), Ẽ(t), Ĩ(t), C̃(t), R̃(t)) = u(t, (S̃(0), H̃(0), Ẽ(0), Ĩ(0), C̃(0), R̃(0)))

is a positive ω-periodic solution of the system.
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2.5. Numerical results. We have conducted numerical simulation for various val-
ues of β(t) and results show that even though seasonality has been incorporated in
FMDV transmission, R0 remains a sharp threshold for disease dynamics. The dis-
ease is eradicated when R0 < 1 and uniformly persists when R0 > 1. We illustrate
this through several figures. Without loss of generality, we set the phase ϕ = 0 in
the numerical simulation.

In Figure 3, we plot the value of R0 when the parameter β0 varies. As can be
easily observed from equations (17) and (19), R0 = ρ(L) is directly proportional
to β0 . This is analogue to the autonomous result, equation (8), where Re is pro-
portional to β . The graph of R0 vs. β0 in Figure 3, clearly seen as a straight line
starting from the origin, is consistent with the analytic prediction. In particular,
we observe that R0 = 1 when β0 ≈ 0.52. Thus, whenever the baseline value (or
time-average) of β(t) is greater than 0.52 per day, FMD persists in the community.
Note that this estimate is slightly higher than that from the Re result (representing
the autonomous, or time-averaged, system) shown in Figure 2, implying that sea-
sonal variation allows a higher threshold baseline value of the transmission rate for
FMD outbreaks. In other words, the autonomous system (1) without incorporation
of seasonal impacts might overestimate the disease risk.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

β
0

Figure 3. Plot of the periodic threshold of R0 for various β0. Here
a = 0.5, and other parameter values are given in Table 1. Note that
R0 = 1 when β0 ≈ 0.52.

Next, we plot the value of R0 when the parameter a varies, in Figure 4. We
observe that R0 is decreasing as the value of a increases, indicating that a regular
oscillation of the transmission rate about its mean value (here β0 = 0.6) could reduce
the overall reproduction number. That is, the prediction based on the autonomous
(or time-averaged) system could overestimate the disease risk, a result similar to
what we concluded from Figure 3. In addition, we note that when a = 0.5 in Figure
4, R0 is approximately 1.16, which is consistent with the result (when β0 = 0.6)
shown in Figure 3.

Numerical results in Figures 5 and 6 show typical infection curves when R0 < 1
and R0 > 1, respectively. When R0 < 1, the disease quickly dies out and the
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Figure 4. Plot of the periodic threshold of R0 for various a. Here
β0 = 0.6, and other parameter values are given in Table 1.
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Figure 5. (a) An infection curve when R0 < 1 with initial condition
I(0) = 0.01. (b) Long-term behavior of the infection curve. The solution
quickly converges to the FMD-free equilibrium with I0 = 0.

FMD-free equilibrium is asymptotically stable further evidenced by the long-term
behavior shown in Figure 5(b). On the other hand, when R0 > 1, the disease
persists, and following a transient period, the infection approaches an ω-periodic
solution. Figure 6(b) zooms in to highlight the periodic solution observed after the
transient period.

3. Concluding remarks. In this paper, two mathematical models for FMD have
been proposed. The first model is an autonomous system with constant parameters
that incorporates the relevant biological components and FMD vaccination. The ef-
fective reproductive number Re was derived and proven to be a sharp threshold for
disease dynamics. Particularly, when Re > 1, there exists a unique endemic equi-
librium that is locally asymptotically stable. Numerical results provided evidence
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Figure 6. (a) An infection curve when R0 > 1 with initial condition
I(0) = 0.01. (b) Zoomed in to ω-periodic solution after a transient

period.

that vaccination alone may not be sufficient to eradicate FMD in the community
when the disease transmission rate is sufficiently high, though the vaccine may have
a positive effect on lowering the disease risks and reducing cumulative FMD cases
when an outbreak occurs.

In the second model, we extended the autonomous system to a periodic environ-
ment to analyze the impacts of seasonal variation that may affect the movements
of animals and, consequently, FMDV transmission. The basic reproduction number
R0 was derived and and our analysis showed that R0 remains a sharp threshold
for disease dynamics even in a periodic environment. Thus, if R0 < 1, FMD will
be eradicated. Further, we proved uniform persistence of the disease as well as the
existence of a nontrivial periodic solution when R0 > 1. Investigating the persis-
tence of the disease with oscillating reoccurrence of infection spreading can lead
to greater insights into FMD dynamics and avenues for establishing effective and
optimal control strategies as well as curtailing any financial losses to the farming
industry.

Although in the second model we have focused on the periodic oscillation of the
transmission rate, β, similar extensions can be made to other model parameters to
investigate the effects of their seasonal variation on FMD dynamics. The analysis of
disease extinction and persistence can be conducted in the same way. Fitting those
key model parameters with realistic seasonal data will improve our model and its
applicability.

Appendix. We list the following standard result based on the center manifold
theory [3], which we use to prove Theorem 2.3.

Theorem 3.1. Consider the following general system of ordinary differential equa-
tions with a parameter φ,

dx

dt
= f(x, φ), f : Rn × R→ Rnand f ∈ C2(Rn × R). (42)

Without loss of generality, it is assumed that 0 is an equilibrium for system (42) for
all values of the parameter φ; that is, f(0, φ) = 0 for all φ. Assume



MODELING THE INTRINSIC DYNAMICS OF FMD 441

(A1): A = Dxf(0, 0) =

(
∂fi
∂xj

(0, 0)

)
is the linearisation of system (42) around

the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and
other eigenvalues of A have negative real parts;

(A2): Matrix A has a right eigenvector w and a left eigenvector v corresponding
to the zero eigenvalue.

Let fk be the kth component of f and

a =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).

(43)

The local dynamics of (42) around 0 are governed by a and b in the following
manner:

(i): a > 0, b > 0, When φ < 0 with |φ| � 1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium; when 0 < φ� 1, 0 is unstable
and there exists a negative and locally asymptotically stable equilibrium;

(ii): a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ� 1, 0 is
locally asymptotically stable, and there exists a positive unstable equilibrium;

(iii): a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a
locally asymptotically stable negative equilibrium; when 0 < φ� 1, 0 is stable,
and a positive unstable equilibrium appears;

(iv): a < 0, b > 0. When φ changes from negative to positive, 0 changes its sta-
bility from stable to unstable. Correspondingly, a negative equilibrium becomes
positive and locally asymptotically stable.
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