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Abstract. Diabetes affects millions of Americans, and the correct identifi-
cation of individuals afflicted with this disease, especially of those in early

stages or in progression towards diabetes, remains an active area of research.

The minimal model is a simplified mathematical construct for understanding
glucose-insulin interactions. Developed by Bergman, Cobelli, and colleagues

over three decades ago [7, 8], this system of coupled ordinary differential equa-

tions prevails as an important tool for interpreting data collected during an
intravenous glucose tolerance test (IVGTT). In this study we present an ex-

plicit solution to the minimal model which allows for separating the glucose
and insulin dynamics of the minimal model and for identifying patient-specific
parameters of glucose trajectories from IVGTT. As illustrated with patient

data, our approach seems to have an edge over more complicated methods

currently used. Additionally, we also present an application of our method to
prediction of the time to baseline recovery and calculation of insulin sensitiv-

ity and glucose effectiveness, two quantities regarded as significant in diabetes
diagnostics.
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1. Introduction. Diabetes affects approximately 26 million U.S. adults and chil-
dren, including 7 million undiagnosed cases. An additional 79 million individuals
have pre-diabetes, with elevated blood glucose levels below diagnostic cut points
[17]. Pre-diabetes is a state of abnormal glucose homeostasis in individuals without
diabetes, where a deficiency or resistance to insulin is apparent [22, 28]. Individu-
als with pre-diabetes are of particular interest to researchers and clinicians because
progression to diabetes can be prevented or delayed in this population with early
identification [11].

Current standard of practice primarily utilizes three biomarkers for the identi-
fication of pre-diabetes: (1) plasma fasting glucose, (2) post-load plasma glucose,
and (3) glycated hemoglobin (HbA1c) [2]. Each of these tests has distinct limita-
tions [3, 12, 27] and clinical cut points are selected somewhat arbitrarily. Exact
onset time of what is termed “diabetes” is not a discrete event and therefore rec-
ommended clinical categories are based primarily on the gradient of the association
of these biomarkers with prevalent retinopathy [19, 20] and evidence from clinical
trials demonstrating that lowering these values can reduce microvascular complica-
tions [36]. The intravenous glucose tolerance test (IVGTT) can provide important
information in particular about first-phase insulin response to glucose [9, 18] and
can help researchers better characterize individuals at increased risk for developing
type 2 diabetes [23, 26].

The exact point where diabetes onset occurs remains unknown. A normal pancre-
atic β-cell is highly adaptable to changes in insulin action. For example, as insulin
action is decreased, insulin secretion increases to meet the demand imposed by the
change in insulin action. When adaption of the β-cell is no longer sufficient for a
given degree of insulin insensitivity, impaired glucose tolerance or type 2 diabetes
develops. Insulin resistance–where the muscle, adipose tissue, and liver cells do not
use insulin properly–develops when the biological effects of insulin are abnormal
for glucose disposal in skeletal muscle as well as endogenous glucose production
suppression [33].

Multiple mathematical models of glucose-insulin interaction have been proposed
(see, e.g., the review articles [1, 15]), but perhaps the most widely known and widely
used was suggested by Richard Bergman, Claudio Cobelli, and colleagues by the
early 1980s. Their minimal model proposed in [7, 8] utilizes a system of ordinary
differential equations (ODEs) to represent the joint effect of insulin secretion and
sensitivity on glucose tolerance [4]. The full ODE model is composed of two sub-
systems: the first describes glucose clearance via the equations relating glucose and
interstitial insulin and the second describes plasma insulin action. The minimal
model as well as other similar ODE systems are used as investigatory modeling
tools to measure insulin secretion and insulin sensitivity [5, 6] in individual pa-
tients. The typical methods used to parameterize these models (i.e. MINMOD
[31], the Matlab routine gluc mm mle.m [34], etc.) rely on numerical ODE solvers,
however, and solutions of such do not yield a straightforward dynamical time course
for the glucose concentration, which is perhaps a major reason why the ODE based
methods for glucose-insulin dynamics are still not very popular in the experimental
diabetologists’ community [32].

To address this issue, in the current paper we derive an explicit formula for
the glucose subsystem in the non-dimensionalized or scale-free Bergman-Cobelli
minimal model [29]. We do not change the structure of the non-dimensionalized
minimal model, but rather we develop a novel method to solve for the glucose
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time course. This approach allows us to definitively parametrize individual glucose
patterns by using the IVGTT data that inform the assessment of insulin sensitivity.
Our method also permits the development of results, such as return time to baseline,
that are not possible with current ODE minimal model solvers [14, 34]. By explicitly
solving for the glucose-time relationship for a given individual, we have developed a
model which is not only easier to fit with patient-specific data but also significantly
more transparent regarding the time evolution of the glucose concentration, a benefit
likely to be appreciated by diabetes practitioners.

