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ABSTRACT. We propose the hypothesis that for a particular type of cancer
there exists a key pair of oncogene (OCG) and tumor suppressor gene (TSG)
that is normally involved in strong stabilizing negative feedback loops (nFBLs)
of molecular interactions, and it is these interactions that are sufficiently per-
turbed during cancer development. These nFBLs are thought to regulate onco-
genic positive feedback loops (pFBLs) that are often required for the normal
cellular functions of oncogenes. Examples given in this paper are the pairs
of MYC and p53, KRAS and INK4A, and E2F1 and miR-17-92. We propose
dynamical models of the aforementioned OCG-TSG interactions and derive
stability conditions of the steady states in terms of strengths of cycles in the
qualitative interaction network. Although these conditions are restricted to
predictions of local stability, their simple linear expressions in terms of com-
peting nFBLs and pFBLs make them intuitive and practical guides for exper-
imentalists aiming to discover drug targets and stabilize cancer networks.

1. Introduction. Genes involved in driving cancers are broadly categorized as
oncogenes (tumor-promoting) and tumor suppressor genes. To transform cells,
many known oncogenes (OCGs) require an activating mutation in only one of their
alleles (gain-of-function mutation) while tumor suppressor genes (TSGs) require
deactivating mutations in both alleles (loss-of-function mutations). Besides genetic
mutations, cancer can also arise from epigenetic perturbations such as amplified
gene expression due to multiple copies of OCGs (with normal DNA sequence) in
chromosomes, and overexpression due to covalent modifications and subsequent hy-
peractivation of gene promoters.

A comprehensive census of human cancer genes has been carried out [13, 27,
15] and attempts are being made to link these genes in interaction networks and
molecular pathways [16]. A key question being addressed is the identity of the
set of ‘driver’ genes that initiate or maintain the progression of a given type of
cancer [30, 17]. We list in Table 1 a few of the OCGs and TSGs that are currently
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considered as driver genes for various human cancers, and we provide a few examples
of OCG-TSG interactions from this list.

We propose the following hypotheses and analyze representative models to gen-
erate predictions: (I) In a normal cell, there exists a pair of driver genes composed
of an OCG and a TSG that are involved in a strong negative feedback loop of inter-
actions to maintain system stability, and (II) To drive cancer, certain perturbations
destabilize the OCG-TSG interactions and permit the OCG to overwhelm the TSG.

We give a brief review in Section 2 of the literature that supports our proposal
that the normal OCG-TSG network is composed of an OCG positive feedback loop
(pFBL) and an OCG-TSG negative feedback loop (nFBL). In Section 3, we show
that we can make general conclusions on network stability based only on the qual-
itative information contained in the OCG-TSG network topology and signs of in-
teractions. We then analyze in Section 4 an ODE (ordinary differential equations)
model of the assumed normal OCG-TSG network to identify its stable regions in
parameter space and what perturbations can lead to escape from these regions. In
Section 5, we analyze a network of interactions between the oncogene MYC and
the tumor suppressor gene TP53 (usually referred to as p53); this important net-
work has been proposed to coordinate the cellular and cancer-relevant processes of
proliferation and differentiation [4]. Finally, we give our conclusions and suggest
practical applications of our results in Section 6.

2. Examples of OCG-TSG feedback interactions. Prior to their respective
cancer-driving activating and deactivating perturbations, OCGs and TSGs are es-
sential elements in a normal cellular response to environmental and internal stimuli.
For example, increased expression of the oncogene MYC and activation of its cor-
responding protein product (myc) are observed upon growth-factor stimulation of
a cell, followed by increased expression of myc-target genes that drive DNA repli-
cation and of the tumor suppressor gene p53 [29]. We have reviewed in a previous
paper [4] the indirect and direct pathways by which myc activates p53, as well
as pathways through which p53 inhibits myc activity. Thus, we can interpret the
increase in p5b3 activity as a negative feedback to increase in myc activity. Other
examples of negative feedback loops (nFBLs) between OCG-TSG pairs are shown in
Fig. 1. Details of the nFBL between MYC or E2F1 and miR-17-92 (microRNA) are
reviewed in [5], and details of the nFBL between KRAS and INK4A are discussed
in [2].

