
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2015002
AND ENGINEERING
Volume 13, Number 2, April 2016 pp. 261–279

STRUCTURED POPULATIONS WITH DIFFUSION

AND FELLER CONDITIONS

Agnieszka Bart lomiejczyk∗

Faculty of Applied Physics and Mathematics
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Abstract. We prove a weak maximum principle for structured population

models with dynamic boundary conditions. We establish existence and posi-
tivity of solutions of these models and investigate the asymptotic behaviour of

solutions. In particular, we analyse so called size profile.

1. Introduction. Physiologically structured population models are widely dis-
cussed in the literature which concerns the modeling of population dynamics. Struc-
tured population models distinguish between individuals, depending on characteris-
tics such as age, size, location, status, movement or any variable that reflects it and
has a real effect on the population dynamics, see [7, 13, 18, 19]. Studies using these
models show how the above characteristics influence the population dynamics. Thus
our attention will be focused on structured variables related to physiological char-
acteristics. A physiologically structured population equation is used, for example,
to describe algae as food for small aquatic insects Daphnia (where the size x means
the length), e.g. [20], § 4.3. Other examples are models of populations structured
by an infection level or parasite load, see [22]. The resulting mathematical model
is given by a first order partial differential equation with an initial condition and
a boundary condition with diffusion.

Differential operators with boundary conditions containing diffusion terms were
introduced by Feller and Wentzell in the context of stochastic diffusion processes,
see [11, 24]. More precisely, boundary conditions for one dimensional diffusion
processes were proposed by Feller [11], whereas multi-dimensional processes were
studied by Wentzell, [24]. It turns out that Feller or Wentzell conditions are ap-
plicable to population dynamics models, because they are responsible for diffusive
effects during migrations through the boundary. These conditions are more general
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than Dirichlet, Neumann and Robin conditions, see [1]. For example, Hadeler [14]
proposes a mathematical model with Robin boundary conditions.

The present paper raises and develops the ideas of [10]. We study a size-
structured model which describes the dynamics of one population with growth,
diffusion, reproduction and mortality rates. We add an immigration term to the
model, having in mind possible questions concerning open models, where individu-
als can be transported from other regions. The authors of [10] assign the name of
Wentzell to the boundary conditions introduced by Feller, but in our paper, like in
[5], we return to the name of Feller boundary conditions. They show that the size
structured model with certain boundary conditions is governed by a positive qua-
sicontractive semigroup on a biologically relevant state space. Furthermore, they
characterize the asymptotic behaviour of solutions via balanced exponential growth
of the governing semigroup. The advantage of the semigroup approach is that it
enables the description of population processes as dynamical systems in the state
space. It seems that positivity of solutions is technical and tedious in their semi-
group setting, whereas our approach is straightforward. By the maximum principle
we know that the asynchronous exponential growth is possible, compare [10]. The
aim of our article is to provide more precise attempts to asymptotic analysis in
a Hilbert space where one can recognize a finite dimensional subspace attracting
some solutions. In [10] it is proven the existence and positivity of solutions by show-
ing that solutions are governed by a positive quasicontractive semigroup of linear
operators on the biologically relevant state space. We observe that if the initial
function is of class L1 and the data are regular, then the solution is of class C2 for
any t > 0 and satisfies the Feller conditions. Finding a suitable Hilbert space allows
to analyse not only the solutions but also the size profile. Since our Hilbert space
contains continuous functions, one has to solve complicated systems of ODE’s on
Fourier coefficients in l2. The main difficulty is caused by the nonlocal birth op-
erator. Our main achievement is to recognize these l2-structures and derive some
conclusions.

The paper is organised as follows: we formulate the problem, prove the maximum
principle, analyse so called size profile and the asymptotic behaviour of solutions
for specific mortality and reproduction rates. Finally, we present examples and
conclusions.

2. Formulation of the problem. Suppose that µ ∈ C[0,m], β ∈ C ([0,m]× [0,
m]) , d, γ ∈ C1[0,m], µ, β ≥ 0, d > 0, γ ≥ 0 and g : R+×[0,m]→ R+ is measurable,
where R+ = [0,+∞). Let b0, bm > 0 and c0, cm ≥ 0. If we denote by u(t, s) the
density of individuals of size s at time t, then a general size-structured model for
the evolution of u is written as

ut(t, s) = (d(s)us(t, s))s − (γ(s)u(t, s))s − µ(s)u(t, s)

+

∫ m

0

β(s, y)u(t, y) dy + g(t, s), s ∈ (0,m)
(1)

with linear Feller’s boundary conditions

[(d(s)us(t, s))s]s=0
− b0us(t, 0) + c0u(t, 0) = 0

[(d(s)us(t, s))s]s=m + bmus(t,m) + cmu(t,m) = 0
(2)

and the initial condition

u(0, s) = ω(s), ω(s) ≥ 0. (3)
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The biological interpretation of the coefficients of this model is as follows: d is the
diffusion coefficient, µ – the mortality rate, γ – the growth rate, the function β
– the reproduction rate of individuals and g – immigration. The addition of the
migration is important in the construction of theoretical biological models. There
is rich literature which include some immigration, see [2, 18].