The paper is organized as follows. In the next section (Methods), we outline
the derivation of our explicit formula for the glucose subsystem, first recalling some
basic facts about the minimal model and its scale-free extension. In the subsequent
section (Results), we show how the derived glucose function may be fit to the
IVGTT data of individual patients, and we provide some potential applications of
the model. We also compare our model fit with that of MINMOD and two additional
more recent models of glucose-insulin dynamics of De Gaetano and Arino [21] and
Li et al. [25]. We conclude (Discussion) by reviewing observations from our analysis
of the minimal model and by suggesting future investigations using our framework.

2. Methods.

2.1. Model analysis. In this subsection we present our mathematical formulas
for glucose regulation based on solving the minimal model. We begin by recalling
some essentials of the Bergman-Cobelli minimal model [7, 8]. Extending the ideas
of Nittala et al. [29], we then shown how one may non-dimensionalize the minimal
model in order to simplify the relative glucose-insulin interdependencies.

We then present our explicit solution for the glucose concentration G(τ) and the
interstitial insulin X(τ). This is accomplished using an intermediary function f(τ)
to link G and X, and we also obtain an implicit formula for the plasma insulin
concentration I(τ). Lastly, we use the initial and long-term conditions for G and
X to further characterize the intermediary function.

2.1.1. Model review and non-dimensionalization. Denoting dimensional variables
with asterisks, let G∗ be the glucose concentration, I∗ be the concentration of
plasma insulin, and X∗ be the insulin in the interstitial fluid [5]. The equations
governing glucose disappearance during an IVGTT are given by the minimal model
[7, 8]; namely,

dG∗

dt
= −p∗1(G∗ −Gb)−X∗G∗ (1a)

dX∗

dt
= −p∗2X∗ + p∗3(I∗ − Ib). (1b)

where insulin is taken to be a known input function. Gb and Ib are the baseline
glucose and insulin concentrations, respectively, and p∗i are various rate parameters.
We assume the initial conditions for this system to be: G∗(0) = G0, X

∗(0) =
0, and I∗(0) = I0. Additionally, the long-term values for our variables are: G∗(∞)
= Gb, X

∗(∞) = 0, and I∗(∞) = Ib; that is, the glucose and insulin concentrations
return to baseline after a sufficient amount of time has passed. Bergman, Cobelli,
and colleagues also developed an equation to describe the IVGTT insulin kinetics
given a known glucose forcing function. These two subsystems, one for glucose
clearance and the other for insulin action, were not meant to serve as a closed,
coupled system for G, X, and I [8], and we will not treat them as such here.
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Moreover, due to the difficulties in insulin response detection, we only focus on the
subsystem controlling the glucose clearance in this study.

We non-dimensionalize equations (1) in accordance with Nittala et al. (choice c)
[29] so that the scaled variables are

G =
G∗ −Gb
G0 −Gb

, I =
I∗ − Ib
I0 − Ib

.

Assuming max(G∗) = G0 and max(I∗) = I0, both G and I range approximately
between [0, 1].1 We represent time as τ = t∗/t0 where t0 = 60 min, and the
remaining parameters are then given non-dimensionally as

p1 = p∗1t0, p2 = p∗2t0, p3 = p∗3t
2
0(I0 − Ib), and X = X∗t0. (2)

Using these scalings the minimal model becomes

dG

dτ
= −p1G−X(G+G1) (3a)

dX

dτ
= −p2X + p3I (3b)

where G1 is a dimensionless quantity:

G1 =
Gb

G0 −Gb
.

The initial conditions for this scaled system are: G(0) = 1, X(0) = 0, and I(0) = 1,
and all three quantities return to zero as τ →∞.

2.1.2. Explicit solution of the non-dimensional model. As pointed out by Nittala
and colleagues [29], X(τ) can be written in terms of I(τ) directly. The explicit
solution for (3b) is

X(τ) = p3e
−p2τ

∫ τ

0

ep2sI(s) ds. (4)

However, we may also solve the glucose differential equation (3a) with analytic
techniques since X(τ) is now a known function of I(τ).