Many oncogenic pFBLs have been reported [21, 28, 12, 10, 24, 23, 5]. The
oncogenic pFBLs involving MYC and E2F1 are well documented [21, 28, 5]. The
pFBLs involving KRAS (specifically, kras-GTP, the active GTP-bound form of
protein kras) and its effectors, as well as pFBLs involving kras microRNAs, have
been reviewed [2]. These pFBLs are predicted to be required for setting thresholds
of activation and generating switch-like behavior of the protein products of OCGs

[2].

3. Stability analysis of OCG-TSG qualitative networks using cycles. Us-
ing only qualitative information from the topology and signs of the interactions
between the OCG and TSG, we can derive general local stability properties of the
system. For convenience of matrix representation later, let X; and X5 represent the
OCG and TSG activities, respectively. First-order decay kinetics for both species
is assumed. Besides the perturbations of the parameters and variables of a system,
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TABLE 1. List of potential driver oncogenes and tumor suppressor
genes in some human cancers. Genes in italics are listed among
the high-confidence mutational driver cancer genes proposed by
Tamborero et al. [30].
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Cancer Oncogenes Tumor Suppressor Refs.
Type Genes
Lung KRAS, EGFR, BRAF, TP53, PTEN, STK11, [9],
PISKCA, ERBB2, CCND1, | RB1, KEAP1, CDKN2A, [18],
MET, MYC, MDM2, NF1, FHIT, DAPKI1, 18],
CDK4, CCNE1 RASSF1A, APC, RARB, [30]
CDH1
Breast ERBB2, PI3KCA, MYC, RB1, BRCA1, BRCA2, [19]
CCND1 TP53, PTEN, ATM,
CHK2, RUNX1, RUNX2,
RUNX3
Colorectal KRAS, BRAF, PI3KCA APC, TP53, TGFBRII, [26]
CTNNB1, SMAD4
Ovarian RAB25, EVI1, EIF5A2, ARHI, RASSF1A, DLECI, | [27]
PRKC1, PI3BKCA, FGF1, DAB2, PLAGL1, BRCA1,
MYC, EGFR, NOTCHS3, BRCA2, WWOX, TP53,
KRAS, ERBB2, PIK3R1, PTEN
CCNE1, AKT2, AURKA
Gastric ERBB2, KRAS, COX-2, RUNX3, TP53, APC, [31]
MET, TERT DCC, MLH1, TGFBRII,
BAX, IGFIIR, CDH!
Head & Neck | MMP7, MMP9, MMP3, TP53, CDKN2A, DCC, [14],
EGFR, CCND1 PTEN, RASSF1A, DAPK, | [25],
CDH1 [22]
Glioblastoma | MYC, EGFR, CDKS6, TP53, PTEN, NF1 [1],
MDM2, KRAS CDKN2A, RB1 [7]
MYC ('\>C/EZF KRAS
P53 miR-17-92 INK4A

FI1GURE 1. Examples of OCG-TSG network involving an OCG pos-
itive feedback loop and an OCG-TSG negative feedback loop. Ar-
rows mean ‘activation’ (m;; > 0), and hammerheads mean ‘inhibi-
tion’ (m;; < 0). See text for the meaning of m;;. A 2-cycle is a
positive (negative) feedback loop if m;jm;; > 0 (mi;m;; < 0). A
1-cycle is a positive (negative) feedback loop if m;; > 0 (my; < 0).
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creation of new interactions is another perturbation that must be taken into ac-
count (deletion of an interaction is carried out by setting associated parameters to
zero). Thus, a pathway from the OCG that inhibits the TSG (in parallel to the
assumed normal pathway that activates the TSG) is included in the model below
to account for cases where perturbations (e.g., gene mutations) create such inter-
actions (see [4] for examples). This inhibitory pathway from the OCG to the TSG
will be represented separately in the model equations to monitor the effect of such
perturbations. We assume that the dynamics of the system can be described by the
following ODEs:

dX

ditl = f1(X1,X2) — 61X,y (1)

dX

7752 = fop(X1) + fan(X1) — 62X> (2)

subject to the following constraints:
8f1 8f1 anp aon
d .

