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Abstract. Protein-protein interaction networks associated with diseases have
gained prominence as an area of research. We investigate algebraic and topo-

logical indices for protein-protein interaction networks of 11 human cancers

derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base. We find a strong correlation between relative automorphism group sizes

and topological network complexities on the one hand and five year survival

probabilities on the other hand. Moreover, we identify several protein families
(e.g. PIK, ITG, AKT families) that are repeated motifs in many of the cancer

pathways. Interestingly, these sources of symmetry are often central rather
than peripheral. Our results can aide in identification of promising targets for

anti-cancer drugs. Beyond that, we provide a unifying framework to study

protein-protein interaction networks of families of related diseases (e.g. neu-
rodegenerative diseases, viral diseases, substance abuse disorders).

1. Introduction. Biological networks have been an active area of research for some
years, see e.g. [12, 17, 18] and the references therein. In earlier work [5] we reported
that molecular signaling network complexity is correlated with cancer patient sur-
vival. In that work we reported the degree entropy, a statistical mechanics measure
of network complexity, see also the related work of Takemoto and Kihara [23]. Here
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we focus on the relative sizes of automorphism groups and the dimensions of the
cycle spaces (cyclomatic numbers).

Complex real-world networks contain feedback loops to enable the network “com-
munication” to continue in the face of node failure [1]. In the case of protein-protein
interaction (PPI) networks this means that inhibition of a specific node may or may
not have any effect. It is well known that targeting hub nodes in networks often
causes the network to break up into multiple components and this could be lethal,
because many protein hubs in PPIs for cancer are also important proteins in meta-
bolic networks. As we argued in [5], targeting nodes with high-betweenness has
higher potential for improved cancer treatment. Selective targeting of nodes in a
PPI for cancer treatment is fraught with difficulties.

In this paper we apply two more algebraic and topological indices to study cancer
PPI networks and show correlation with 5 year patient survival. In addition, we
report the symmetry groups and orbit equivalence classes themselves. We identify
several repeated motifs of proteins that are “interchangeable” in a sense to be
specified below. In the long run we anticipate that the methods described here will
aid identification of potential drug targets. Group theory has been extremely useful
in physics and chemistry to study symmetries of crystals, molecules and elementary
particles. As suggested earlier in [21], we believe that it also has a very valuable
role to play in biology.

2. Results. A network is an undirected graph G = (V,E) with vertex set V and
edge set E. When applying this terminology to cancer networks, the vertices are
proteins and two vertices are connected by an edge if there is a known interaction of
the two partners, either by direct binding or by enzymatic catalysis. We emphasize
that all graphs are undirected, which is, of course, a simplification. Beyond can-
cer pathways, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
also contains pathways related to immune diseases (e.g. asthma), neurodegenerative
diseases (Alzheimer’s disease, Parkinson’s disease), substance dependence, cardio-
vascular diseases, viral diseases and many others [13, 14]. The KEGG networks
are assembled from the literature by searches for experimental confirmation of the
relevant interactions. Each interaction is always confirmed by two or more differ-
ent experimental techniques such as pull-down mass spectrometry, yeast two-hybrid
and various biochemical tests. Naturally, networks constructed from experimental
results are likely to contain errors, which are however impossible to quantify. There
is no correlation between low survival rate in a cancer and heightened research
interest and increased knowledge about it [5], so we can rule out a systematic bias.

An automorphism is a permutation φ : V → V that preserves the adjacency
relation, that is,

(u, v) ∈ E ⇔ (φ(u), φ(v)) ∈ E.
With the operation of composition, the automorphisms form a group Aut(G). The
relation on the set of vertices

u ∼ v ⇔ there exists a φ ∈ Aut(G) such that v = φ(u)

is an equivalence relation and its equivalence classes are called the (group) orbits.
MacArthur et al. [19] list 20 examples of real world networks and their rich sym-

metry groups. This is in contrast to large random graphs, such as graphs from
the Erdős-Rényi model G(n, p). Here n is the number of vertices. Edges are inde-
pendently present with probability 0 < p < 1. Such graphs have only the trivial
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automorphism, with probability approaching one, in the limit n → ∞ [4, Chapter
IX]. The difference is not surprising if one realizes that real networks display a mod-
ular structure, with vertices organized in communities tightly connected internally
and loosely connected to each other [8]. This results in the presence of symmetric
subgraphs such as trees and complete cliques.

