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Abstract. It has been suggested that during RF thermal ablation of biologi-

cal tissue the thermal lesion could reach an equilibrium size after 1-2 minutes.
Our objective was to determine under which circumstances of electrode ge-

ometry (needle-like vs. ball-tip), electrode type (dry vs. cooled) and blood

perfusion the temperature will reach a steady state at any point in the tissue.
We solved the bioheat equation analytically both in cylindrical and spherical

coordinates and the resultant limit temperatures were compared. Our results

demonstrate mathematically that tissue temperature reaches a steady value in
all cases except for cylindrical coordinates without the blood perfusion term,

both for dry and cooled electrodes, where temperature increases infinitely. This

result is only true when the boundary condition far from the active electrode is
considered to be at infinitum. In contrast, when a finite and sufficiently large

domain is considered, temperature reaches always a steady state.

1. Introduction. Monopolar radiofrequency (RF) thermal ablation of biological
tissues is a high-temperature ablative technique which raises the tissue temperature
over 50◦C with the aim of irreversibly destroying the target tissue. The target tis-
sue is localized around the active electrode, which has a very small area compared
to the dispersive electrode, placed far from the target. Indeed, this procedure can
be considered as a specific type of monopolar electrosurgical procedure in which
there is good contact between active electrode and tissue, which implies a relatively
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low value of impedance, and where voltage and current have low and high val-
ues respectively compared to other electrosurgical variants such as electrosurgical
cutting.

RF thermal ablation is currently used for instance in RF ablation of tumors [1],
pain therapy [2] and to eliminate cardiac arrhythmias [3]. To conduct monopolar RF
thermal ablation, different designs of electrodes have been clinically used. Needle-
like electrodes (see Fig. 1B) are employed in several medical fields such as tumor
ablation [1], cardiac ablation [3], or dermatology [4], while electrodes with spherical
geometry, such as ball-tip electrodes, are used in general surgery (Fig. 1A). In brief,
two principal geometries are found in active electrodes for RF thermal ablation:
spherical and cylindrical.

While dry RF electrodes are based on a simple piece of solid metal, others are
internally cooled by circulating liquid (cooled electrodes). The idea behind this
feature is to minimize overheating at the electrode-tissue surface and hence avoid
heated tissue sticking to the electrode surface, and to maximize the thermal lesion
by avoiding dehydration of the surrounding tissue. In general, cooled electrodes
create larger lesions than dry electrodes [5]. Active electrodes with spherical or
cylindrical geometries can hence be implemented as dry or cooled electrodes.

It has been suggested that the thermal lesion (e.g. assessed by 50◦C isotherm)
could grow with time during RF thermal ablation, and approaches an equilibrium
size after 1-2 minutes [2]. Our objective was to determine the circumstances of
electrode geometry (needle-like vs. ball-tip) and electrode type (dry vs. cooled)
under which the temperature will reach a steady-state at any point in the tissue.
Furthermore, since blood perfusion can be an important heat removal mechanism
during RF heating [6], and could delay or even impede the steady-state, we also
studied the effect of blood perfusion.

In order to study the thermal performance of RF thermal ablation in a cheaply
and quickly theoretical modeling has been broadly used, employing both numeri-
cal and analytical methods [7]. Although numerical methods have produced highly
realistic models, little effort has been made to search for analytical solutions. It
has been pointed out that knowledge of the analytical solution for RF heating of
biological tissues is important, since it involves a thorough understanding of the
mathematical feature behind the physical phenomenon [8]. Analytical solutions
can also be used to validate numerical solutions, since they provide an exact so-
lution [9]. The singularity of current density, and hence the temperature around
the electrodes, can only be understood by analytical solutions. For instance, Wiley
and Webster [10] analyzed the current density distribution in the tissue under cir-
cular dispersive electrodes and found divergence of density current at the electrode
edge, while previous numerical calculations by Overmyer et al [11] found a finite
maximum at the same point. Analytical models of thermal performance of active
electrodes are also difficult to find. Honig [12] conducted analytical calculations to
estimate the power density and heat rise around active electrodes, with the aim
of explaining the mechanism of electrosurgical cutting. Later, Erez and Shizter
[13] used a one-dimensional analytical model in spherical coordinates to study the
effect of different factors on the temperature distribution during RF thermal abla-
tion. Haines and Watson [14] also proposed an analytical one-dimensional model
to study the performance of a spherical electrode for RF cardiac ablation, which
despite its simplicity, gave valuable insight into the mechanism of RF ablation. All
these analytical models assumed numerous simplifications, such as the homogeneity
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and isotropy of the tissue, blood perfusion rate unaffected by the heating process,
no boiling of tissue during heating, and so on, which are considered in most cur-
rent numerical models. More recently, Haemmerich et al [15] solved analytically
the steady-state thermal problem for a needle-like cooled electrode for RF hepatic
ablation. Our group has previously developed transient-time analytical models for
RF thermal ablation including spherical [16] and cylindrical geometries [17].

In this study we have built one-dimensional analytical models of RF thermal abla-
tion for two electrode geometries (spherical and cylindrical), two kinds of electrodes
(dry and cooled), and two blood perfusion conditions (with and without includ-
ing the blood perfusion term in the bioheat equation). The transit-time thermal
problem was solved and the corresponding limit temperature was computed.

Figure 1. The most commonly employed geometries of active
electrodes for RF thermal ablation: Ball tip (A) and needle tip
(B) electrodes. C: Analytical model representing a simplified sce-
nario with an ideal spherical metallic electrode of r0 radius totally
surrounded by homogeneous biological tissue. D: Analytical model
representing a simplified scenario with an ideal cylindrical metal-
lic electrode of r0 radius and infinite length totally surrounded by
homogeneous biological tissue. Both theoretical models (C and
D) have one dimension, i.e. axis r. In the case of a cooled elec-
trode, the internal cooling is modeled by means of a Dirichlet ther-
mal boundary condition, in particular with a constant temperature
(TC), which corresponds to the temperature of the coolant flowing
inside the electrode.