8X1>0’8X2<0’8X1>0’an 8X1<0 (3)

The first constraint represents the self-activation or positive 1-cycle of X; corre-
sponding to the oncogenic pFBLs mentioned in the preceding section. It is assumed
that the inhibition of the OCG by the TSG acts against the pFBL of the OCG -
this is represented by the second constraint above. No pFBL involving the TSG is
considered as they have not been documented as often as OCGs. The elements of
the linearized (Jacobian) matrix, evaluated at some steady states of X; and Xo, are

I a(daX);/dt) R 3;2 > 0, M, = —61 <0 (4)
g — (9(d;()gdt) _ ({(3)}2}2 <0 (5)
Moy = B(%Xi;fdt) = Ma1p + Ma1, where may, = gﬁ?}; > 0, Ma1n = gﬁ?; <0 (6)
Moo = (%%Xi;idt) = -4, <0. (7)

We draw a qualitative network (QNET) diagram based on the signs of the m;;’s
using the convention: X; activates X; if m;; > 0, and X inhibits X; if m,;; < 0.
The gNET diagram corresponding to the linearization of Eqns. (1)-(2) is shown in
Fig. 2.

The characteristic polynomial whose roots are the eigenvalues (\) of the Jacobian
matrix (evaluated at steady states) is written as follows

PN =X 4+ad+az=0 (8)

where the coefficients «;’s can be expressed in terms of the elements m;; of the
Jacobian matrix:

o1 = —mi1 — Mo and o = —Mi2Maoy + M11Ma2. (9)

We use the intuitive language of cycle strengths to express our stability analysis.
The 1-cycle involving species X; has the strength S; = m;;, and the 2-cycle between
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FIGURE 2. The gNET diagram based on the elements of the Jaco-
bian matrix of Eqns. (1)-(2). See also Eqns. (4)-(7). Arrows mean
‘activation’, and hammerheads mean ‘inhibition’.

species X; and X; has the strength D;; = m;;mj;. Thus, the coefficients of P(\)
can be expressed in terms of cycle strengths:
] = —(Slp + Sln) — S5 where Slp = M11yp and S1, = Mi1n (10)
a9 = —D1g+ 5152 = —(Dp + Dn) + (Slp + Sln)SQ (11)

where D), = mai1pmi2 and D, = maipmis.
For the general n-th order P, (), the coefficients in terms of cycle strengths are
given in [3]. Analysis of the roots of Py(\) gives the following results:
(i) The system’s steady state is stable if a3 > 0 and as > 0; these conditions
correspond, respectively, to
(Slp + Sln) < —85 and (Dp + Dn) < SQ(Slp + Sln) (12)

(ii) There exists only one positive real eigenvalue if ay < 0, regardless of the sign
of a;1. This condition corresponds to

(Dp + Dn) > SQ(Slp + Sln) (13)

(iii) The two eigenvalues have positive real parts if oy < 0 and as > 0. These
conditions correspond, respectively, to

(Sip + S1n) > =S5 and (D, + D,,) < S5(S1p + Sin) (14)
(iv) Saddle-node bifurcation occurs when
(Dp + Dn) = S2(S1p + Sin) (15)

(v) Hopf bifurcation occurs when

(Slp + Sln) = —SQ and (Dp + Dn) < S2(Slp + Sln) (16)
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The phase diagram showing stability regions is given in Fig. 3.

(Dp + Dn)

/

(Dp +Dn)=
S2+(S1p + Sin)

(S1p + S1n)

stable

FIGURE 3. Phase diagram based on the Jacobian matrix of Eqns.
(1)-(2). The saddle-node (SN) and Hopf (H) bifurcation lines are
indicated. Regions with unstable steady states are shaded grey (in-
cluding the region to the right of H). The oscillatory region (OSC)
is bounded by H and the grey parabolic curve defined by ap = a2 /4.