In the same way as in [10] condition (2) can be replaced by the condition in the
dynamic form

ut(t, 0) = (−γ′(0)− µ(0)− c0)u(t, 0) + (b0 − γ(0))us(t, 0)

+

∫ m

0

β(0, y)u(t, y) dy + g(t, 0)
(4)

and

ut(t,m) = (−γ′(m)− µ(m)− cm)u(t,m)− (bm + γ(m))us(t,m)

+

∫ m

0

β(m, y)u(t, y) dy + g(t,m).
(5)

The dynamic boundary conditions have the following natural interpretation. In-
dividuals in a population that are very small size can be absorbed in the states
s = 0, which means inactivity. Then, after a time of rest, these individuals are leav-
ing this state due to diffusion and become active. A similar behaviour is observed
at the edge s = m, see [9].

The boundary value problem (1)–(3) is equivalent to (1) and (3) with these
nonlocal conditions (4), (5). In [6], the spread of infection of a vertically transmitted
disease is described using a model with diffusion in the state space and dynamic
boundary conditions.

3. Maximum principle. We consider differential inequalities generated by prob-
lem (1)–(3). We are interested in seeing whether the implication holds: if ω ≥ 0
and g ≥ 0, then the solution of (1)–(3) satisfies u ≥ 0. In fact, we prove a weak
maximum principle for (1), (3) with the dynamic conditions (4), (5), which is based
on the respective strong maximum principle, [4, 23].

Theorem 3.1. Suppose that

1. µ ∈ C[0,m], β ∈ C ([0,m]× [0,m]) , d, γ ∈ C1[0,m],
2. µ(s), β(s, y) ≥ 0, d(s) > 0, b0, bm > 0, c0, cm ≥ 0 and b0 − γ(0) ≥ 0, bm +

γ(m) ≥ 0,
3. the differential inequality is satisfied

ut(t, s) ≥ (d(s)us(t, s))s − (γ(s)u(t, s))s − µ(s)u(t, s)

+

∫ m

0

β(s, y)u(t, y) dy for t > 0, s ∈ (0,m),

4. the initial and the dynamic boundary inequalities are satisfied

u(0, s) ≥0 s ∈ [0,m],

ut(t, 0) ≥ (−γ′(0)− µ(0)− c0)u(t, 0) + (b0 − γ(0))us(t, 0)

+

∫ m

0

β(0, y)u(t, y) dy t > 0,

ut(t,m) ≥ (−γ′(m)− µ(m)− cm)u(t,m)− (bm + γ(m))us(t,m)
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+

∫ m

0

β(m, y)u(t, y) dy t > 0.

Then u(t, s) ≥ 0 for t ≥ 0, s ∈ [0,m].

Proof. Define ũ(t, s) = u(t, s)+εeλt, where ε > 0 and λ ∈ R. The function ũ satisfies
the assumptions of the strong maximum principle if λ is sufficiently large. It is clear
that ũ(0, s) > 0. If

λ > −γ′(s)− µ(s) +

∫ m

0

β(s, y) dy,

then the function ũ satisfies the inequality

ũt(t, s) > (d(s)ũs(t, s))s − (γ(s)ũ(t, s))s − µ(s)ũ(t, s)

+

∫ m

0

β(s, y)ũ(t, y) dy

for t > 0, s ∈ (0,m). Similarly, we check the strong dynamic boundary conditions
for ũ, when

λ >− γ′(0)− µ(0)− c0 +

∫ m

0

β(0, y) dy,

λ >− γ′(m)− µ(m)− cm +

∫ m

0

β(m, y) dy.

Let λ fulfills the above inequalities. We prove that the function ũ satisfies the
inequality ũ(t, s) > 0 for t ≥ 0, s ∈ [0,m]. Suppose, on the contrary, that this
inequality does not occur. Then we can find a Nagumo point (t∗, s∗), which satisfies
the conditions

ũ(t∗, s∗) = 0 and ∀t∈[0,t∗)∀s∈[0,m] ũ(t, s) > 0.

It is obvious that t∗ > 0. First, we consider the case s∗ ∈ (0,m). Since ũ(t, s) > 0
for t < t∗, we have ũt(t

∗, s∗) ≤ 0 and

ũ(t∗, s∗) = ũs(t
∗, s∗) = 0, ũss(t

∗, s∗) ≥ 0.

Hence, at the point (t∗, s∗) we obtain the inequalities

ũt(t
∗, s∗) > (d(s∗)ũs(t

∗, s∗))s − (γ(s∗)ũ(t∗, s∗))s − µ(s∗)ũ(t∗, s∗)

+

∫ m

0

β(s∗, y)ũ(t∗, y) dy ≥ 0.

This leads to the contradiction with ũt(t
∗, s∗) ≤ 0. Consider the case s∗ = 0. Then

we derive the inequalities

0 ≥ ũt(t∗, 0) > (b0 − γ(0))ũs(t
∗, 0) +

∫ m

0

β(s∗, 0)ũ(t∗, y) dy ≥ 0,

which contradict the strong dynamic inequality. A similar treatment can be per-
formed for s∗ = m. Since ũ(t, s) = u(t, s) + εeλt > 0, letting ε → 0+, we get
u(t, s) ≥ 0 for t ≥ 0, s ∈ [0,m]. This completes the proof.