2. Methods. The general bioheat equation for RF thermal ablation is [7]

η c
∂T

∂t
= ∇(k ∇T ) + S − ηb cb ωb(T − Tb), (1)
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where T is the tissue temperature (◦C), t is the time (s), η (kg/m3); c ( J
kgK )

and k ( W
m2K ) are the density, specific heat and thermal conductivity of the tissue

respectively, ηb, cb and ωb (1/s) are the density, specific heat and perfusion coefficient
of the blood respectively, Tb is the blood temperature (◦C) and S (W/m3) represents
the heat sources.

2.1. Spherical geometry for ball-tip electrode modeling. We considered a
model geometry equal to those proposed by Erez and Shitzer [13], with a spherical
electrode of radius r0 completely embedded and in close contact with the biological
tissue, which has an infinite dimension (Fig. 1C). As the model presented a radial
symmetry a one-dimensional approach was possible.

Assuming all quantities η, ηb, c, cb, k and ωb of (1) to be constant and that the
heat source is independent on the polar angle θ and working in spherical coordinates
(r, θ), the equation (1) becomes

η c
∂T

∂t
(r, t) = k

(
∂2T

∂r2
(r, t) +

2

r

∂T

∂r
(r, t)

)
+ S(r, t)− ηb cb ωb(T (r, t)− Tb). (2)

Obviously ωb = 0 in the case of non perfusion.
Regarding the electrical problem, the source term for the RF heating modeling,

i.e. the Joule heat produced per unit volume of tissue can be expressed as [13]:

S(r) =
P r0

4 π r4
,

where P is the total applied power (W ), and r0 the electrode radius (m). The
resulting equation in spherical coordinates is

−
(
∂2T

∂r2
(r, t) +

2

r

∂T

∂r
(r, t)

)
+
ηc

k

∂T

∂t
(r, t) =

P r0

4 π k r4
− ηbcbwb

k
(T − Tb), (3)

T and r being temperature and dimension, respectively. The initial condition in
the ball-tip electrode is

T (r, 0) = T0 ∀ r > r0, (4)

where T0 is the initial temperature. The boundary condition far from the active
electrode is assumed to be at infinitum (as done in previous modeling studies)

lim
r→∞

T (r, t) = T0 ∀ t > 0. (5)

In order to model the type of electrode (dry or cooled), we considered two dif-
ferent boundary condition in r = r0. In the case of dry electrode, we adopted a
simplification used in [13], which assumes the thermal conductivity of the elec-
trode to be much greater than that of the tissue, i.e. assuming that the boundary
condition at the interface between electrode and tissue is mainly governed by the
thermal inertia of the electrode. At every time t the modulus of the heat flux along
the surface electrode by unit time ∂T

∂r (r0, t) is therefore inverted to produce a heat
increment in the mass electrode equal to

η0 c0
4 πr3

0

3

∂T

∂t
(r0, t),

where η0 and c0 are the density and specific heat of the active electrode, respectively.
Then the boundary condition in r = r0 is

4 π k r2
0

∂T

∂r
(r0, t) = η0 c0

4 πr3
0

3

∂T

∂t
(r0, t). (6)
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On the other hand, to model the cooled electrodes we assumed that the surface
temperature is maintained at the coolant temperature, i. e. we used a Dirichlet
boundary condition (DC)

T (r0, t) = TC ∀ t > 0, (7)

where TC is the coolant temperature. Although it has been previously suggested
that theoretical modeling of RF thermal ablation with cooled electrodes should
consider the modeling of a pre-cooling period along with a boundary condition
based on Newton’s cooling law rather than DC [18], this is only important for short
periods of heating. Since we are now interested in the temperature at the infinitum
time, using a DC can be a good approximation.

2.2. Cylindrical geometry for needle-like electrode modeling. By assuming
all quantities η, ηb, c, cb, k and ωb to be constant, the heat source is independent of
the polar angle θ, and working in cylindrical coordinates (r, θ), the equation (1)
becomes:

η c
∂T

∂t
(r, t) = k

(
∂2T

∂r2
(r, t) +

1

r

∂T

∂r
(r, t)

)
+ S(r, t)− ηb cb ωb(T (r, t)− Tb). (8)

We employed the same formulation used by Haemmerich et al [15], and hence we
have:

η c
∂T

∂t
(r, t) = k

(
∂2T

∂r2
(r, t) +

1

r

∂T

∂r
(r, t)

)
+
j2
0 r

2
0

σ r2
− ηb cb ωb(T (r, t)− Tb), (9)

where j0 is the density current at the conductor surface (A/m2) and σ is the elec-
trical conductivity of tissue (S/m).

The problem to be solved is (9) with the conditions

T (r, 0) = T0 ∀ r > r0 (10)

lim
r→∞

T (r, t) = T0 ∀ t > 0. (11)

In order to model a cylindrical dry electrode, we assumed that the temperature
flux along the surface of a small slice (dz) of electrode in an interval of time dt
produced an amount of heating in the slice. Then

2πr0k
∂T

∂r
(r0, t) dz = c0η0πr

2
0

∂T

∂t
dz

and the boundary condition is hence

2k
∂T

∂r
(r0, t) = c0η0r0

∂T

∂t
(r0, t) ∀t > 0. (12)

The cylindrical cooled electrode was modeled by using a DC as in equation (7).

2.3. Dimensionless variables. We shall use the following dimensionless variables:

ρ :=
r

r0
; ξ :=

α t

r2
0

; β :=
ηbcbwbr

2
0

k
; V (ρ, ξ) := κ

(
T
(
r0 ρ,

r2
0 ξ

α

)
− T0

)
,

(13)
where α is the thermal diffusivity (= k

cη ), κ = 4 π k r0
P in the case of spherical

coordinates and κ = σk
j20r

2
0

in the case of cylindrical coordinates.
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Sometimes we will write V (ρ, ξ, β) instead of V (ρ, ξ) if we distinguish between
case with perfusion (β 6= 0) and case without perfusion (β = 0). We denote by
VH(ρ, ξ, β) the solution of the homogeneous problems associated to (3)

−
(
∂2VH
∂ρ2

+
2

ρ

∂VH
∂ρ

)
+
∂VH
∂ξ

= −β VH (14)

and to (8)

−
(
∂2VH
∂ρ2

+
1

ρ

∂VH
∂ρ

)
+
∂VH
∂ξ

= −β VH . (15)

We denote by VL(ρ, β) the dimensionless limit temperature, which is the limit
VL(ρ, β) := limξ→∞ V (ρ, ξ, β) as ξ approaches infinity. Although we are specially
interested in obtaining the expression VL(ρ, β) for each considered case, we also
consider the dimensionless steady state temperature, denoted by VSS(ρ, β), which
corresponds to the solution of equations (3) and (8) when the partial derivative with
respect to time is zero. Obtaining VSS(ρ, β) seems generally more straightforward
than the VL(ρ, β) from the original problem (which includes the partial derivative
with respect to time). The underlying question is whether VSS(ρ, β) is equal to
VL(ρ, β) .