4. Bifurcation analysis of the E2F1-(miR-17-92) network. A model we an-
alyzed earlier [5] involves the oncogene E2F1 and the tumor suppressor miR-17-92
(see Fig. 1b). We consider this model here to illustrate the results in the preceding
section. The model dynamics is described by the following ODZEs:

dx, ke X2 )

— = — 1 ) _5X 17
dt a+<71+X12+72X2 e (a7
dX

d_tZ - 6 + k2X1 — 52X2 (18)

where the parameters k1, ko, o, 3,71, 72,01 and 0z are all non-negative. This model’s
phase diagram only covers the region below the abscissa in Fig. 3 where (D,+D,,) <
0, since D, = 0 (no positive 2-cycle) and D,, < 0. With the same bifurcation
parameters used in [5] (namely, o and 4 — the dimensionless versions of « and
~2, respectively), Li et al. [20] constructed a phase diagram showing regions of
monostability, bistability and oscillations; and in Fig. 4, we reconstructed this
phase diagram using a slightly different set of parameters and showing a wider
picture. Parameter o’ corresponds to a constitutive rate of expression of E2F1 (the
rate being assumed proportional to growth factor concentration) and ~4 corresponds
to a coefficient of inhibition of E2F1 by miR-17-92.
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FIGURE 4. Phase diagram of the E2F1-(miR-17-92) model. The
coordinates are dimensionless parameters corresponding to o and
v2 in Eqns. (17)-(18). See Ref. [5] for the dimensionless equa-
tions. o’ = (k2/(018))o, 7 = (k3/(B02))72,71 = (k3/B*)m, e =
d2/01, Kk = kika/(618).Parameters: ¢ = 0.1,k = 5,7; = 1. Soft-
ware used is the MATCONT package [11] in MATLAB (The Math-
Works, Inc., Natick, Massachusetts, USA).

For this model, the non-zero steady-state cycle strenghts are

2k Xa (1 + 72 X2)

— 19

' (71 + X? + 72X5)? (19)

Sip = —01 (20)

Sg = —(52 (21)
2

i (22)

(71 + X2 + 72X5)?

where X; and X5 are evaluated at steady state. There is a nonlinear mapping of
the steady-state manifold X;(o’,~}) associated with Fig. 4 to the plane in Fig. 3;
this mapping is sketched in Fig. 5.

One can see from Eqns. (19)-(22) that only the negative 1-cycles, S1,, and Ss,
possess parameters that uniquely control them — namely, §; and d5, respectively. As
shown in Fig. 3, increasing the magnitude of Sy (i.e., increasing d, — the decay rate
constant of the TSG) will push the left boundary of the oscillatory region towards
the right of Fig. 3, effectively increasing the area of stability. The magnitude of the
slope of the saddle-node (SN) line in Fig. 3 increases too, thereby decreasing further
the oscillatory region. Similarly, increasing the magnitude of S, by increasing the
decay rate constant ¢; of X, leads to decreasing (S1, + Sin), thereby pushing the
system to the left of Fig. 3 — i.e., towards more stability. Thus, the negative 1-cycles
S1p and S, are stabilizing.
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w) LT

FIGURE 5. A sketch of the mapping from the 2-dimensional steady-
state manifold, X;(a’,v%), of the E2F1-(miR-~17-92) model (corre-
sponding to Fig. 4) to the plane in Fig. 3. First step is to unfold
the surface to give the picture in the middle. Second, turn it over
and stretch to form. Points on the resulting plane can be mapped
one-to-one to points on the plane of Fig. 3.

Although Fig. 3 provides a simple and intuitive picture of analyzing stability
in terms of competing cycles, it has a disadvantage in that it loses information
on parameters that give multiple steady states. For instance, there could be three
different points (two points in the stable region and one point in the unstable region)
in Fig. 3 that correspond to the same set of parameters. Furthermore, there is the
important question of whether one can associate cancer initiation with a switch to a
higher steady state of the oncogene due to network instability. We have addressed
this question in our earlier paper [5] where we propose that it is the magnitude
of the increase in OCG activity that determines whether it enters a ‘cancer zone’
where the probability of cancer-promoting downstream events is high (see [5] for
a discussion on the cancer zone postulate). Nevertheless, the results of our cycle
analysis summarized in Fig. 3 have the advantage of easily identifying destabilizing
cycles.