Note that if we apply Theorem 3.1 to the problem (1)–(3), then the assumption
3 of this theorem means that the migration g is nonnegative. Furthermore, the
condition 4 implies that ω ≥ 0 and the migration g is nonnegative on the boundary,
i.e. for p = 0 and s = m. This implication holds true due to the dynamic version
of the Feller boundary conditions (2). The inequalities in the condition 4 have
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the following biological interpretation: the nonnegative migration g at the lateral
boundary forces the dynamics of ut(t, 0) and ut(t,m).

Corollary 1. Suppose that the assumptions 1 and 2 of Theorem 3.1 are satisfied.
If 0 ≤ ω(s) ≤ K and g ≡ 0, then the solution u of problem (1)–(3) satisfies the
following inequalities

0 ≤ u(t, s) ≤ Keλt,
where

λ ≥ −γ′(s)− µ(s) +

∫ m

0

β(s, y) dy. (6)

Proof. Since problem (1)–(3) is equivalent to the problem with the dynamic condi-
tions, we conclude that u(t, s) ≥ 0 for t ≥ 0 and s ∈ [0,m]. This follows from the
maximum principle, i.e. Theorem 3.1. In order to get the inequality u(t, s) ≤ Keλt
it is sufficient to show that the function Keλt − u(t, s) satisfies the maximum prin-
ciple for the problem with dynamic conditions. This follows immediately from
inequality (6).

Corollary 2. Suppose that the assumptions 1 and 2 of Theorem 3.1 are satisfied.
If ω is nonnegative and integrable, g ∈ C(R+, L

1[0,m]) is nonnegative, then there
is a unique solution u ≥ 0 and

u(t, s) =

∫ m

0

G(t, s, y)ω(y) dy +

∫ t

0

∫ m

0

G(t− τ, s, y) g(τ, y) dy dτ, (7)

where G is the Green function of problem (1)–(3). Moreover, if ω and g are con-
tinuous, then the solution of (7) is of the class C1,2 in the interior of the domain.

Proof. Note first that it is sufficient to consider (7) with g ≡ 0 because the second
term in the expression (7) can be derived from the Duhamel principle. The Green
function can be defined as follows

G(t, s, r) := lim
n→∞

un(t, s; r),

where un(t, s; r) are the solutions of the homogeneous partial differential equation
with the initial condition un(0, s; r) = ωn(s; r), ωn(·; r) are nonnegative C∞ func-
tions which approximate the Dirac delta function δr. The Green function G is
a distributional object, but one can see that it is a regular function. The proof of
(7) is divided into two steps: 1. µ ≡ 0 and β ≡ 0; 2. general case.

Step 1. Applying Corollary 1, being a consequence of the maximum principle, we
obtain a priori estimate

0 ≤ ω(s) ≤ K ⇒ 0 ≤ u(t, s) ≤ K,
which means that ω 7−→ u is a contraction with respect to the uniform norm.
Suppose that equation (7) holds for continuous functions ω. Using the maximum
principle one can easily prove that

G(t, s, y) ≥ 0 and 0 ≤
∫ m

0

G(t, s, y) dy ≤ 1.

Since (dξs)s is a self-adjoint operator with respect to the usual L2 inner scalar
product on [0,m] in a subspace of smooth functions vanishing at the boundary, we
get the symmetry condition

G(t, s, y) = G(t, y, s) for y 6= s.
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This means that the function G(t, ·, y) is integrable and G(t, s, ·) is continuous. Let

C[0,m] 3 ωn
L1

→ ω ∈ L1[0,m], ωn ≥ 0. By (7) we have a sequence of continuous
functions

un(t, s) =

∫ m

0

G(t, s, y)ωn(y) dy, n = 1, 2, . . .

Note that for any continuous function η : [0,m] → R, 0 ≤ η ≤ 1 the following
relations hold

0 ≤
∫ m

0

η(s)un(t, s) ds =

∫ m

0

η(s)

∫ m

0

G(t, s, y)ωn(y) dy ds

=

∫ m

0

ωn(y)

∫ m

0

G(t, s, y) η(s) ds dy ≤
∫ m

0

ωn(y) dy →
∫ m

0

ω(y) dy.

Therefore

un(t, s)
L1

→
∫ m

0

G(t, s, y)ω(y) dy

and

0 ≤
∫ m

0

u(t, s) ds =

∫ m

0

ω(y)

∫ m

0

G(t, s, y) ds dy ≤
∫ m

0

ω(y) dy,

i.e. ω 7−→ u(t, ·) is a contraction in L1[0,m] for all t ≥ 0. Recall that the Duhamel
principle yields the general version of (7) with g ∈ C(R+, L

1[0,m]), and one has
the estimate

‖u(t, ·)‖L1[0,m] ≤ ‖ω‖L1[0,m] +

∫ t

0

‖g(τ, ·)‖L1[0,m] dτ.