Making the variable transformation Ĝ(τ) = G(τ) +G1 and utilizing the method
of integrating factors, we arrive at

G(τ) =
1

f(τ)

[
p1G1

∫ τ

0

f(τ̂) dτ̂ + f(0)(1 +G1)

]
−G1 (5)

where

ln (f(z)) =

∫ z

[p1 +X(z̃)] dz̃. (6)

From equation (6) we see that X(τ) can alternatively be expressed in terms of the
intermediary function f(τ); specifically,

X(τ) =
f ′(τ)

f(τ)
− p1. (7)

Note that equation (5) implies in particular that G(τ) only depends on the insulin
level X(τ) though the intermediary function f(τ). Further, equating (4) and (7)

1Note that IVGTT measurements, including our data discussed in the next section, may have

deviations from this range, primarily for two reasons: (i) the second-phase insulin peak may be
higher than the first-phase peak resulting in a scaled insulin value greater than one (this appears
to be especially true in patients with possible impaired glucose tolerance); and (ii) the glucose

(and insulin) concentration may return to baseline from below in which case our scaled variable
becomes negative.



ANALYSIS OF A GLUCOSE REGULATION MODEL 87

gives an implicit equation for the relationship between the plasma insulin concen-
tration and the intermediary function:

f ′(τ)

f(τ)
= p1 + p3e

−p2τ
∫ τ

0

ep2sI(s)ds. (8)

Returning to the proposed initial conditions, we find that G(0) = 1 is satisfied for
any choice of f(τ), but requiring X(0) = 0 dictates that

f ′(0)

f(0)
= p1. (9)

Further analysis on the system, such as applying the conditions as τ → ∞, hinges
upon further specifying the form of the intermediary function, f(τ).

2.2. Implementation. Obtaining an explicit solution for G and X leads to many
powerful analytic possibilities. We use our achieved solution to aid in patient-
specific model fitting in this paper; however, other applications are conceivable. In
what follows we present f(τ) as a series of exponentials and develop various specifi-
cations on this function. We examine a special case of f(τ) that leads to exponential
decay of the glucose and approximate inactivity of the interstitial insulin. We close
this subsection by establishing a numerical approach for determining individualized
parameters, which depends upon applying our explicit solution to observed human
data.

2.2.1. Solution specifications. In interest of analytic tractability, we assume the in-
termediary function to be composed of a series of exponentials; that is, let

f(τ) =

n∑
i=1

αie
βiτ (10)

where the parameter set {αi, βi}i=1,...,n ultimately characterizes each patient’s glu-
cose-insulin dynamics. The initial condition requirement for X (9) now stipulates
that ∑n

i=1 αiβi∑n
i=1 αi

= p1,

and the long-term condition for X yields maxi {βi} = p1, since the term with
the maximal exponent dominates as τ → ∞. Without loss of generality, we set∑n
i=1 αi = 1. Combining these conditions gives three equivalent quantities:

n∑
i=1

αiβi = max
i
{βi} = p1. (11)

Note that our long-term glucose condition is automatically satisfied as long as
maxi{βi} > 0, a specification already provided for by the minimal model since
p1 > 0 [7, 8].

Next we are tasked with determining the required number of exponential terms
to include in the expansion of f(τ). As outlined in A, it turns out that at least
three terms must be included in order to satisfy (11) and to retain the freedom of
unique exponents (β1 6= β2 6= . . . 6= βn). We therefore choose n = 3 to minimize the
complexity of our solution; however, the number of exponentials may be increased
if additional conditions are desired.
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Again without loss of generality, we pick max
i=1,2,3

{βi} = β3 and use (11) to solve

for β3. We thus find

β3 = (1− γ)β1 + γβ2 (12)

where

γ =
α2

α1 + α2
.

Requiring β3 ≥ β1 and β3 ≥ β2 then gives

(β2 − β1)γ ≥ 0, (13a)

(β2 − β1)(γ − 1) ≥ 0. (13b)

In summary, we find that the minimal model ODE system can be solved ana-
lytically where G, X, and I are associated via an intermediary function f(τ). We
write f(τ) as the sum of three exponentials

f(τ) = α1e
β1τ + α2e

β2τ + α3e
β3τ

and determine that the system’s initial and long-term conditions require (11). When
dictating

∑
i αi = 1 and maxi{βi} = β3, the coefficient of the third term is taken

to be

α3 = 1− α1 − α2, (14)

while the third exponent is given by (12). Lastly, the remaining coefficients and
exponents must satisfy the inequalities (13).