2.4. Tissue and electrode characteristics. Once the limit temperature for each
case was analytically obtained, we plotted it using Mathematica 6.0 software (Wol-
fram Research Inc., Champaign, IL, USA).Table I shows the characteristics of the
elements used in the model. Blood temperature and the initial tissue temper-
ature was Tb = T0 = 37◦C. The radius of all electrodes was considered to be
r0 = 1.5 mm. A value of TC = 5◦C was employed in the cases of cooled electrodes.
In the case of cylindrical coordinates, a current density (j0) of value 1.9 mA/mm2

and 3.5 mA/mm2 was used for dry and cooled electrodes, respectively, while in the
case of spherical coordinates a total applied power of 1 W and 5 W was considered
for dry and cooled electrodes, respectively. The applied power levels were chosen to
avoid temperatures higher than 100◦C in the tissue. Total applied power could not
be estimated in the cylindrical case due to the infinite length of the modeled elec-
trode. About the spherical electrode, higher power (5 W versus 1 W ) was required
in the case of the cooled electrode to obtain the same maximum temperatures as
with the dry electrode. For the same reason, higher current density in the case of
cylindrical electrode was required.

Table I. Thermal and electrical characteristics of the elements employed in the
model [22], [23].

Element/Material σ(S/m) k( W
mK ) η(kg/m3) c( J

kgK ) ω(1/s)

Electrode - - 21500 132 -
Tissue 0.33 0.502 1060 3600 -
Blood - - 1000 4148 6.4 10−3

σ : electric conductivity; k : thermal conductivity; η : density; c : specific heat; ω :
perfusion rate.

3. Results. The results section presents the analytical calculations conducted to
obtain complete solutions of the dimensionless temperature for spherical and cylin-
drical geometries (Subsections 3.1 and 3.2, respectively). In each subsection, we first
focused on the dry electrode (Subsections 3.1.1 and 3.2.1) and then on the cooled
electrode (Subsections 3.1.2 and 3.2.2). Within each subsection, we first analyzed
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the case with blood perfusion and then without. Finally, in Section 3.3., we assessed
the impact of having assumed an electrode of infinite length in the cylindrical model
and analyzed the consequences in terms of thermal performance.

3.1. Temperature limit in spherical electrode. The dimensionless equation
for a spherical electrode is:

−
(
∂2V

∂ρ2
+

2

ρ

∂V

∂ρ

)
+
∂V

∂ξ
=

1

ρ4
− β V. (16)

It is straightforward that

V (ρ, ξ, β) = VH(ρ, ξ, β) + VSS(ρ, β),

VSS(ρ, β) being the steady state solution which satisfies the equation

−(V ′′SS +
2

ρ
V ′SS) =

1

ρ4
− βVSS ,

or equivalently

ρ2V ′′SS + 2ρV ′SS − βρ2VSS = − 1

ρ2
. (17)

Let us suppose that for a specific set of initial and boundary conditions the steady
state problem (17) has a solution. Due to the associated homogeneous problem (14)
not having a heat source term, the limit temperature of VH(ρ, ξ, β) will be constant,
and this constant must be zero, otherwise VSS(ρ, β) would not be the complete
steady state temperature. In conclusion, if VSS(ρ, β) exists,

VL(ρ, β) = VSS(ρ, β).

Note that on many occasions it is easier to solve the steady state problem (17) and
obtain VSS(ρ, β) than solve the original problem (3) and obtain VL(ρ, β) by using
VL(ρ, β) = limξ→∞ V (ρ, ξ, β).

3.1.1. Temperature limit in dry spherical electrode. The problem (3) becomes

−
(
∂2V

∂ρ2
+

2

ρ

∂V

∂ρ

)
+
∂V

∂ξ
=

1

ρ4
− β V (18)

with the dimensionless initial and boundary condition such that:

V (ρ, 0) = 0 ∀ ρ > 1 (19)

lim
ρ→∞

V (ρ, ξ) = 0 ∀ ξ > 0. (20)

The dimensionless boundary condition for the dry electrode at the electrode
surface is

m

3

∂V

∂ξ
(1, ξ) =

∂V

∂ρ
(1, ξ) ∀ ξ > 0, (21)

where m = η0 c0
η c is the dimensionless electrode thermal inertia.

The steady state equation is (17) with the boundary conditions limρ→∞ VSS(ρ, β)
= 0 ∀ ξ > 0 and V ′SS(1, β) = 0.

In the case without blood perfusion (β = 0), the resolution of (17) is immediate

VSS(ρ, 0) =
2ρ− 1

2ρ2
.



288 J. A. LÓPEZ MOLINA, M. J. RIVERA AND E. BERJANO

This analytical solution allows to estimate the thermal lesion radius, assessed by
means of the 50◦C isotherm. The point r50 in which temperature attains 50◦C can
be expressed in function of the electrode radius r0 and the applied power P as

r50 =
P +

√
P 2 − 104 k π P r0

104 k π
.

In the case with blood perfusion (β 6= 0), first of all we have to solve the associate
homogeneous equation

ρ2V ′′HSS + 2ρV ′HSS − βρ2VHSS = 0.

With the change of function VHSS(ρ) = ρ−1/2U(ρ) we obtain the modified Bessel
equation

ρ2U ′′ + ρU ′ − (1/4 + βρ2)U = 0.