Figure 1 shows as an example the protein-protein interaction network of pancre-
atic cancer as retrieved from the KEGG database. We find that the automorphism
group of this network is isomorphic to the direct product of symmetric groups
(groups of permutations of n symbols)

Aut(G) ∼= S9
2 × S6

3 × S2
5 × S8,

see Table 1 for a complete list of automorphism groups. Tables S1-S11 contain
the orbit equivalence classes of the respective groups (Supplementary Material).
Remarkably, symmetries do not only arise due to tree subgraphs at the “ends” of the
network, but also due to “central” nodes, that have high degree and whose neighbors
do not have mostly degree one (highlighted in yellow in Figure 1). Thus any flow
of information that passes through one node in such an orbit equivalence class may
pass through any other node in the same equivalence class. The presence of such
modular patterns indicates a high level of redundancy which confers robustness to
the associated biological system (tumor cells). We suggest that to interrupt the flow
through such a network most efficiently, the nodes adjacent to large central orbits
are the best to be targeted for example by pharmacological agents that inhibit a
specific protein-protein interaction pair. Similar suggestions have been made in
[6, 7, 25]. The use of automorphism groups has, to the best of our knowledge, not
yet been proposed.
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Figure 1. The protein-protein interaction network of pancreatic
cancer. The network was retrieved from the KEGG database [13,
14] and contains 69 vertices and 137 edges. Its automorphism group
was determined with saucy [15], namely Aut(G) = S9

2 ×S6
3 ×S2

5 ×
S8. Highlighted in yellow are three central orbits of nodes of degrees
3, 4 and 8, respectively. Two of these are the PI3K (eight yellow
nodes) and the AKT families (three yellow nodes), respectively.

Automorphism groups are often used to measure the complexity of a network
[26]. In order to make automorphism group sizes of graphs with n = |V | vertices
comparable, we use the suggested normalization from [26] and compute the ratio

βG =

(
|Aut(G)|

n!

) 1
n

.
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This relates the size of Aut(G) to the size of the automorphism group Sn of the
complete graph on n vertices.

Cancer n Aut(G) |Aut(G)| c βG µG

AML 62 S7
2 × S4

3 × S4 × S2
7 1.011 · 1014 1 7.03 · 10−2 108

Bld 29 S5
2 × S3

3 × S4 1.658 · 105 3 1.29 · 10−1 20
CML 73 S8

2 × S7
3 × S4 × S2

5 × S8 9.98 · 1017 3 6.3 · 10−2 115
Col 49 S5

2 × S4
3 × S2

4 × S8 9.63 · 1011 3 9.2 · 10−2 58
End 44 S5

2 × S4
3 × S4 × S5 × S8 4.82 · 1012 2 1.1 · 10−1 45

Gli 64 S8
2 × S6

3 × S4
4 × S6 2.85 · 1015 2 7.0 · 10−2 128

NSCL 48 S7
2 × S5

3 × S3
4 1.37 · 1010 1 8.6 · 10−2 75

Pc 69 S9
2 × S6

3 × S2
5 × S8 1.39 · 1016 4 6.4 · 10−2 72

Ren 60 S8
2 × S2

3 × S6 × S8 × S18 1.7 · 1027 3 1.2 · 10−1 52
SCL 77 S4

2 × S4
3 × S4 × S6 × S8 × S12 × S18 4.4 · 1037 2 1.0 · 10−1 150

Thyr 28 S4
2 × S2

3 × S4 × S7 7.0 · 107 3 1.7 · 10−1 24

Table 1. Automorphism groups of all cancers. Column n contains
the number of vertices, column c contains the number of connected
components of the protein-protein interaction network. The abbre-
viations are the same as in Figure 3.

A second graph invariant is of topological nature. A cycle (or Eulerian subgraph)
is a sequence of adjacent edges that starts and ends at the same vertex and uses no
edge twice. Note that a cycle need not be connected. The set of all cycles C(G) can
be made a vector space over the field Z2 as follows. The sum of cycles C1 and C2

is the symmetric difference

C1∆C2 = (C1 ∪ C2) \ (C1 ∩ C2)

(of the edge sets), the negation is −C = C, zero is the empty cycle and 1C =
C, 0C = ∅. The dimension of this vector space is called the cyclomatic number
µG, or the circuit rank. Loosely speaking, it is a count of the “independent” loops,
see Figure 2. It is shown in [3, 16] that for a graph with n vertices, m edges and c
connected components, µG is given by

µG = m− n+ c.