Now consider a special case in which all three of our exponents are roughly
equivalent, β1 ≈ β2 ≈ β3. Both expressions in (13) hold approximately at equality,
and since all exponents are nearly the same, we find f(τ) ≈ ebτ where b = p1 ≈ βi
for i = 1, 2, 3. The glucose and interstitial insulin solutions (5) and (7) reduce to

G(τ) ≈ e−bτ and (15a)

X(τ) ≈ 0. (15b)

Note that if f(τ) is simplified to a single exponential, then the non-dimensionalized
glucose concentration undergoes a simple exponential decay while X(τ) remains
static and approximately zero. The glucose-insulin dynamics in this case are markedly
different than those of the full model (β1 6= β2 6= β3).

2.2.2. Computational approach. We now develop a computational approach that
utilizes our formulated explicit equations to predict individual glucose dynamics
from patient IVGTT data. To this end, we apply an optimization algorithm based
on the least-squares error criterion to estimate the coefficients and exponents of
the intermediary function along with G1. The non-dimensional quantity G1 can be
calculated from Gb and G0, which are theoretically known for each patient; however,
regarding G1 as a parameter allows for added model flexibility [29].

We initialize our method by supplying an individual’s IVGTT data as well as
starting values for our unknown parameters. Once the glucose data has been non-
dimensionalized, we employ Matlab’s fmincon.m library function for parameter
estimation. (In the work presented here, we apply the active-set method, though
other schemes could easily be selected. Additionally, we choose the maximum func-
tion evaluations to be 2000 and a functional tolerance level of 10−5.) Since the
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fmincon.m routine allows for both linear and nonlinear constraints, we provide the
following conditions:

−max
i
{βi} ≤ 0 (16a)

−(β2 − β1)γ ≤ 0 (16b)

−(β2 − β1)(γ − 1) ≤ 0. (16c)

The first requirement (16a) dictates that at least one of the found exponentials
be nonnegative. (Recall maxi{βi} = p1 > 0.) The last two stipulations guarantee
that β3 = maxi=1,2,3{βi}. Once parameters that both satisfy the constraints and
minimize the glucose error are found, the remaining parameters, α3 and β3, are
calculated from (14) and (12), respectively. Equation (5) now completely determines
the predicted glucose time course and may be graphed for visual comparison with
the empirical data.

After the intermediary function is fixed, we use fmincon.m once more to deter-
mine the rate constants p2 and p3 by minimizing the difference between the left
and right hand sides of the implicit insulin equation (8). The individual’s observed
IVGTT insulin values serve as I and numerical integration is completed with the
trapezoid method. The only necessary constraints for this step are p2, p3 ≥ 0.

For the special case discussed at the end of Section 2.2.1 where β1 ≈ β2 ≈ β3,
we can simply perform a linear fit to the logarithm of our glucose data since
G ≈ exp(−bτ). We use Matlab’s polyfit.m routine and have p̂(τ) = p̂1τ + p̂2
where p̂ = lnG to determine b = p̂1. (Note that allowing for the constant p̂2 in
polyfit.m is analogous to admitting G1 into our parameter search set.) To avoid
log-transforming nonpositive numbers, we set any nondimensionalized glucose mea-
surements below ε = 10−2 to ε.

We now have natural starting values to run the full three-exponential method;
specifically,

[α
(0)
1 , α

(0)
2 , β

(0)
1 , β

(0)
2 ] = [1, 1, b, b]. (17)

This special case sufficiently models the glucose dynamics of some individuals and
returns β1 ≈ β2 ≈ β3. (See, for example, the patient data described in Section
3.2.1.) The simplified fit is not appropriate for many others, however, and new initial
values must be provided for {α1, α2, β1, β2}. The starting value for G1 is always

taken to be G
(0)
1 = Gb/(G0−Gb), and we choose p

(0)
2 = 3 and p

(0)
3 = 0.036 · (I0−Ib)

to reflect typical quantities in the insulin error minimization [13].

3. Results.

3.1. IVGTT data. We present the results of applying our analytic-numeric for-
mulation to observed human data in this section. For each individual studied, we
determine parameters describing the glucose clearance pattern with our minimiza-
tion routine. We observe that the resolved pattern may follow either a simplified
exponential decay or may require our more complex full model. We provide repre-
sentative examples of each in Sections 3.2.1 and 3.2.2, respectively, and we remark
that many other patients likewise fall into one of these two categories. We also com-
pare our results to those obtained using a traditional ODE solver method and two
other models of glucose-insulin dynamics based on delay-equations. Lastly, we dis-
cuss applications of our approach including predicted time to baseline recovery and
the quantification of well-known diabetic composite parameters: insulin sensitivity
and glucose effectiveness.