Then

U(ρ) =A1 I 1
2
(
√
βρ) +A2 I− 1

2
(
√
βρ)

=A1

(
2

π
√
βρ

) 1
2

sinh(
√
βρ) +A2

(
2

π
√
βρ

) 1
2

cosh(
√
βρ)

=C1
e
√
βρ

√
ρ

+ C2
e−
√
βρ

√
ρ

,

(22)

where A1, A2, C1 and C2 are integration constants and I 1
2

and I− 1
2

are the modified

Bessel functions of first kind and orders 1
2 and − 1

2 respectively.
Hence

VHSS(ρ) = C1
e
√
βρ

ρ
+ C2

e−
√
βρ

ρ
.

And using the constants variation method and the boundary conditions we obtain

VSS(ρ, β) =
1

2 ρ
√
β

[

∫ ∞
ρ

e−
√
β(u−ρ)

u3
du

+

∫ ρ

1

e−
√
β(ρ−u)

u3
du+

√
β − 1√
β + 1

∫ ∞
1

e−
√
β(u+ρ−2)

u3
du].

(23)

Then for every β,

VL(ρ, β) = VSS(ρ, β).

It should be noted that limβ→0 VSS(ρ, β) = VSS(ρ, 0), which proves that VSS(ρ, β)
is continuous with respect to to β in β = 0.

3.1.2. Temperature limit in cooled spherical electrode. In this case we combine the
dimensionless equation (18) with the conditions (19) and (20). The dimensionless
boundary condition on the electrode surface is now

V (1, ξ, β) = −B ∀ ξ > 0, (24)

where B = 4πkr0
P (T0 − Tc).

The dimensionless steady state temperature also satisfies equation (17) but the
boundary conditions are now limρ→∞ VSS(ρ, β) = 0 ∀ ξ > 0 and VSS(1, β) = −B.

In the case without blood perfusion (β = 0) the resolution of the corresponding
steady state equation is immediate

VSS(ρ, 0) =
(1− 2B)ρ− 1

2ρ2
.
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In the case with blood perfusion (β 6= 0), we proceed as in the case of the dry
spherical electrode and the solution of the equation is:

VSS(ρ, β) = −Be
√
β(ρ−1)

ρ
+

1

2 ρ
√
β

[

∫ ∞
ρ

e−
√
β(u−ρ)

u3
du

+

∫ ρ

1

e−
√
β(ρ−u)

u3
du−

∫ ∞
1

e−
√
β(u+ρ−2)

u3
du].

(25)

Here also the limit temperature, with or without perfusion, is VL(ρ, β) = VSS(ρ,
β), and VSS(ρ, β) is continuous with respect to to β in β = 0.

In conclusion, the temperature distribution produced by RF thermal ablation
with spherical electrode converges at any point of the tissue, regardless of the elec-
trode type (dry versus cooled) and perfusion blood (with versus without). Figure 2
shows the limit temperature profiles for the four cases considered. Maximum tem-
perature reached in the tissue (around 90◦C) was located almost on the electrode
surface in the case of the dry electrode, while it was 2-3 mm deeper in the case of
the cooled electrode. Note that the inclusion of blood perfusion implies a decrease
in the temperature values.

Figure 2. Limit temperature profiles computed for two types of
spherical electrode: dry (dashed lines) and internally cooled (solid
lines). For each type, two cases are considered: with and without
the blood perfusion term included in the bioheat equation. The
electrode radius was 1.5 mm, and the applied total power was
1 W and 5 W for dry and cooled electrodes, respectively. Coolant
temperature was 5◦C for the cooled electrode.

3.2. Temperature limit in infinite cylindrical electrode. The dimensionless
equation for a cylindrical electrode is

−
(
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ

)
+
∂V

∂ξ
+ βV =

1

ρ2
. (26)
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We also put

V (ρ, ξ, β) = VSS(ρ, β) + VH(ρ, ξ, β),

where the functions VSS(ρ, β) and VH(ρ, ξ, β) are the solutions of the steady state
problem and the associated homogeneous problem respectively:

V ′′SS +
1

ρ
V ′SS − βVSS = − 1

ρ2
, (27)

−
(
∂2VH
∂ρ2

+
1

ρ

∂VH
∂ρ

)
+
∂VH
∂ξ

+ βVH = 0. (28)

As in the case of spherical electrode, if for determinate initial and boundary
conditions the steady state problem has a solution, then

VL(ρ, β) = VSS(ρ, β).

3.2.1. Temperature limit in infinite dry cylindrical electrodes. The dimensionless
equation for a dry cylindrical electrode is

−
(
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ

)
+
∂V

∂ξ
+ βV =

1

ρ2
(29)

V (ρ, 0) = 0 ∀ρ > 1 (30)

lim
ρ→∞

V (ρ, ξ) = 0 ∀ ξ > 0 (31)

∂V

∂ρ
(1, ξ) =

m

2

∂V

∂ξ
(1, ξ) ∀ξ > 0. (32)

In the case with blood perfusion (β 6= 0), the equation of the steady state problem
is the inhomogeneous modified Bessel equation

ρ2V ′′SS + ρV ′SS − βρ2VSS = −1, (33)

whose solution, obtained by the method of variation of the parameters, is

VSS(ρ, β) =I0(
√
βρ)

(
−
∫ ρ

1

K0(
√
β v)

v
dv +M1

)
+K0(

√
β ρ)

(∫ ρ

1

I0(
√
β v)

v
dv +M2

)
,

(34)

where I0 and K0 are the modified Bessel functions of order 0 of first and second
kind, respectively and M1,M2 are constants to be selected to satisfy

lim
ρ→∞

VSS(ρ) = 0 (35)

V ′SS(1) = 0. (36)

Then

M1 =

∫ ∞
1

K0(
√
β v)

v
dv, M2 =

I1(
√
β)

K1(
√
β)

∫ ∞
ρ

K0(
√
β v)

v
dv

and hence

VL(ρ, β) =VSS(ρ, β) = I0(
√
βρ)

∫ ∞
ρ

K0(
√
β v)

v
dv

+K0(
√
βρ)

(∫ ρ

1

I0(
√
β v)

v
dv +

I1(
√
β)

K1(
√
β)

)

∫ ∞
ρ

K0(
√
β v)

v
dv

)
.