Step 2. Having in mind the Duhamel principle we assume that g ≡ 0. We apply

the representation (7) from step 1 where we regard µu+
∫
βu as a ‘migration’ term,

say ḡ. Thus we get the integral equation

u(t, s) =

∫ m

0

G(t, s, y)ω(y) dy

+

∫ t

0

∫ m

0

G(t− τ, s, y)

{
µ(y)u(t, y) +

∫ m

0

β(y, y′)u(t, y) dy′︸ ︷︷ ︸
g̃

}
dy dτ.

According to formula (7) with G replaced by H, we are looking for solutions in the
form

u(t, s) =

∫ m

0

H(t, s, y)ω(y) dy.

Comparing the last two formulas leads to the integral equation (see [12, 17])

H(t, s, y) = G(t, s, y)−
∫ t

0

∫ m

0

G(t− τ, s, y′)µ(y′)H(τ, y′, y) dy′ dτ

+

∫ t

0

∫ m

0

∫ m

0

G(t− τ, s, y′)β(y′, y)H(τ, y′, y) dy dy′ dτ.

By the maximum principle we have H ≥ 0. It follows from the continuity of G that
H is also continuous. From the integrability of the function G(t, s, ·), we deduce
that H(t, s, ·) is integrable and derive the estimate

0 ≤
∫ m

0

H(t, s, y) dy ≤ cT for t ∈ [0,T].
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We conclude from this estimate and the Duhamel principle for the kernel H that
formula (7) is valid for H and (similarly as in step 1) we can derive an L1 estimate

‖u(t, ·)‖L1[0,m] ≤ cT
(
‖ω‖L1[0,m] +

∫ t

0

‖g(τ, ·)‖L1[0,m]

)
.

Remark 1. The proof of Corollary 2 shows that the assertion is true for the mi-
gration term g which is nonnegative and locally integrable on R+ × [0,m].

Remark 2. Corollary 1 shows that, if the coefficients γ, β and µ allow inequality
(6) with some λ < 0, then the solutions are exponentially stable, i.e. the population
dies out. This means that the mortality rate µ is sufficiently large compared with
the birth and growth terms.

4. Size profile. It is obvious that even if the initial function u(0, ·) is taken from
the space L1[0,m], then the parabolic operator regularizes the solution u, and the
functions u(t, ·) are C2[0,m] for all t > 0. Hence we can study continuous solutions,
because the initial condition at t0 = 0 can be replaced by an initial value problem
at some t0 > 0, where the solution is regular. Let U(t) =

∫m
0
u(t, s) ds be the total

number of individuals at time t, then v(t, s) = u(t, s)/U(t) is the normalized size
distribution at time t, provided that U(t) 6= 0. In this case the integral

∫m
0
v(t, s) ds

is equal to 1 for all t ≥ 0. The function v is called the size profile, see [10]. If u ≡ 0,
then we put v ≡ 0. Integrating equation (1) with respect to s over the interval [0,m]
we obtain

dU(t)

dt
= (d(·)us(t, ·))

∣∣∣m
0
− (γ(·)u(t, ·))

∣∣∣m
0
−
∫ m

0

µ(s)u(t, s) ds

+

∫ m

0

∫ m

0

β(s, y)u(t, y) dy ds+

∫ m

0

g(t, s) ds.

Taking into account equation (1) and the derivatives

vs =
us
U
, (dvs)s =

(dus)s
U

and vt =
ut
U
− uUt

U2
,

we note that the equation for the size profile function is as follows

vt(t, s) = (d(s)vs(t, s))s − (γ(s)v(t, s))s − µ(s)v(t, s) +

∫ m

0

β(s, y)v(t, y) dy

− v(t, s)

[
(d(·)vs(t, ·))

∣∣∣m
0
− (γ(·)v(t, ·))

∣∣∣m
0
−
∫ m

0

µ(y)v(t, y)dy

+

∫ m

0

∫ m

0

β(x, y)v(t, y) dy dx

]
+

1

U(t)

∫ m

0

g(t, s) ds

(8)

for s ∈ (0,m). The function v satisfies Feller’s boundary conditions (2). In the
sequel we consider a closed population with no immigration.

4.1. Self-adjoint operator. Let γ = 0. If γ 6= 0, then we reduce the leading op-

erator to a self-adjoint form by replacing u(t, s) by u(t, s) exp
(
−
∫ s

0
γ(y)
2d(y) dy

)
. This

substitution preserves fundamental features of the model under mild assumptions
on γ. Define a functional space generated by the Feller conditions (2)
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X =

{
ξ ∈ C2[0,m] :

(d ξ′)′(0)− b0 ξ′(0) + c0 ξ(0) = 0
(d ξ′)′(m) + bm ξ

′(m) + cm ξ(m) = 0

}
with the inner scalar product for ξ, η ∈ X :

〈ξ, η〉 =

∫ m

0

ξ(s) η(s) ds+
d(0)

b0
ξ(0)η(0) +

d(m)

bm
ξ(m)η(m).

Lp-type norms generated by this type of inner scalar product have been applied
in [16] (the multidimensional case). Then problem (1)–(3) can be written as an
abstract evolution equation in X̄ , i.e. a completion of X with respect to the inner
scalar product 〈·, ·〉 :

du

dt
+ Lu = −Mu+ Bu+ g, u0 ∈ X̄ ,

where L is the leading operator, M – mortality, B – birth, namely:

(Lη)(s) = −(d(s)η′(s))′, (Mη)(s) = µ(s)η(s), (Bη)(s) =

∫ m

0

β(s, y)η(y) dy.