90 FESSEL, GAITHER, BOWER, GAILLARD, OSEI AND REMPALA

Table 1. Resulting Intermediary Function Parameters {α, β}

Index, i 1 2 3

Patient 1
αi 1.000 1.000 -1.000
βi 1.565 1.565 1.565

Patient 2
αi 4.846 -8.797 4.951
βi -0.581 0.045 0.813

Patient 3
αi 9.249 -18.92 10.67
βi 0.499 1.196 1.862

We execute our proposed method on IVGTT data gathered from several human
patients. Patients included in this research were participants in an intervention
study examining the effect of weight loss on high-density lipoprotein functionality
in a population of overweight and obese adults with pre-diabetes not on diabetes
medications or statins. Data presented in this paper were extracted from the base-
line examination. The study was reviewed and approved by the Institutional Review
Board at the Ohio State University Wexner Medical Center; all study participants
provided written informed consent prior to data collection.

Glucose and insulin concentrations were collected from each individual at 0, 2,
5, 8, 10, 16, 19, 22, 25, 30, 40, 60, 90, 120, 140, 160, and 180 minutes post-bolus
injection. The first glucose recording, measured simultaneously with injection, is
taken to be the known baseline glucose, Gb. The second time point marks the
maximal glucose value in all but a few patients in our data set, so our constructed
numerical method is used to predict the glucose time course from two minutes
onward.

3.2. Example studies.

3.2.1. Patient 1: Single-exponential fit. The glucose clearance of our first example
patient can be sufficiently modeled with a single exponential; that is, G(τ) ≈ e−bτ

where b = p1 ≈ βi for i = 1, 2, 3. Applying a linear fit to the logarithm of our non-
dimensional data yields a predicted value of b = 1.602. We use this value to initialize
the full computational program as specified by (17). The resulting coefficients from
this method are listed in Table 1. While the exponential values are not precisely
equivalent to b,2 we do find that β1 ≈ β2 ≈ β3.

Figure 1 shows the full, three-exponential fit for Patient 1 which is characterized
by the parameters given in Table 1. Though not shown in the figure, we remark
that the simplified, single-exponential fit closely follows this predicted curve.

3.2.2. Patients 2 and 3: Full model fit. Our second and third example patients
exhibit glucose clearance dynamics that cannot be modeled with a single exponential
function. Applying the simplified model to the dataset of Patient 2 yields b = 1.908;
however, using this value to initiate the full computational program as in (17) gives

2The minor discrepancy between b and βi is attributed to setting a tolerance for the logarithm

values and to the fact that we are using two different error metrics to obtain our predicted param-

eters. Given N data points, the method for the full model minimizes
∑N

k=1

(
Gdata,k −Gfit,k

)2
;

however, in the single-exponential fit we minimize
∑N

k=1

(
ln
(
Gdata,k

)
− ln

(
Gfit,k

) )2
.
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Figure 1. Glucose model fit (solid red) along with its 95% Gauss-
ian confidence envelope (dashed red) for the data from Patient 1
(black dots). This individual’s predicted glucose clearance roughly
follows exponential decay. The dotted, horizontal line represents
the baseline glucose concentration and has been included for refer-
ence.

an approximate single-exponential fit that does not match the patient data well,
primarily because this glucose pattern returns to baseline from below.

Alternatively, we launch our full method with the starting parameters taken as

[α
(0)
1 , α

(0)
2 , β

(0)
1 , β

(0)
2 ] = [0.5, −10, −1, 2]. From these initial values, we arrive

at the coefficients and exponents listed in Table 1 for Patient 2. Note that the
exponentials found with this method are not equivalent (β1 6= β2 6= β3) and that
the full model now appropriately fits the glucose data as represented by the solid
red curve in Figure 2 (top). We also predict the interstitial insulin concentration
from formula (7), as illustrated by the blue curve in Figure 2 (top).

We must use the full, three-exponential model to achieve an appropriate fit for
the glucose patterns of many other patients in our dataset including Patient 3.
Following the same procedure described for Patient 2, the final resulting parameters
for Patient 3 are listed in Table 1. The model glucose and interstitial insulin curves
for Patient 3 are displayed in Figure 2 (bottom).

3.3. Fit comparison with ODE solver and delay differential equations. We
now consider how our analytic method fares when compared against other glucose
models, including the minimal model upon which it is based, and two more complex
delay-time methods.