The quantities βG and µG are listed in Table 1 for all cancers under consideration.
We plot these two indices against the five year survival probability p, obtained

from the Surveillance, Epidemiology and End Results (SEER) database [20] for 11
types of cancer in Figure 3. Interaction networks with larger values of βG or equiv-
alently greater symmetry are associated with better chances of survival. A large
value of µG indicates high topological complexity and correlates with decreased
chance of survival. We find that both coefficients of determination of a linear fit
are R2 = 0.52 with corresponding P -value P = 0.011 (the equality is coincidental).
These coefficients of determination are comparable to those reported by Breitkreutz
et al. [5] and Takemoto and Kihara [23] for the modularity of the cancer signaling
networks. A fit of the survival probabilities to uniformly distributed random num-
bers on the same range as βG results in R2 = 0.006, Supplementary Figure S1.
There are widespread differences in detection stage, metastasis status, treatment
and general health of the patient that are unfortunately not accessible from the
SEER database. Nevertheless, given this large amount of natural uncertainty in
the data, this indicates a strong correlation of averages. It would be invaluable
for future research to classify database entries according to some of the parameters
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C1 C2

C3

Figure 2. The cycle space of a simple graph with four vertices.
The graph G is shown in black and three cycles C1, C2 and C3

are marked in red, blue and green, respectively. Any of the sets
{C1, C2}, {C1, C3} and {C2, C3} is a basis of the cycle space C(G) =
{∅, C1, C2, C3}.

mentioned above. Since both the automorphism group size βG and the cyclomatic
number µG are correlated to the five year survival probability p, it is to be expected
that these two quantities are correlated to each other, for the the protein-protein
interaction networks of cancers that are the object of our study, see Figure 4, left
panel. However, it is easy to construct examples of graphs that show no correlation
between βG and µG, see Figure 4, right panel.

3. Discussion. The nodes of the orbit equivalence class of the highest degree in
each cancer were analyzed for the protein functions using the the Database for An-
notation, Visualization and Integrated Discovery (DAVID) [10, 11]. This database
provides bioinformatics tools that identify and characterize several aspects of genes
and their encoding proteins including gene ontology (GO) terms, protein molecular
functions and their interacting proteins. It also helps to visualize KEGG pathway
maps of genes. We suggest that orbit-equivalent nodes of highest degree are the
most significant to the respective type of cancer, since they provide the greatest
possible redundancies in a signaling pathway and hence confer robustness on the
cancer cell [8]. Below we discuss in detail each cancer analyzed and how the various
member proteins of an equivalence class are related to one another.

KRAS, NRAS and HRAS form the orbits of the highest degree for thyroid cancer,
AML and glioma with degrees 8, 12 and 20, respectively. These proteins have
GTPase activity and they all play a role in integrin affinity modulation. AKT1,
AKT2 and AKT3 are the equivalent nodes of highest degree for colorectal cancer,
NSCL and CML with degrees 8, 12 and 14, respectively. These proteins belong
to a class of serine/threonine protein kinases and are involved in many pathways
including the MAPK signaling, ErbB signaling and apoptosis. All three proteins
have the same molecular functions such as nucleotide and ATP binding. However,
AKT1 has additional molecular functions as a nitric oxide synthase and can bind
lipids and enzymes. In bladder cancer, MAPK1 and MAPK3 are equivalent nodes
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Figure 3. Automorphism group sizes and cyclomatic numbers. A
plot of relative automorphism group size βG (left) and cyclomatic
number µG (right) against five year survival probability p for 11
types of cancer. In both cases we have the coefficients of determi-
nation of the linear fits R2 = 0.52 and P -value P = 0.011. The
cancer types are AML: acute myelogeneous leukemia, Bld: bladder
cancer, CML: chronic myelogeneous leukemia, Col: colorectal can-
cer, End: endometrial cancer, Gli: Glioma, NSCL: non-small cell
lung cancer, Pc: pancreatic cancer, Ren: renal cancer, SCL: small
cell lung cancer, Thyr: thyroid cancer. The width of the horizontal
error bars is 0.1, the width of the vertical error bars is 0.02 in the
left panel and 20 in the right panel. These errors are estimated as
the actual error is unknown.
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Figure 4. Mutual relation between βG and µG. (Left) A plot of
cyclomatic number µG against relative automorphism group size βG
for the 11 protein-protein interaction networks of cancers. (Right)
In general, these quantities are not related. Shown are a highly

symmetric graph with trivial cycle space (top, βG =

(
1

13

) 1
13

=

0.82, µG = 0) and an asymmetric graph with large cycle space
(bottom, βG = 0, µG = 19− 12 + 1 = 8).