(37)
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In the case without blood perfusion (β = 0), equation (33) becomes

V ′′SS +
1

ρ
V ′SS = − 1

ρ2
(38)

which is an Euler’s equation with general solution

VSS(ρ) = C1 + C2 log ρ− 1

2
log2 ρ,

with boundary conditions

lim
ρ→∞

VSS(ρ) = 0 (39)

V ′SS(1) = 0. (40)

However it is impossible to satisfy the boundary condition at infinity (39) for
every value of C1 and C2, which means that the steady state does not exist in this
case. This gives us no information on the behavior of the limit temperature V (ρ, ξ)
when ξ → ∞. We here need another approach, and this is provided by using the
final value theorem of the Laplace transform.

Taking the Laplace transform D(ρ, s, 0) := L[V ](ρ, s, 0) in

−
(
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ

)
+
∂V

∂ξ
=

1

ρ2
(41)

V (ρ, 0) = 0 ∀ρ > 1 (42)

lim
ρ→∞

V (ρ, ξ) = 0 ∀ ξ > 0 (43)

∂V

∂ρ
(1, ξ) =

m

2

∂V

∂ξ
(1, ξ) ∀ξ > 0, (44)

we obtain

D(ρ, s, 0) =
I0(ρ
√
s)

s

∫ ∞
ρ

K0(v
√
s)

v
dv +

K0(ρ
√
s)

s

∫ ρ

1

I0(v
√
s)

v
dv

+K0(ρ
√
s)

2
s

√
sI1(
√
s)−mI0(

√
s)

msK0(
√
s) + 2

√
sK1(

√
s)

∫ ∞
1

K0(v
√
s)

v
dv,

(45)

where I1 and K1 are the modified Bessel functions of order 1 of first and second
kind respectively.

By the final value theorem of Laplace transform, the limit temperature will be

VL(ρ, 0) = lim
ξ→∞

V (ρ, ξ, 0) = lim
s→0

s D(ρ, s, 0)

= lim
s→∞

[I0(ρ
√
s)

∫ ∞
1

K0(v
√
s

v
dv − I0(ρ

√
s)

∫ ρ

1

K0(v
√
s)

v
dv

+K0(ρ
√
s)

∫ ρ

1

I0(v
√
s)

v
dv

+K0(ρ
√
s)

2
√
sI1(
√
s)−msI0(

√
s)

msK0(
√
s) + 2

√
sK1(

√
s)

∫ ∞
1

K0(v
√
s)

v
dv]

= lim
s→0

(
I0(ρ
√
s) +K0(ρ

√
s)

2
√
sI1(
√
s)−msI0(

√
s)

msK0(
√
s) + 2

√
sK1(

√
s)

)∫ ∞
1

K0(v
√
s)

v
dv

+ lim
s→0

∫ ρ

1

K0(ρ
√
s)I0(v

√
s)− I0(ρ

√
s)K0(v

√
s)

v
dv.

(46)
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It is well known ([19]) that

K0(z) = −I0(z) log
(z

2

)
+ Z(z) (47)

where Z(z) is an even holomorphic function on C. We obtain

lim
s→0

(
K0(ρ

√
s)I0(v

√
s)− I0(ρ

√
s)K0(v

√
s)
)

= lim
s→0

I0(ρ
√
s)I0(v

√
s)
(
− log

ρ
√
s

2
+ log

v
√
s

2

)
= lim
s→0

I0(ρ
√
s)I0(v

√
s) log

v

ρ
= log

v

ρ
.

(48)

Then∣∣∣∣ lims→0

∫ ρ

1

K0(ρ
√
s)I0(v

√
s)− I0(ρ

√
s)K0(v

√
s)

v
dv

∣∣∣∣ =

∣∣∣∣∫ ρ

1

log
v

ρ

dv

v

∣∣∣∣ <∞.
On the other hand, it is known that

K1(z) = I1(z) log
z

2
+

1

z
+ T (z), (49)

where T (z) is an odd holomorphic function on C ([19]) and by the L’Hôpital rule
we obtain

lim
s→0

√
s log

ρ
√
s

2
= 0 and lim

s→0

log
√
s

2

log ρ
√
s

2

= 1.

Then, by (47) and (49)

lim
s→0

K0(ρ
√
s)

2
√
sI1(
√
s)−msI0(

√
s)

msK0(
√
s) + 2

√
sK1(

√
s)

= lim
s→0

√
s
(
−I0(ρ

√
s) log ρ

√
s

2 + Z(ρ
√
s
)(

2I1(
√
s)−m

√
sI0(
√
s)
)

ms
(
−I0(

√
s) log

√
s

2 + Z(
√
s
)

+ 2
√
s
(
I1(
√
s log

√
s

2 + 1√
s

+ T (
√
s)
) = 0.

(50)

Finally, for every M > 1 we have

lim
s→0

∫ ∞
1

K0(v
√
s)

v
dv ≥ lim

s→0

∫ M

1

K0(v
√
s)

v
dv ≥ lim

s→0

∫ M

1

K0(M
√
s)

M
dv =∞.

By putting together these results we obtain

lim
ξ→∞

V (ρ, ξ) = lim
s→0

s D(ρ, s, 0) =∞

which demonstrates that the temperature does not converge to a finite value when
the time tends to infinity for every ρ > 1. If instead of the problem (29), (30),
(31) and (32), (or the corresponding to the case bounded cylinder), we consider the
same problem but changing condition (31) to the new condition V (R, ξ) = 0 for
some fixed R > r0, actually the new problem in the case without perfusion has the
following solution

F (ρ,R) =
1

2

(
log2R− log2 ρ

)
.

In fact, limR→∞ F (ρ,R) = ∞ . Although the steady state exists in the case with
finite domain, the temperature values are huge compared to the case with perfusion
(results not plotted).
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3.2.2. Temperature limit in infinite cooled cylindrical electrodes. In the case of a
cooled cylindrical electrode the steady state equation is again (33) and the solution
(34), where M1,M2 are constants to be selected to satisfy

lim
ρ→∞

VSS(ρ) = 0 (51)

VSS(1) = −B, (52)

where now B = σk
j20r

2
0
(T0 − Tc).

In the case with blood perfusion ( β 6= 0), we obtain

M1 =

∫ ∞
1

K0(
√
β v)

v
dv, M2 =

−1

K0(
√
β)

(
B + I0(

√
β)

∫ ∞
1

K0(
√
β v)

v
dv

)
.