Algorithms which fit IVGTT data with the minimal model, including variants
of the MINMOD software, traditionally iterate between two steps: estimation
of patient-specific parameters, frequently accomplished with the method of least
squares, and glucose curve fitting, conventionally performed via a numerics-based
ordinary differential equation (ODE) solver [13, 31, 34]. (Recall that while we use
least squares for parameter fitting, we do not rely upon an ODE solver because we
have developed an explicit time-glucose formula.)

An additional refinement for glucose-insulin modeling is to incorporate the base-
line insulin concentration as a state-value which pre-exists before the injection.
This improvement necessitates delay differential-equation models, of which two of
the better-known are those of De Gaetano and Arino ([21]) and Li et al. ([25]).
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Figure 2. Glucose model fit (solid red) along with its Gaussian
95% confidence envelope (dashed red) to the patient data (black
dots) for Patient 2 (top) and Patient 3 (bottom). The glucose clear-
ance depicted here cannot be modeled by a single exponential and
requires the use of our full, three-exponential method. The pre-
dicted interstitial insulin concentration (solid blue) is calculated
from equation (7). The dotted, horizontal line indicates the indi-
vidual’s baseline glucose concentration for reference.

Table 2. R2 values for goodness-of-fit of four models to glucose
data, for times t ≥ 8.

Patient 1 Patient 2 Patient 3

Explicit .9853 .9809 .9965

ODE solver .9807 .9400 .9763

DDE - De Gaetano .9500 .9830 .9659

DDE - Li .9499 .9830 .9659

In this section we compare the fit achieved using our routine to that obtained by
solving the minimal model with a typical ODE solver (namely the Matlab routine
gluc mm mle2012.m developed by Natal van Riel [34, 35]) and also to the fit of De
Gaetano’s and Li’s models (which we apply to our data using the Matlab routine
dde23.m).

In Figure 3 we see the curves predicted for Patients 1 and 3’s glucose by the
four models - our explicit, the ODE minimal-model, and De Gaetano and Li’s delay
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Figure 3. Glucose model fit (solid red) along with ODE solver
gluc mm mle2012.m fit (dashed blue) to the patient glucose data
(black dots) for Patients 1 and 3. De Gaetano’s and Li’s models,
fitted to both glucose and insulin data (insulin data not shown),
appear in dashed magenta and cyan and coincide so closely as to
be indistinguishable. (The fit for Patient 2 is very similar for the
three non-ODE models; see Table 2.)

differential equations (DDE) models. One obvious initial conclusion is that Li and
De Gaetano’s models are significantly less accurate than the minimal and exact
models in the description of glucose, for these two datasets. (In the case of the
second patient, the three non-ODE- models are of very comparable accuracy and
hence their graphs are omitted—see Table 2.) We regard this tendency towards
inferior fitting as a simple consequence of the two more complicated models’ need
to account for insulin concentrations.

Another point is that the ODE-solver-based method (i.e. the minimal model,
numerically approached) is inferior to the other three models in the initial region
t = 0 . . . 8.

In Table 2 we quantify the fit of all four models by computing their corresponding
coefficients of determination 3 (R2 values) for the three patients’ glucose data (which
we utilize as our measure of fitness, following De Gaetano’s lead [21]. Also following
De Gaetano, we ignore those glucose measurements recorded before time t = 8.) 4

We see that when only glucose dynamics are considered, our explicit model performs
better for Patients 1 and 3, and with comparable accuracy for Patient 2.

Finally, we remark upon the deviations between explicit and MINMOD ODE
models which occur near the beginning and the end of the IVGTT time course.
The main reason for these differences is that van Riel’s ODE solver (similarly to
the DDE models) uses a weighting scheme which downweights the first few data
points; whereas, we have chosen to weight each measurement equally. More on this
subject can be found in the Discussion.

3.4. Further applications.

3.4.1. Time to baseline recovery. The time required for a patient’s glucose level
to return to baseline after bolus injection reflects the individual’s health status

3Note that in our case the coefficient of determination is calculated for dependent (time series)

data. It therefore does not have the usual interpretation related to the correlation coefficient.
4 The DDE and ODE models are fitted to both glucose and insulin data; however, the R2 values

are computed entirely on the basis of the model’s prediction of glucose. The data for patient two
is not shown in Figure 3, but the fit is seen as worse than for patients 1,2.
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[10, 24, 30]. Since our approach produces an explicit expression for the temporal
glucose concentration, we can easily extend the time course beyond the length of the
IVGTT experiment to predict when a patient returned to his/her baseline glucose
level. In this study we define the time to baseline recovery (tb) as the point where
the individual’s predicted glucose level recovers to within 5% of Gb and remains as
such for 10 minutes thereafter.