of degree 6. Since both belong to the same family of kinase-related transforming
proteins, they are involved in the same pathways including the MAPK, mTOR and
chemokine pathways. MAPK1 has additional functions by being able to bind to
phosphoproteins.
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RELA and NFκB1 are the nodes of highest degree in pancreatic cancer and SCL
(14 and 13, respectively). It is interesting to note that the proteins are involved in
the same pathways despite the fact that they belong to two different families. They
both share common molecular functions by being able to bind to DNA and have
transcription regulation activities. RELA has additional functions such as ion and
enzyme binding. On the other hand, NFκB1 can bind to promoters and has protein
dimerization activity.

In endometrial cancers, the equivalent PDPK1 and ILK proteins have the highest
degree 10. Although both proteins share common molecular functions, ILK can
bind to integrin, SH3 domains and has protein tyrosine kinase activity. PDPK1,
however, can bind to insulin receptors and enzymes, including kinases, and has
3-phosphoinositide-dependent protein kinase activity. Interestingly, they are both
part of the peroxisome proliferator-activated receptors (PPAR) signaling pathway
and they play a role in focal adhesion processes. Additionally, PDPK1 plays a role in
other pathways such as mTOR signaling, insulin signaling and aldosterone-regulated
sodium reabsorption. Finally, EPAS1 and HIF1A, have the highest degree 18 in
the renal cancer network. These proteins can bind DNA, enzymes, transcription
factors and histone acetyltransferases, while only HIF1A can bind to Hsp90. The
two proteins also play roles such as RNA polymerase II transcription factor, in
transcription regulation as well as protein dimerization.

Further study of the automorphism groups reveals repeated motifs in sev-
eral interaction networks. The eight proteins from the PIK3C{A,B,D,G} and
PIK3R{1,2,3,5} family form a single orbit equivalence class in seven of the networks
(AML, CML, colorectal, endometrial, pancreatic, renal and SCL cancers) and are
split in two orbit equivalence class in two more networks (glioma and NSCL). The
three proteins AKT{1,2,3} are orbit equivalent in eight networks (CML, colorectal,
endometrial, glioma, NSCL, pancreatic, renal and SCL cancers), that is, when-
ever they appear in the network to begin with. These players have been known
for a long time to be of crucial importance to the initiation and progression of
cancer, mainly due to the various biological and biochemical assays performed on
cancer cells. However, our conclusions stem directly from a group-theoretic anal-
ysis of the PPI networks and they are network specific. Since its initial discovery
as a proto-oncogene, the serine/threonine kinase AKT has become a major fo-
cus of attention because of its critical regulatory role in diverse cellular processes,
including cancer progression and insulin metabolism. The AKT cascade is acti-
vated by receptor tyrosine kinases, integrins, B and T cell receptors, cytokine re-
ceptors, G-protein-coupled receptors and other stimuli that induce the production
of phosphatidylinositol (3,4,5)-triphosphates (PtdIns(3,4,5)P3) by phosphoinositide
3-kinase (PI3K). These lipids serve as plasma membrane docking sites for proteins
that harbor pleckstrin-homology (PH) domains, including AKT and its upstream
activator PDK1. The tumor suppressor PTEN is recognized as a major inhibitor
of AKT and is frequently lost in human tumors. There are three highly related iso-
forms of AKT (AKT1, AKT2, and AKT3), which represent the major signaling arm
of PI3K. For example, germline mutations of AKT have been identified in patho-
logical conditions of cancer and insulin metabolism. AKT regulates cell growth
through its effects on the TSC1/TSC2 complex and mTOR pathways, as well as
cell cycle and cell proliferation through its direct action on the CDK inhibitors p21
and p27, and its indirect effect on the levels of cyclin D1 and p53. AKT is a major
mediator of cell survival through direct inhibition of pro-apoptotic signals such as
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the pro-apoptotic regulator BAD and the FOXO and Myc family of transcription
factors. AKT has been demonstrated to interact with Smad molecules to regulate
TGF-β signaling. These findings make AKT an important therapeutic target for
the treatment of cancer.