Then in this case

VL(ρ, β) =VSS(ρ, β) = I0(
√
βρ)

∫ ∞
ρ

K0(
√
β v)

v
dv +K0(

√
βρ)

∫ ρ

1

I0(
√
βv)

v
dv

−BK0(
√
βρ)

K0(
√
β)
− I0(

√
β)
K0(
√
βρ)

K0(
√
β)

∫ ∞
1

K0(
√
βv)

v
dv.

(53)

In the case without blood perfusion (β = 0), (34) also becomes

V ′′SS +
1

ρ
V ′SS = − 1

ρ2
(54)

and then

VSS(ρ) = C1 + C2 log ρ− 1

2
log2 ρ.

By adding the contour conditions,

lim
ρ→∞

VSS(ρ) = 0 (55)

VSS(1) = −B (56)

as in the case of the cylindrical dry electrode without perfusion we note that it is
impossible to satisfy the boundary conditions at infinity, whatever the value of C1

and C2, which means that the steady state does not exist in this case.
After Laplace transformation D(ρ, s, 0) := L[V ](ρ, s, 0) in (29), (42), (43) and

(24), we obtain

ρ2 d
2D

dρ2
+ ρ

dD

dρ
− sρ2D = −1

s
(57)

lim
ρ→∞

D(ρ, s, 0) = 0 (58)

D(1, s, 0) = −B
s
, (59)

whose solution is

D(ρ, s, 0) =
1

s
I0(ρ
√
s )

∫ ∞
ρ

K0(v
√
s )

v
dv +

1

s
K0(ρ

√
s )

∫ ρ

1

I0(v
√
s )

v
dv

−B K0(ρ
√
s )

s K0(
√
s )
− I0(

√
s )

K0(ρ
√
s )

s K0(
√
s )

∫ ∞
1

K0(v
√
s )

v
dv.

(60)

From equation (60) and by the final value theorem for Laplace transform we have

VL(ρ, 0) = lim
ξ→∞

V (ρ, ξ) = lim
s→0

s D(ρ, s, 0).
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To compute this limit we begin by defining

f(ρ, v, s) :=

(
I0(ρ
√
s)K0(v

√
s)− I0(

√
s)K0(v

√
s)
K0(ρ

√
s)

K0(
√
s)

)
and hence

D(ρ, s, 0) =

∫ ∞
ρ

f(ρ, v, s)

v s
dv −B K0(ρ

√
s)

s K0(
√
s)

+

∫ ρ

1

f(v, ρ, s)

v s
dv.

By (47) we have

lim
s→0

K0(v
√
s )

K0(
√
s )

= lim
s→0

log v
√
s

2

log
√
s

2

= 1 (61)

and

lim
s→0

f(ρ, v, s) = lim
s→0

K0(v
√
s )

K0(
√
s )

(
I0(ρ
√
s)K0(

√
s )− I0(

√
s )K0(ρ

√
s )
)

= lim
s→0

(
−I0(ρ

√
s )I0(

√
s ) log

√
s

2
+ I0(

√
s )I0(ρ

√
s ) log

ρ
√
s

2

)
= lim
s→0

I0(ρ
√
s )I0(

√
s ) log

ρ
√
s

2√
s

2

= log ρ.

(62)

Moreover, for every ρ ≥ 1, s > 0 and v ≥ 1 we have f(ρ, v, s) ≥ 0 because I0(x)
is strictly increasing and K0(x) is strictly decreasing. Then, by (62) we obtain

∀ s > 0, ∀M > ρ, lim
s→0

s

∫ ∞
ρ

f(ρ, v, s)

v s
dv ≥ lim

s→0

∫ M

ρ

f(ρ, v, s)

v
dv

=

∫ M

ρ

log ρ

v
dv = log ρ log

M

ρ

(63)

and since M > ρ is arbitrary we obtain

lim
s→0

s

∫ ∞
ρ

f(ρ, v, s)

v s
dv =∞

which demonstrates that temperature increases infinitely when the blood perfusion
term is not considered.

On the other hand, by (62) f(v, ρ, s) is a continuous function of s and v in
[1, ρ]× [0, s0] if s0 > 0. Then

lim
s→0

s

∫ ρ

1

f(v, ρ, s)

v s
dv = lim

s→0

∫ ρ

1

log v

v
dv ≤ log2 ρ.

Then by (61) we obtain lims→0D(ρ, s, 0) = ∞ and hence limξ→∞ V (ρ, ξ) = ∞
for every ρ > 1. Again this happens since we are using a boundary condition at
infinitum.

In conclusion, the temperature distribution produced by RF thermal ablation
with a cylindrical electrode only converges when blood perfusion is considered,
otherwise temperature rises infinitely. Note that this result is only true when the
boundary condition far from the active electrode is considered to be at infinitum.
If a finite and sufficiently large domain is considered, temperature reaches a steady
state. In fact

If instead of the problem (41), (42), (43) and (44), we consider the same problem
but changing conditions (43) and (44) to the new conditions (55) for some fixed
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R > r0, and (56) actually the new problem in the case without perfusion has the
following solution

G(ρ,R) = −B +B
log ρ

logR
− 1

2
log2 ρ+

1

2
logR log ρ.

In fact, limR→∞G(ρ,R) =∞ .
In the case with blood perfusion a limit temperature profile can be obtained,

regardless of electrode type (dry versus cooled). Figure 3 shows these limit tem-
perature profiles for the case with blood perfusion. As with spherical electrodes,
maximum temperature reached in the tissue (around 90◦C) was located almost on
the electrode surface in the case of a dry electrode, while it was around 5 mm deeper
in the case of a cooled electrode.

Figure 3. Limit temperature profiles computed for two types of
cylindrical electrode: dry (dashed lines) and internally cooled (solid
lines). The electrode radius was 1.5 mm, and the current density
at the electrode surface (j0) was 1.9 mA/mm2 in the dry case and
3.5 mA/mm2 in the cooled case. Coolant temperature was 5◦C
for the cooled electrode. Only the case with blood perfusion term
is considered; the case without blood perfusion does not converge
and hence no limit temperature can be computed.