Consider the glucose trajectories of Patients 1 and 2. As seen in the left panel
of Figure 4, we predict that Patient 1 returns to glucose baseline 163 minutes after
injection, a time point within the duration of the IVGTT. Patient 2, however,
does not return to baseline within the confines of the 180-minute test. Our model
predicts that Patient 2 returned to baseline at tb = 372 min. This type of simple
predictive analysis could possibly shorten the recommended IVGTT duration or
serve as a metric to indicate existence or severity of disease. Further note that the
ODE solver methods do not yield an explicit time-glucose relationship and therefore
cannot be extended to predict time of return to baseline.

3.4.2. Insulin sensitivity and glucose effectiveness. An important measure for health
quantification is insulin sensitivity, SI . From the Bergman-Cobelli minimal model
[7, 8] and the scaling (2), we have that

SI =
p∗3
p∗2

=
p3

p2t0(I0 − Ib)
.

Firstly, note that determining the insulin sensitivity from the model fit for Pa-
tient 1 is impossible. Since f(τ) ≈ ebτ and b ≈ p1, equation (8) is only satisfied if
p3 ≈ 0. Our insulin error minimization technique is consistent with this observa-
tion and returns a value for p3 that is below computational tolerance for Patient 1.
This clearly demonstrates a weakness in assuming the glucose concentration fol-
lows strict exponential decay. If the glucose is assumed exponential, the minimal
model concludes that insulin does not affect the glucose clearance dynamics at all.
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Figure 4. Extended dynamics of the parameterized glucose func-
tion. The time of return to baseline glucose (tb) is indicated by
the vertical line; all times thereafter are shaded gray. Our explicit
solution predicts tb = 163 min for Patient 1 (left) and tb = 372
min for Patient 2 (right). Each patient’s baseline glucose value is
indicted by the dashed line for reference.
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Table 3. Dimensional Rate Parameters and Composites

Patient 1 Patient 2 Patient 3

Explicit ODE Explicit ODE Explicit ODE

p∗
1 (×102) 2.608 0.001 1.355 0.389 3.103 1.232

p∗
2 (×102) – 2.199 3.270 2.804 4.539 4.172

p∗
3 (×106) – 2.633 5.510 5.031 9.724 10.12

SG (×102) 2.608 0.001 1.355 0.389 3.103 1.232

SI (×104) – 1.197 1.685 1.794 2.142 2.426

The glucose concentrations of Patients 2 and 3, however, do not follow simple ex-
ponential decay, and while we do not predict the plasma insulin time course with
this approach, we can effectively approximate p2, p3, and thus SI for this group of
individuals.

The glucose effectiveness, on the other hand, can be calculated for all patients
during the glucose curve fitting. This diabetic measure, SG, is equivalent to the
first rate parameter; that is, SG = p∗1. We list the resulting dimensional values for
{p∗1, p∗2, p∗3} along with the composite parameters {SG, SI} for all three patients in
Table 3. We also compare the values obtained with our method (columns labeled
“Explicit”) to those found using van Riel’s method (columns labeled “ODE”) [35].
The associated units for each parameter are min−1 for p∗1, p∗2 and SG; [mU/L]−1min−2

for p∗3; and L·mU−1·min−1 for SI .

4. Discussion. The minimal model developed by Bergman, Cobelli, and colleagues
nearly three decades ago endures in modern diabetes literature for quantifying in-
sulin sensitivity (SI), glucose effectiveness (SG), and for inferring diabetic risk from
frequently sampled IVGTT data. In this paper we have provided a mathematical
solution to the minimal model thereby translating this coupled differential equa-
tion system into explicit, time-dependent formulas which rely on the analysis of
glucose dynamics only. Exploiting the straightforwardness of our solution as well
as contemporary advances in numerical minimization algorithms, we have resolved
some of the issues with the original MINMOD software [31]. For example, with
our approach it is now possible to administer computational constraints to ensure
that pi ≥ 0. We have compared our model fit and parameter estimations to the
results of a typical minimal model ODE solver as well as the fits of two more recent
models utilizing delay differential equations of De Gaetano and Arino [21] and Li et
al. [25]. Additionally, we arrived at critical composite parameters (SI and SG), and
we showed how our explicit solution can predict future glucose dynamics including
the time of return to baseline (tb).