Interestingly, the network of small cell lung cancer contains an enormous orbit
of 18 equivalent nodes of degree six. This orbit consists of laminines, collagens and
a fibronectin that are major proteins in the basal lamina. All nodes are connected
to six members of the integrin family of transmembrane receptors.

4. Conclusion. We have shown that the relative size of the automorphism groups
and the cyclomatic numbers for cancer pathway networks from the KEGG database
are both correlated with five-year survival of cancer patients. This is in line with
similar earlier results by Breitkreutz et al. [5] and Takemoto and Kahira [23] on
degree entropy and network modularity. Determination of the specific reasons for
these great discrepancies in survival rates remains a topic for future research. In-
terestingly, cancers with more symmetric interaction networks are associated with
better survival rates. This may be due to a greater robustness to failure, which,
somewhat counterintuitive, is a positive feature in this context.

We suggest that selective removal of nodes from the network (clinically equiva-
lent to protein inhibition) and reinterpolation on the linear curves helps to identify
potential drug targets. This indicates that complexity of a biochemical network
involved in a deregulated cell cycle as exemplified by cancer cells is of crucial im-
portance to its robustness. This is manifested by various redundancies in the PPI
network that make the search for a therapeutic “silver bullet” an impossible task.
We suggest that selective removal of nodes from the network (clinically equivalent
to protein inhibition) and re-interpolation on the linear curves helps to identify
potential drug targets. We have shown that PI3K and AKT families of proteins
appear to be the most suitable targets for pharmacological inhibition in the most
number of cancer types studied. It is encouraging that there are several AKT path-
way inhibitors in clinical development, e.g. perifosine (KRX-0401, Aeterna Zen-
taris/Keryx), MK-2206 (Merck), and GSK-2141795 (Glaxo-SmithKline) [2]. Simi-
larly, Bayer, GlaxoSmithKline (GSK), Novartis, Merck & Co., Roche and Sanofi are
just a few of the companies that have placed great importance on the development
of a spectrum of agents targeting the PI3K pathway. Drug candidates including
pan-PI3K inhibitors, PI3K isoform-specific inhibitors, AKT inhibitors and mTOR
inhibitors are currently tested alone and in combinations in an array of cancer indi-
cations [9]. While the motivation for this focus has been stated as: “The pathway
is almost invariably on in cancer”, our methodology identifies this pathway as the
most crucial using mathematical analysis of the network. Moreover, we are able to
identify those types of cancer where the pathway should be the main target and
those types where targeting it may not produce the expected clinical outcomes.

Methods. The cancer pathways were obtained from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [14] with the help of the open source software pack-
ages KEGGgraph [27] and cytoscape [22]. The automorphism groups of the networks
were found with saucy [15] and gap [24] (see Supplementary Material, Tables S1-S11
for the complete group lists). Bases of the cycle spaces were found using python

networkX. The DAVID bioinformatics database [10, 11] was used to analyze the
equivalent nodes (proteins) of highest degree. The corresponding genes were ob-
tained using their official gene symbol and were limited to Homo sapiens species.



INDICES OF MOLECULAR PATHWAY NETWORKS 1297

Acknowledgments. We thank Dr. Giannoula Klement (Newman-Lakka Institute,
Tufts University School of Medicine) and Dr. Tomas Gedeon (Department of Math-
ematical Sciences, Montana State University) for valuable comments.

REFERENCES

[1] R. Albert, H.Jeong and A. L. Barabási, Error and attack tolerance of complex networks,
Nature, 406 (2000), 378–382.

[2] W. Alexander, Inhibiting the Akt pathway in cancer treatment, Three leading candidates,

Pharmacy and Therapeutics, 36 (2011), 225–227.
[3] F. Berger, P. Gritzmann S. de Vries, Minimum cycle bases for network graphs, Algorithmica,

40 (2004), 51–62.

[4] B. Bollobás, Random Graphs, Cambridge University Press, Cambridge, 2001.
[5] D. Breitkreutz, L. Hlatky, E. Rietman, J. A. Tuszynski, Molecular signaling network complex-

ity is correlated with cancer patient survivability, Proc. Natl. Acad. Sci. USA, 109 (2012),

9209–9212.
[6] N. Chandra and J. Padiadpu, Network approaches to drug discovery, Expert Opin. Drug

Discov., 8 (2013), 7–20.
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Figure S1. Random data assigned to survival probabilities. The
11 survival probabilities are assigned uniformly distributed random
numbers in the same range as βG. The coefficient of determination
of the linear fit is R2 = 0.006.