3.2.3. Temperature limit in a finite cylindrical electrode. In Subsections 3.2.1 and
3.2.2, the cylindrical electrode was assumed to be infinitely long. This is really an
important simplification and hence we had to check its impact on the conclusions.
In this section we will demonstrate that this simplification is irrelevant from a
qualitative point of view, i.e. in terms of how tissue temperature reaches the steady
state. We solved a new problem by assuming a cylindrical electrode of length L.
By assuming all quantities η, ηb, c, cb, k and ωb to be constant, the heat source is
independent of the polar angle θ, and working in cylindrical coordinates (r, θ, z),
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the formulation used by Haemmerich et al [15] of Equation (9) becomes:

η c
∂T

∂t
(r, z, t) =k

(
∂2T

∂r2
(r, z, t) +

1

r

∂T

∂r
(r, z, t) +

∂2T

∂z2
(r, z, t)

)
+
j2
0 r

2
0

σ r2
− ηb cb ωb(T (r, z, t)− Tb)

(64)

where j0 is the density current at the conductor surface (A/m2), σ is the electrical
conductivity of tissue (S/m) and r0 is the electrode radius (m). The problem to be
solved is (64) with the conditions

T (r, z, 0) = T0 ∀ r > r0, z ∈]0, L[ (65)

lim
r→∞

T (r, z, t) = T0 ∀ t > 0, z ∈]0, L[ (66)

2k
∂T

∂r
(r0, z, t) = cηr0

∂T

∂t
(r0, z, t) ∀t > 0, z ∈]0, L[ (67)

and suitable boundary conditions in z = 0 and z = L, for example an easy case
could be ∂T

∂z (r, 0, t) = ∂T
∂z (r, L, t) = 0, ∀r > r0, ∀t > 0. We shall use the following

dimensionless variables:

ρ :=
r

r0
, w :=

z

L
, ξ :=

α t

r2
0

, β :=
ηbcbwbr

2
0

k
, (68)

V (ρ, w, ξ) :=
4 π k r0

P

(
T
(
r0 ρ, L w,

r2
0 ξ

α

)
− T0

)
(69)

where α is the thermal diffusivity (= k
cη ). Then the equation (64) becomes

−
(
∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
+D

∂2V

∂w2

)
+
∂V

∂ξ
= −β V +

1

ρ2
(70)

for some constant D, with

V (ρ, w, 0) = 0 ∀ρ > 1, 0 < w < 1 (71)

lim
ρ→∞

V (ρ, w, ξ) = 0 ∀ ξ > 0, 0 < w < 1 (72)

∂V

∂ρ
(1, w, ξ) =

m

2

∂V

∂ξ
(1, w, ξ) ∀ξ > 0, 0 < w < 1 (73)

and the rest of boundary conditions in w = 0 and w = 1. The corresponding steady
state problem is

−
(
∂2VSS
∂ρ2

+
1

ρ

∂VSS
∂ρ

+D
∂2VSS
∂w2

)
= −β VSS +

1

ρ2
(74)

lim
ρ→∞

VSS(ρ, w) = 0 0 < w < 1 (75)

∂VSS
∂ρ

(1, w) = 0, 0 < w < 1 (76)

and the rest of boundary conditions in w = 0 and w = 1. We put VSS(ρ, w) =
VSSH(ρ, w) + F (ρ), where VSSH satisfies the corresponding homogeneous equation

−
(
∂2VSSH
∂ρ2

+
1

ρ

∂VSSH
∂ρ

+D
∂2VSSH
∂w2

)
= −β VSSH (77)

and the corresponding boundary conditions, and F (ρ) must satisfy

ρ2F ′′ + ρF ′ − βρ2F = −1, (78)

lim
ρ→∞

F (ρ) = 0 (79)
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F ′(1) = 0 (80)

whose solution if β 6= 0 is

F (ρ) =I0(
√
βρ)

∫ ∞
ρ

K0(
√
β v)

v
dv

+K0(
√
βρ)

(∫ ρ

1

I0(
√
β v)

v
dv +

I1(
√
β)

K1(
√
β)

)

∫ ∞
1

K0(
√
β v)

v
dv

)
.

(81)

Equation (77), with the corresponding boundary conditions, could be analytically
solved by the separation of variables method. We suspect that it will not be a
straightforward task for other boundary condition in w = 0 and w = 1. However,
the conclusion is that the steady state temperature, and hence the final temperature,
will also be finite in the case of a finite cylindrical electrode with blood perfusion.
In contrast, in the case without blood perfusion (β = 0), Equation (78) becomes

F ′′ +
1

ρ
F ′ = − 1

ρ2
(82)

lim
ρ→∞

F (ρ) = 0 (83)

F ′(1) = 0. (84)

The equation (82) is an Euler’s equation with general solution

F (ρ) = C1 + C2 log ρ− 1

2
log2 ρ.

But it cannot satisfy the boundary condition at infinity (83), for any values of C1

and C2, which means that the steady state does not exist in this case.

4. Discussion. The present study focused on the analytical study of the thermal
performance at time infinity of the RF thermal ablation procedure. In particular,
our objective was to determine under which circumstances of electrode geometry
(spherical and cylindrical), electrode type (dry and cooled) and blood perfusion, the
temperature reaches a steady-state at any point in the tissue. Knowing whether
the temperature around the electrode during RF thermal ablation will reach a finite
maximum value or whether it will rise indefinitely is crucial to understanding how
thermal lesions are created in each case. In other words, whether the duration
affects the lesion size or otherwise will be irrelevant from a certain time on.