Note that L is a nonnegative and self-adjoint operator with respect to the inner
scalar product 〈·, ·〉 . The positive semi-definiteness of the operator L follows from
the maximum principle. Had the operator L a negative eigenvalue we would get an
unbounded solution (like e−λt) of the homogeneous equation du/dt+Lu = 0, which
contradicts the maximum principle. Suppose that e1, e2, . . . is a complete system of
eigenvectors of L, orthonormal with respect to 〈·, ·〉 with the respective eigenvalues
λ1 ≤ λ2 ≤ . . . . Moreover, assume that e1 ≥ 0. This assumption is possible to be
realised by virtue of the maximum principle as follows. Take any positive function
η ∈ X and consider the differential problem

du

dt
+ Lu = 0, u(0, ·) = η

with Feller conditions. By the maximum principle the solution u is positive. If we
normalize u(t, ·) we have that

u(t, ·)√
〈u(t, ·), u(t, ·)〉

tends to an eigenvector in X corresponding to the first eigenvalue λ1 as t → ∞.
Thus we can choose this limit as e1. In practice, this can be also done by minimizing
of the Rayleigh quotient 〈Lη, η〉 / 〈η, η〉 by means of the steepest descent method
starting from any positive function η ∈ X . In the caseM = 0, B = 0 and g = 0 the
size profile equation has the form

dv

dt
+ Lv = −Avv,

where Av = (dvs)
∣∣∣m
0
, v(0, s) ≥ 0,

∫m
0
v(0, s)ds = 1.

Lemma 4.1. If M = 0, B = 0, g = 0, v(0, s) ≥ 0,
∫m

0
v(0, s)ds = 1 and λ1 = . . . =

λk < λk+1, then v(t, s) tends to v∗(s) = C1e1(s) + . . .+ Ckek(s) as t→ +∞.

Proof. Since v(t, s) = u(t, s)/U(t), it is sufficient to study the solution of du/dt +
Lu = 0, u(0, ·) = v(0, ·). This function has the expansion

u(t, s) =

∞∑
i=1

φi(t)ei(s),
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where φi(t) = φi(0) · e−λit. Hence u(t, s) · eλ1t tends to a linear combination of
e1(s), . . . , ek(s).

In fact the eigenfunctions e1, e2, . . . admit distinct eigenvalues λ1 < λ2 < . . . ,
hence we have k = 1 in Lemma 4.1, which means that the size profile is determined
by e1 in absence of birth, migration. Furthermore, this basis fulfills the assumption
of the Stone–Weierstrass Theorem (it separates points), hence the space X̄ contains
all continuous functions. If one finds expressions of Fourier coefficients this will
lead to some complete picture of solutions to nonlocal PDE’s. With this tool, we
consider the more general model with nontrivial mortality and reproduction rates

du

dt
+ Lu = −Mu+ Bu, u0 ∈ X̄ . (9)

Suppose that µ(s) = µ = const. ≥ 0 and β(·, y) admits the following expansion

β(s, y) =

∞∑
j=1

βj(y)ej(s),

where βj(y) = 〈ej , β(·, y)〉 . We are looking for the solution to problem (9) in the
form

u(t, s) =

∞∑
j=1

φj(t)ej(s). (10)

Substituting solution (10) into equation (9) we get the following equation

∞∑
j=1

φ′j(t)ej(s)+

∞∑
j=1

λjφj(t)ej(s) = −µ
∞∑
j=1

φj(t)ej(s)+

∞∑
j=1

∫ m

0

βj(y)u(t, y) dy ·ej(s).

The comparison of corresponding Fourier coefficients gives the following system of
ODE’s

φ′j(t) + (λj + µ)φj(t) =

∫ m

0

βj(y)u(t, y) dy,

whose solution is of the form

φj(t) = φj(0)e−t(λj+µ) +

∫ t

0

e−(t−τ)(λj+µ)

∫ m

0

βj(y)u(τ, y) dy dτ (11)

for j = 1, 2, . . . Substituting (11) into (10), we get the integral equation for u

u(t, s) =

∞∑
j=1

φj(0)e−t(λj+µ)ej(s) +

∫ t

0

∞∑
j=1

e−(t−τ)(λj+µ)

∫ m

0

βj(y)ej(s)u(τ, y) dy dτ.

(12)
We use this representation to study the size profile.

4.2. Fourier analysis. Denote Λ = diag(λ1, λ2, . . .), L = [Lij ]i,j=1,... and

Lij =

∫ m

0

βi(y) ej(y) dy for i, j = 1, 2, . . .

First, we formulate the following lemma which makes easier the calculus of Fourier
coefficients with respect to the Hilbert space X̄ .
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Lemma 4.2. Assume that (βi(y))i∈Z ∈ l2 and L : l2 → l2. Let Z(t) = etΛet(L−Λ)

and Y (t) = exp
(∫ t

0
eτΛLe−τΛ dτ

)
be two families of operators acting on a dense

subspace of l2. Then

exp

(∫ t

0

eτΛLe−τΛ dτ

)
= etΛet(L−Λ)

on a dense subspace of l2.