Nodes Degree
PIK3R5 PIK3CA PIK3CB PIK3CD PIK3R1 PIK3R2 PIK3R3 9
CCND1 MYC PPARD LEF1 TCF7 TCF7L2 TCF7L1 1
KRAS NRAS HRAS 12
RPS6KB1 RPS6KB2 EIF4EBP1 5
STAT3 STAT5A STAT5B 5
RARA PML LOC652346 LOC652671 3
ARAF RAF1 BRAF 1
KIT LOC652799 12
IKBKB IKBKG 5
MAP2K1 MAP2K2 5
SOS1 SOS2 4
PIM1 PIM2 3
NFKB1 RELA 3
MAPK1 MAPK3 2

Table S1. Orbit equivalence classes for the AML group.
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Nodes Degree
PIK3R5 PIK3CA PIK3CB PIK3CD PIK3CG PIK3R1 PIK3R2 PIK3R3 4
RHOA RAC1 RAC2 RAC3 4
LEF1 TCF7 TCF7L1 TCF7L2 4
AKT1 AKT2 AKT3 11
MAPK8 MAPK9 MAPK10 4
ARAF RAF1 BRAF 2
SMAD4 TGFBR1 TGFBR2 2
MAPK1 MAPK3 4
JUN FOS 3
DCC CASP3 3
SMAD2 SMAD3 3

Table S4. Orbit equivalence classes for the colorectal cancer group.

Nodes Degree
DAPK1 DAPK3 DAPK2 RPS6KA5 2
KRAS NRAS HRAS 5
ARAF RAF1 BRAF 5
E2F1 E2F2 E2F3 1
MAPK1 MAPK3 6
MAP2K1 MAP2K2 5
RASSF1 FGFR3 3
CCND1 CDK4 3
EGFR ERBB2 1

Table S2. Orbit equivalence classes for the bladder cancer group.

Nodes Degree
PIK3R5 PIK3CA PIK3CB PIK3CD PIK3CG PIK3R1 PIK3R2 PIK3R3 9
CRK CRKL CBLC CBL CBLB 9
SHC2 SHC4 SHC3 SHC1 MYC 2
HDAC1 HDAC2 CTBP1 CTBP2 2
AKT1 AKT2 AKT3 14
ARAF RAF1 BRAF 5
KRAS NRAS HRAS 5
CHUK IKBKB IKBKG 4
CDK4 CDK6 CCND1 3
E2F1 E2F2 E2F3 1
ABL1 BCR 13
MAP2K1 MAP2K2 5
SOS1 SOS2 4
MECOM RUNX1 4
STAT5A STAT5B 3
MAPK1 MAPK3 2
TGFRB1 TGFRB2 2
NFKB1 RELA 1

Table S3. Orbit equivalence classes for the CML group.
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Nodes Degree
PIK3R5 PIK3CA PIK3CB PIK3CD PIK3CG PIK3R1 PIK3R2 PIK3R3 3
APC2 APC AXIN1 AXIN2 GSK3B 1
LEF1 TCF7 TCF7L1 TCF7L2 3
AKT1 AKT2 AKT3 5
KRAS NRAS HRAS 5
ARAF RAF1 BRAF 5
BAD CASP9 FOXO3 3
PDPK1 ILK 10
MAP2K1 MAP2K2 5
MAPK1 MAPK3 3
SOS1 SOS2 4
MYC CCND1 4
DCC CASP3 3

Table S5. Orbit equivalence classes for the endometrial cancer group.

Nodes Degree
CALML6 CALML5 CALM1 CALM2 CALM3 CALML3 3
PIK3CA PIK3CB PIK3CD PIK3CG 9
CAMK2A CAMK2B CAMK2D CAMK2G 8
PIK3R5 PIK3R1 PIK3R2 PIK3R3 7
SHC1 SHC2 SHC3 SHC4 5
KRAS NRAS HRAS 20
ARAF RAF1 BRAF 5
PRKCA PRKCB PRKCG 3
CCND1 CDK4 CDK6 3
AKT1 AKT2 AKT3 1
E2F1 E2F2 E2F3 1
PDGFRA PDGFRB 16
MAP2K1 MAP2K2 9
PLCG1 PLCG2 4
SOS1 SOS2 4
MDM2 ↔ TP53 (2) CDKN2A ↔ CDKN1A (4) -
MAPK1 MAPK3 2
PDGFA PDGFB 2
EGF TGFA 1