Four analytical models of RF electrode were built and solved: dry spherical,
cooled spherical, dry cylindrical and cooled cylindrical. For each electrode, we
considered two cases: with and without a blood perfusion term in the bioheat
equation. The case with blood perfusion could model the RF thermal ablation of a
well perfused organ, such as liver or kidney, while the case without blood perfusion
could model a procedure on a non perfused organ such as the cornea [20] or a
well perfused organ on which a vascular clamping maneuver has been conducted
during the heating. Although in all cases the transit-time thermal problem was
addressed, a complete expression of the temperature over time was not obtained
since we used the final value theorem for Laplace transform to compute the limit
temperature in the cylindrical case without perfusion, i.e. the Laplace transforms
were not inverted. As far as we know, this is the first analytical study which
compares the thermal performance at time infinity of the most frequently used
electrode geometries (spherical/cylindrical).
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From a mathematical point of view, the most important finding was that tissue
temperature reaches a steady value in all the cases studied, except for a cylindrical
electrode in a tissue without blood perfusion, regardless of the electrode type (dry
or cooled). The tendency towards overheating the tissue around the electrode is
higher in cylindrical geometry than spherical. The reason is that while deposited
power (W/m3) decays at 1/r2 (current density at 1/r) around cylindrical elec-
trodes, around spherical electrodes it is faster, at 1/r4 (current density at 1/r2).
This implies that power deposition is more circumscribed in the case of ball-tip elec-
trodes compared with needle-like electrodes. This electrical performance leads to
the temperature at any point always reaching a finite maximum value with spherical
electrodes even in the case of tissue with blood perfusion. Conversely, the absence
of the blood perfusion term in the case of cylindrical electrodes produces an infinite
increase in the temperature, while the blood perfusion term is clearly the limiting
factor in avoiding an uninterrupted temperature increase. Moreover, these conclu-
sions are equally valid for both dry and cooled cylindrical electrodes, i.e. internal
cooling is not a limiting factor in avoiding an uninterrupted temperature increase.

The conclusions about the cylindrical electrodes are only valid when the bound-
ary condition far from the active electrode (i.e. where the dispersive electrode is
placed) is considered to be at infinitum. In contrast, if we solve the same mathe-
matical problem but considering a finite domain (although the boundary condition
is enormously far), the temperature does not increase infinitely, and hence a steady
state is reached in all cases. As a consequence, from a physical point of view, we can
conclude that the tissue temperature reaches a steady state in all the cases studied.

Other minor findings (see plots in Figures 2 and 3) have already been reported
in prior studies and can be summarized as: 1) the higher the blood perfusion rate,
the lower the temperature value, 2) cooled electrodes produce a temperature peak
shifted by a few millimeters within the tissue, whereas dry electrodes show a tem-
perature peak located almost on the electrode surface, and 3) cooled electrodes
produce lower values of maximal temperature than dry electrodes, but create larger
lesions, as assessed by the 50◦C isotherm.

4.1. Limitations of the study. The most important limitation of the analytical
models developed in this study was that they did not include the dynamic changes
in the tissue characteristics. The most important characteristic seems to be electri-
cal conductivity (which does not appear explicitly in the equations of this study).
Two dynamic changes in this characteristic are very important during an RF ther-
mal ablation. The first occurs when tissue temperature begins to rise: electrical
conductivity changes with temperature around +2%/◦C, which speeds up heating,
as more RF power can be delivered to the tissue. The second change has to do with
the desiccation associated with temperatures around 100◦C. This phenomenon in-
volves a large rise in impedance, which means the RF generator automatically stops
controlling RF power delivery. This latter issue, which was not considered in our
study, could also be an important factor in limiting the growth of the thermal lesion.
In spite of this, our goal was also to demonstrate mathematically that even without
including these dynamic changes, which could limit the rise in temperature, there
exists a temperature limit profile in the majority of cases. In particular, the power
density (W/m3) decays very fast around a spherical electrode and this probably
promotes the ability of the temperature to reach a stationary state. In contrast,
the power density decays more slowly over the area around a cylindrical electrode,
and this surely means thermal lesions are less constrained. Future numerical studies
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should be conducted to check the validity of our conclusions when dynamic changes
in tissue characteristics are included.

The models were one-dimensional, and hence in the case of cylindrical coordi-
nates, they mimicked an electrode with infinite length placed in a tissue cylinder of
infinite diameter. The needle-like electrodes actually have a sharp tip at the distal
edge and a proximal edge which forms the interface between the metallic electrode
and plastic cover. However, in a previous study, we demonstrated theoretically and
experimentally that during the first seconds of heating with a needle-like cooled
electrode the temperature at the distal and proximal edges quickly rises to 100◦C
[21], which implies that the tissue in these zones becomes almost dehydrated and
hence the electrical current flows through the middle zone. This suggests that dur-
ing the following seconds and minutes, the electrically active zone of the electrode
is the middle zone, and hence the model based on a simple cylinder could be valid.

Our study considered a protocol of constant power for spherical electrodes and
constant current for cylindrical electrodes. If a protocol of constant temperature is
used, such as that employed in RF thermal ablation procedures in which the active
electrode includes a sensor to measure temperature and the voltage is modulated
to keep the temperature constant in the sensor, the tissue temperature will reach
a maximum value dependent on the set target value. Under this condition, it
is expected that temperature will not increase ad infinitum even with cylindrical
electrodes in tissue without blood perfusion.

The novelty of this study was to assess from a formal mathematical point of view
whether the geometry of the electrodes (spherical or cylindrical), the presence or
absence of internal cooling, and the presence of blood perfusion, could influence the
dynamic behavior of the temperature, and in particular, the conditions under which
the temperature could reach a steady-state. We are aware that the real situation
does not consist either of infinitely long cylindrical electrodes or spherical electrodes
completely surrounded by tissue, but of needle-like electrodes based on a finitely
long cylinder with a sharp tip, or electrodes with a hemispherical portion bounded
by a cylindrical prism. What our results suggest is that the tissue temperature in
the vicinity of the cylindrical zone will have a similar performance to the case of
a cylindrical electrode, while the tissue temperature near the electrodes spherical
zone will behave like a spherical electrode.

5. Conclusions. This study has assessed from a formal mathematical point of
view whether the geometry of the electrodes (spherical or cylindrical), the presence
or absence of internal cooling, and the presence of blood perfusion, could influence
the dynamic behavior of the temperature, and in particular, the conditions under
which the temperature could reach a steady-state. The analytical solutions have
demonstrated that tissue temperature reaches a steady value in all the cases consid-
ered except for cylindrical coordinates without the blood perfusion term (both dry
and cooled electrode), in which temperature increases to infinity. However, when
the boundary condition is assumed to be at far, but a finite distance, the tissue
temperature reaches a steady value in all cases.
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