Proof. Consider the abstract problem on a dense subspace of l2, e.g. finite sequences

Y ′(t) = etΛLe−tΛY (t), Y (0) = I. (13)

We need to show that Z(t) is also the solution of (13). It is clear that

Z ′(t) =ΛetΛet(L−Λ) + etΛet(L−Λ)(L−Λ)

=ΛetΛet(L−Λ) + etΛ(L−Λ)et(L−Λ)

=ΛetΛet(L−Λ) + etΛLet(L−Λ) − etΛΛet(L−Λ)

=etΛLe−tΛetΛet(L−Λ)

=etΛLe−tΛZ(t).

Proceeding as in the theory of semigroups (cf. [8]), we obtain that Y = Z on the
dense subspace of l2.

We use the assertion of Lemma 4.2 to derive the Fourier expansion of the solution
of (9).

Theorem 4.3. Assume that (βi(y))i∈Z ∈ l2 and L : l2 → l2. Let u(0, ·) ≥ 0,
µ(s) = µ = const. ≥ 0,

β(s, y) =

∞∑
j=1

ej(s)βj(y) ≥ 0

and the semigroup et(L−Λ) maps l2 into l2. If u(0, ·) ∈ X̄ and u satisfies (9), then
the solution of (12) has the form

u(t, s) = e−tµ
∞∑
j=1

ej(s)e
T
j e

t(L−Λ)φ(0), (14)

where eTj is the transpose of the j-th vector of the standard basis in RN and φj(0)

are Fourier coefficients of u(0, ·) in the Hilbert space X̄ .

Proof. Multiplying (12) by et(λi+µ) gives

u(t, s)et(λi+µ) =

∞∑
j=1

φj(0)e−t(λj−λi)ej(s)

+

∫ t

0

∞∑
j=1

ej(s)e
−t(λj−λi)

∫ m

0

eτ(λj+µ)βj(y)u(τ, y) dy dτ .

Before multiplying this expression by βi(s) and integrating over [0,m], we denote

wj(t) = et(λj+µ)

∫ m

0

βj(y)u(t, y) dy, j = 1, 2, . . . (15)
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Then we obtain integral equations for the variables given by (15) as follows

wi(t) =

∞∑
j=1

φj(0)e−t(λj−λi)Lij +

∫ t

0

∞∑
j=1

e−t(λj−λi)Lijwj(τ) dτ (16)

and we get from (12) the following representation of u

u(t, s) =

∞∑
j=1

φj(0)e−t(λj+µ)ej(s) +

∫ t

0

∞∑
j=1

ej(s)e
−t(λj+µ)wj(τ) dτ. (17)

Formula (16) can be written as the infinite system in l2

w(t) = etΛLe−tΛφ(0) +

∫ t

0

etΛLe−tΛw(τ) dτ

whose solution has the form

w(t) = etΛLe−tΛ exp

(∫ t

0

eτΛLe−τΛ dτ

)
φ(0). (18)

Observe that wj(t) = eTj w(t) and φ(0) = (φj(0)) ∈ l2 because φj(0) are Fourier

coefficients of u(0, ·) in the Hilbert space X̄ . Then (17) can be written in the following
form

u(t, s) =

∞∑
j=1

φj(0)e−t(λj+µ)ej(s)

+

∫ t

0

∞∑
j=1

e−t(λj+µ)ej(s)e
T
j

d

dτ
exp

(∫ τ

0

eτ
′ΛLe−τ

′Λdτ ′
)
φ(0) dτ

=

∞∑
j=1

e−t(λj+µ)ej(s)e
T
j exp

(∫ t

0

eτΛLe−τΛdτ

)
φ(0).

By Lemma 4.2 we easily get (14).

We conclude our discussion with the following result.

Corollary 3. Let βj = 0 for j > k. If the infinite matrix L − Λ has the block
structure [

L̃− Λ̃ B

0 −Λ̂

]
, B =

[
B1 B2 . . .

]
with negative real parts of eigenvalues of the k × k-block Λ̃ − L̃ − λk+1Ĩ then the

asymptotic behaviour u(t, s) is determined by the block L̃− Λ̃ in the form

e−tµẽT (s)et(L̃−Λ̃)

[
φ̂(0) +

∞∑
l=k+1

φl(0)(λlĨ − Λ̃ + L̃)−1Bl−k

]
, (19)

where Ĩ is the k × k identity matrix and

ẽ(s) = [e1(s) . . . ek(s)]T , φ =

[
φ̃

φ̂

]
, φ̃ =

[
φ̃1 . . . φ̃k

]T
.

Proof. By the assumption the infinite matrix L−Λ has the block structure, hence

et(L−Λ) =

[
et(L̃−Λ̃) Q(t)

0 e−tΛ̂

]
.
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It has to satisfy the initial condition Q(0) = 0 and the differential equation

d

dt

[
et(L̃−Λ̃) Q(t)

0 e−tΛ̂

]
=

[
L̃− Λ̃ B

0 −Λ̂

][
et(L̃−Λ̃) Q(t)

0 e−tΛ̂

]
thus Q(t) satisfies the Cauchy problem

d

dt
Q(t) = (L̃− Λ̃)Q(t) +Be−tΛ̂, Q(0) = 0.