Table S6. Orbit equivalence classes for the glioma group. The
nodes MDM2 and TP53 can only be permuted simultaneously with
the nodes CDKN1A and CDKN2A.
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Nodes Degree
PIK3CA PIK3CB PIK3CD PIK3CG 7
PIK3R5 PIK3R1 PIK3R2 PIK3R3 5
PLCG1 PLCG2 TGFA EGF 2
AKT1 AKT2 AKT3 12
ARAF RAF1 BRAF 8
PRKCA PRKCB PRKCG 3
CCND1 CDK4 CDK6 3
BAD CASP9 FOXO3 3
E2F1 E2F2 E2F3 1
EGFR ERBB2 9
NRAS HRAS 5
MAP2K1 MAP2K2 4
SOS1 SOS2 4
MAPK1 MAPK3 3
STK4 RASSF5 2
CDK4 CDK6 2

Table S7. Orbit equivalence classes for the NSCL group.

Nodes Degree
PIK3R5 PIK3CA PIK3CB PIK3CD PIK3CG PIK3R1 PIK3R2 PIK3R3 3
FIGF PGF VEGFA VEGFB VEGFC 4
MAPK1 MAPK3 MAPK8 MAPK9 MAPK10 1
AKT1 AKT2 AKT3 8
CHUK IKBKB IKBKG 5
RAC1 RAC2 RAC3 4
ARAF RAF1 BRAF 2
TGFB1 TGFB2 TGFB3 2
E2F1 E2F2 E2F3 1
RELA NFKB1 14
STAT1 STAT3 6
TGFBR1 TGFBR2 6
BAD BCL2L1 4
RALA RALB 3
CDK4 CDK6 3
SMAD2 SMAD3 3
BRCA2 RAD51 1
TGFA EGF 1

Table S8. Orbit equivalence classes for the pancreatic cancer group.
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Nodes Degree
ARNT ARNT2 CREBBP EP300 EGLN2 EGLN3 EGLN1 SLC2A1

2FIGF PGF VEGFA VEGFB VEGFC TGFB1 TGFB2 TGFB3
PDGFB TGFA
PIK3R5 PIK3CA PIK3CB PIK3CD PIK3CG PIK3R1 PIK3R2 PIK3R3 4
PAK1 PAK2 PAK3 PAK4 PAK6 PAK7 2
AKT1 AKT2 AKT3 8
ARAF RAF1 BRAF 2
EPAS1 HIF1A 18
RAC1 CDC42 6
MAPK1 MAPK3 5
MAP2K1 MAP2K2 5
ETS1 JUN 2
CRK CRKL 2
SOS1 SOS2 1
RAP1A RAP1B 1

Table S9. Orbit equivalence classes for the renal group.

Nodes Degree
LAMA1 LAMA2 LAMA3 LAMA4 LAMA5 LAMB1 LAMB2 LAMB3

6LAMB4 LAMC1 LAMC2 LAMC3 COL4A1 COL4A2 COL4A4 COL4A5
COL4A6 FN1
TRAF1 TRAF2 TRAF3 TRAF4 TRAF5 TRAF6

2PTGS2 NOS2 BIRC2 BIRC3 XIAP BCL2L1
PIK3R5 PIK3CA PIK3CB PIK3CD PIK3CG PIK3R1 PIK3R2 PIK3R3 4
ITGA2 ITGA2B ITGA3 ITGA6 ITGAV ITGB1 19
PIAS1 PIAS2 PIAS3 PIAS4 3
AKT1 AKT2 AKT3 11
CHUK IKBKB IKBKG 4
CCNE1 CCNE2 CDK2 2
E2F1 E2F2 E2F3 1
RELA NKFB1 13
MAX MYC 8
CDK4 CDK6 4
APAF1 CYCS 1

Table S10. Orbit equivalence classes for the SCL group.

Nodes Degree
RET CCDC6 NCOA4 TFG NTRK1 TPM3 TPR 3
LEF1 TCF7 TCF7L1 TCF7L2 3
KRAS NRAS HRAS 8
RXRA RXRB RXRG 2
MYC CCND1 4
MAP2K1 MAP2K2 3
PPARG PAX8 3
MAPK1 MAPK3 2

Table S11. Orbit equivalence classes for the thyroid cancer group.
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