In our analysis we identified one basic classification scheme based on whether or
not a patient’s glucose concentration pattern followed a simple exponential decay.
As pointed out in the literature [5], a single exponential curve cannot account for
the rich dynamics of glucose clearance which occurs in multiple stages, often with
the glucose concentration returning to baseline from below. A single-exponential fit
cannot model such scenarios since it only accounts for the intrinsic glucose decay;
that is, dG

dτ = −p1G, which means the insulin action is disregarded and X ≈ 0.
Consequently, a single exponential decay pattern may indicate insulin insufficiency



96 FESSEL, GAITHER, BOWER, GAILLARD, OSEI AND REMPALA

just as dips below baseline may indicate insulin overcompensation. Our full, three-
exponential model shows promise for capturing a wide variety of clearance patterns,
including those suggesting insulin deficiency or surplus, which may aid researchers
studying diabetes onset.

In Pacini and Bergman’s computational implementation of the minimal model
(MINMOD) [31] as well as several other approaches, weighting schemes are com-
monly adopted, especially for the first few glucose data points which are often
omitted since extracellular mixing prevails during this time period. While we did
not employ a weighting scheme for the work presented here, we have for compari-
son attempted 1) relative weighting and 2) downweighting of the first few IVGTT
measurements but we found that these refinements did not significantly influence
our results.

In our analysis of the IVGTT data the explicit model outperformed decisively the
minimal model ODE solver method as well as in two out of three cases also the two
more recent alternative models of glucose-insulin control system of De Gaetano and
Arino [21] and Li et al. [25]. Although these two models are based on more detailed
physiological analysis of glucose-insulin interactions and apply more sophisticated
modeling tools, when restricted to the glucose subsystem only they do not seem
as capable of reproducing the correct IVGTT dynamics as the explicit model. We
hope to conduct further, more comprehensive comparisons to this end in the near
future.

Indeed, our presented work serves as proof of concept for future larger studies
aimed at establishing clearer reference ranges among healthy, pre-diabetic, and
diabetic individuals. Apart from potentially simplifying the IVGTT protocol itself,
the favorable predictive properties exhibited by the explicit model could be also
useful when analyzing datasets with missing or less frequent time point data. With
a given mathematical solution to the minimal model, we can potentially reconstruct
glucose response curves using a smaller number of observed data points (and no
insulin data) as well as exploit analytic techniques to test parameter sensitivities.
The ability to predict glucose behavior beyond measured time points affords us
an opportunity to better characterize pathophysiological features of the diabetes
development process. Additionally, our explicit approach to modeling IVGTT data
could conceivably be adapted to the more widely used oral glucose tolerance test
(via the model proposed by Caumo et al. [16], for example).

Acknowledgments. We would like to thank Dr. Arthur Sherman, as well as both
reviewers and the associate editor for their helpful comments.

Appendix A. Details of model calculations. Taking the intermediary func-
tion to be a series of exponentials (10), we firstly note that setting n = 1 yields a
solution that satisfies (11). The emerging function for this choice is very restrictive,
however, in that the resulting glucose concentration is predicted to follow rigid ex-
ponential decay while the interstitial insulin level is approximately zero throughout
the IVGTT. (See the derivation below for the similar case when all exponents are
approximately equal.) This situation fails to capture the complex dynamics of many
individuals’ glucose clearance patterns and is therefore undesirable.

If we take n = 2, our intermediary function is

f(τ) = α1e
β1τ + α2e

β2τ ,
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and equation (11) becomes

α1β1 + α2β2 = max
i=1,2
{βi}. (18)

Without loss of generality, we assume maxi=1,2{βi} = β2. We also have
∑
i αi = 1,

which for this case means α2 = 1− α1. Equation (18) thus gives

α1β1 + (1− α1)β2 = β2, (19)

and the only way to satisfy (19) is to set β1 = β2. This requirement induces the same
model inflexibility mentioned for the n = 1 case. We thus find the smallest number
of exponentials that can satisfy (11) with multiple unique exponents is n = 3.

While three exponentials are so required, we turn our attention to a special case
in which all three exponents are approximately equal; that is, β1 ≈ β2 ≈ β3. Since
the sum of the coefficients is one, we find

f(τ) ≈ ebτ (20)

where b = max{βi} ≈ βi for i = 1, 2, 3. Substituting (20) into our analytic glucose
solution (5), we find

G(τ) ≈ e−bτ
[
p1G1

∫ τ

0

ebτ̂ dτ̂ + (1 +G1)

]
−G1,

and upon recalling b = maxi{βi} = p1, we arrive at

G(τ) ≈ e−bτ .
Furthermore, the concentration of insulin in the interstitial compartment (7) re-
mains near zero for all times in this special case:

X(τ) ≈ bebτ

ebτ
− p1 = 0.
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