The solution of this problem is of the form

Q(t) = et(L̃−Λ̃)

∫ t

0

e−τ(L̃−Λ̃)Be−τΛ̂ dτ.

Thus the term et(L−Λ)φ(0) in (14) can be written as[
et(L̃−Λ̃)φ̃(0) +Q(t)φ̂(0)

e−tΛ̂φ̂(0)

]
.

Note that

Q(t)φ̂(0) =

∫ t

0

e−τ(L̃−Λ̃)
∞∑
i=1

φk+i(0)e−τλk+iBi.

Thus the asymptotic behaviour of Q(t)φ̂(0) is like

et(L̃−Λ̃)
∞∑
i=1

φk+i(0)(λk+iĨ − Λ̃ + L̃)−1Bi.

Therefore the asymptotic behaviour of the solution of (9) is like (19).

Remark 3. In the case k = 1, we have et(L11−λ1)φ1(0) + φ2(0)Q11(t) + φ3(0)Q12(t) + . . .
e−tλ2φ2(0)

...


and from (14) the solution u of (9) has the form

e−µt

{
e1(s)

[
et(L11−λ1)φ1(0) + φ2(0)Q11(t) + φ3(0)Q12(t) + . . .

]
+

∞∑
j=2

ej(s)e
−tλjφj(0)

}
.

Thus the size profile is proportional to the term

e1(s)

[
φ1(0) + φ2(0)

b2
L11 − λ1 + λ2

+ φ3(0)
b3

L11 − λ1 + λ3
+ . . .

]
.

Remark 4. Under the assumptions of Corollary 3 the size profile v(s) is a linear

combination of e1(s), . . . , ek(s) with coefficients dependent on the k×k–matrix L̃−Λ̃
and the vector

φ̂(0) +

∞∑
l=k+1

φl(0)(λlĨ − Λ̃ + L̃)−1Bl−k.
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Remark 5. The assertion of Corollary 3 is valid for some infinite matrices L, e.g.
it suffices to assume that

max
i=1,...,k

{
λi − lii +

∞∑
j, j 6=i

|lij |

}
< inf
i>k

{
λi − lii −

∞∑
j, j 6=i

|lij |

}
.

The localization of eigenvalues is here achieved like in Gershgorin’s theorem.

5. Examples. In this section we consider biological models with constant coeffi-
cients. We admit that models with constant diffusion coefficient allow for efficient
computations of eigenvalues. Furthermore, models with constant growth and mor-
tality coefficients can be easily solved by numerical procedures. We discuss two
boundary value problems for the differential equation

ut(t, s) = uss(t, s) +

∫ 1

0

u(t, y) dy (20)

with a nonnegative initial function: 1. c0 = c1 = 0, 2. c0 + c1 > 0. The equation for
the size profile function is as follows

v′′(s) +

∫ 1

0

v(y) dy = λv(s), (21)

where λ > 0 is chosen so that v is normalized. The constant birth kernel β = 1 is
interpreted as size-uniform loads of new individuals.

Example 1. Consider the easier case c0 = c1 = 0, i.e. equation (20) with the
boundary conditions

uss(t, 0)− b0 us(t, 0) = 0, uss(t, 1) + b1 us(t, 1) = 0. (22)

As in Section 2 it is assumed that b0, b1 > 0. We introduce the variable w = v′ and
obtain the system 

w′′(s)− λw(s) = 0

w′(0)− b0w(0) = 0

w′(1) + b1w(1) = 0.

This problem has a unique zero solution. Thus v ≡ const., hence λ = 1, which is
consistent with our previous considerations. The same transform w = u′ leads to
an efficient derivation of the eigenfunctions e1, e2, . . . Suppose that f1, f2, . . . are
the eigenfunctions of the operator −w′′ with the Robin boundary conditions

w′(0)− b0w(0) = 0, w′(1) + b1w(1) = 0.

Since −w′′ is self-adjoint, the eigenfunctions f1, f2, . . . are orthogonal with respect
to the inner scalar product in L2. Define e1 = const. and ek = −f ′k/

√
λk for

k = 2, 3, . . . This system is orthogonal with respect to 〈·, ·〉 in X . Since e1 and β
are proportional to 1, this example illustrates Corollary 3, i.e. the size profile is
constant.

Example 2. Consider the case c0 + c1 > 0. The assumptions of Corollary 3 are
not fulfilled, and the size profile has an infinite Fourier expansion. We examine
equation (20) with the boundary conditions

uss(t, 0)− us(t, 0) + u(t, 0) = 0, uss(t, 1) + us(t, 1) = 0. (23)
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Then the equation of the size profile takes the form (21) with the boundary condi-
tions

v′′(0)− v′(0) + v(0) = 0, v′′(1) + v′(1) = 0. (24)

The solution of this problem has the form

v(s) = c1e
√
λs + c2e

−
√
λs +

1

λ
,

where the constants c1, c2 are derived from (24) and λ is calculated from the equation
√
λc1e

√
λ +
√
λc2(1− e−

√
λ) = λ− 1.

The solution of the size-profile equation (21) with the boundary conditions (24) is
shown in Fig. 1.

Figure 1. Size profile.

We solve the problem (20), (23) by making use of the eigenfunctions e1, e2, . . .
The eigenfunctions (see Fig. 2) are of the form const. sin(ps+ q) where

q =
kπ − p

2
and tan

(
kπ − p

2

)
=

p

1− p2
.

Fig. 3 shows the eigenfunctions of the operator −u′′ corresponding to the problem
(20), (23). It is seen that ek has k − 1 zeros. The Fourier series expansion of the
function identically equal to 1 is shown in Fig. 4. Our computation is done for e1,
e2, e3, e4, e5.

Example 3. Consider the problem (20), (22). Let U =
∫ 1

0
u(t, y) dy and w(t, s) =

us(t, s). With this notation we write the Robin problem
wt = wss

ws(t, 0)− b0w(t, 0) = 0

ws(t, 1) + b1w(t, 1) = 0

(25)
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Figure 2. Values of p.

Figure 3. Four eigenfunctions of the operator −u′′.

whose solution can be expressed as the series

w(t, s) =

∞∑
k=1

cke
−λkt sin(

√
λks+ rk)

because the method of separation of variables leads to the components

wk(t, s) = e−λkt sin(
√
λks+ rk).
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Figure 4. Fourier series expansions of the function 1.

Eigenvalues λk are positive and depend on the data b0 and b1. The solution can

be derived by means of elementary ODE’s. Denote U =
∫ 1

0
u dy and u0 = u(·, 0),

u1 = u(·, 1). Furthermore, w0 = w(·, 0), w1 = w(·, 1) where w = u′ is a solution of
(25). Then we get

Ut = ws(t, s)|10 + U = −b0w0 − b1w1 + U.

From the dynamical conditions we have

u0
t = b0w

0 + U, u1
t = −b1w1 + U.

Since the functions w(t, s) and U(t), u0(t), u1(t) can be easily calculated, we get
the function u(t, s) as a solution of the Dirichlet boundary-value problem

ut = uss + U(t), u(t, 0) = u0(t), u(t, 1) = u1(t).

6. Conclusions.

1. Our analysis of the size profile is done for the death rate µ = const. This
assumption can be omitted and the whole construction is valid, provided that
we represent −µ(s) = −µ̄+ (µ̄−µ(s)), µ̄ = maxµ and replace the coefficients
Lij by the following∫ m

0

[(µ̄− µ(y))Mi(y) + βi(y)] ej(y) dy,

where Mi(y) are the Fourier coefficients of the Dirac delta function δy. More
precisely, the idea is as follows: µ̄−µ(s) ≥ 0 is regarded as an additional birth
term

(µ̄− µ(s))u(t, s) =

∫ m

0

(µ̄− µ(y))δy(s)u(t, y) dy,
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where δy(s) =
∑
kMk(y)ek(s) is the Fourier expansion of the Dirac delta

function δy, see Fig. 5.

Figure 5. Representation of the Dirac delta function by the eigen-
functions e1, . . . e5.

2. It turns out that if we introduce a new function

ū(t, s) = u(t, s) · exp

(
−
∫ s

0

γ(y)

2d(y)
dy

)
,

then problem (1)–(2) reduces to the form

ūt(t, s) = (d(s) · ūs(t, s))s − µ̄(s)ū(t, s) +

∫ s

0

β̄(s, y)ū(t, s) dy + ḡ(t, s),

(d(s) · ūs(t, s))s |s=0 − b̄0ūs(t, 0) + c̄0ū(t, 0) = 0,

(d(s) · ūs(t, s))s |s=m + b̄mūs(t,m) + c̄mū(t,m) = 0,

where the mortality, reproduction and immigration are defined as

µ̄(s) =
γ2(s)

4d(s)
+
γ′(s)

2
+ µ(s),

β̄(s, y) = β(s, y) · exp

(
−
∫ y

0

γ(ỹ)

2d(ỹ)
dỹ

)
,

ḡ(t, s) = g(t, s) · exp

(
−
∫ s

0

γ(y)

2d(y)
dy

)
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and

b̄0 = b0 − γ(0), c̄0 = c0 +
γ2(0)

4d(0)
+
γ′(0)

2
− b0

γ(0)

2d(0)
,

b̄m = bm + γ(m), c̄m = cm +
γ2(m)

4d(m)
+
γ′(m)

2
+ bm

γ(m)

2d(m)
.

The fundamental assumptions of the model (b̄0, b̄m > 0, c̄0, c̄m ≥ 0) are pre-
served provided that b0 − γ(0) > 0, bm + γ(m) > 0 and γ, γ′ are sufficiently
small at s = 0,m. The idea is that the sign of the coefficient of the deriva-
tive us is positive for s = 0 and negative for s = m. Thus the flux of this
population goes inwards.

3. If any of the vital quantities like growth, diffusion, reproduction and mortality,
depend on the density u, then the model (1) becomes nonlinear, see [15, 21].
The dynamics of a size-structured population with coefficients dependent on
the unknown function, living in a closed territory is considered in [9]. Our
methods, especially Fourier analysis, can be extended to open models (g 6= 0).
We admit that the PDE model can be solved by modern numerical methods,
see [3].
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