5. An OCG-TSG network that coordinates cell proliferation and differ-
entiation. The transcription factors myc and p53 drive cell proliferation and dif-
ferentiation in antagonistic ways. In an earlier work [4], we reviewed pathways by
which myc drives both the cell cycle and apoptosis, and by which myc inhibits cell
differentiation; and pathways by which p53 inhibits the cell cycle, drives apoptosis,
and promotes cell differentiation [4]. As depicted in Fig. la, myc and p53 interact
in a negative feedback loop. In some cancers (e.g., glioblastoma), genetic mutations
and certain epigenetic perturbations create pathways that effectively permit myc
to inhibit p53 (also reviewed in [4]). We proposed that this myc-p53 network is a
core control mechanism in coordinating cell proliferation and differentiation, and
have carried out a qualitative kinetic modeling of the system. Our first model [4]
ignored the pFBL involving myc. Here, we re-analyze the myc-p53 network using
a slightly modified set of equations that includes the pFBL of myc as well as terms
for constitutive expressions of myc and p53. The ODEs are listed below where m
= activity of myc and p = activity of p53.
dm kim?

ot —  _5m 23
dt Y +m?4yep 23)
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dp k4

ap _ . 24
i B+k2m+k3+m Sap (24)

The steady state strengths of the 1-cycles (S1p, S1n, S2) and the 2-cycles (D,, Dy,),
evaluated at the steady states of m and p, are

yp—— (25)
Sy = —8, (26)
2kym(y1 +y2p)

Sty = 27
1p ('71 +m2 +72p)2 ( )
k1k272m2 kayam

D, =— = — S 28
(m+m2+72p)2 20y +2p) " (28)
D _ k1k472m2 _ k4 D
P (k3 + m)2<'71 + m2 + ’}/2]7)2 k2 (k?) + m)2 " (29)
ksyom

2ks + mP (s +2p)

Except for Sy, and Ss, all the other cycle strengths depend on all parameters
(the steady states m and p are functions of all parameters). Thus, except for S,
and Ss, it is difficult to manipulate the cycles independently from the others; and it
is cumbersome and non-intuitive to use the exact stability conditions that involve
finding the steady states of m and p from Eqns. (23)-(24) followed by using Eqns.
(25)-(29) in the inequality of (12). In the following, we list two sufficient conditions
for stability that are easier to implement experimentally than the exact conditions
of (12).

(i) The stable region defined by (D, + D,,) < 0 and (S1, + S1,) < 0 (see Fig. 3)

correspond, respectively, to

ka
ky > ——— 30
27 (ks +m)? (30)
by > omn + 7op) (31)

(71 +m? + 72p)?
These conditions correspond to the dominance of the negative cycles D,
and Sy, over the positive cycles S, and S, respectively. In practice, one
would experiment on progressively increasing the rate coefficients ko and §;
to find the thresholds predicted by (30)-(31). Increasing ko and d; will also
tend to increase the tumor suppressor activity p and decrease the oncogene
activity m, respectively.
(ii) The stable region defined by (D, + D,,) < —S3 and (S1, + S1) < —S2 (see
Fig. 3) correspond, respectively, to:

ky 52(y1 +m? + y2p)?
ko > 32
2 (kg + m)2 kl’}/zmz ( )
2k
(51 + (52 > 1m('71 +72p) (33)

(71 +m? + 72p)?

Condition (32) imposes a higher threshold for ko than in (30), but (33) is
a weaker condition than (31) because in (33) one has the freedom to choose
which of §; or d2 , or both, to manipulate. As in (i), increasing ko and d;
will tend to increase p and decrease m, respectively. Note, however, that
increasing d2 decreases p (the TSG) and could lead to a stable steady state
with high m contrary to the goal of suppressing the OCG.
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Another strategy to increase the probability of satisfying conditions (30)-(33)
would be to lower the thresholds for k5 and §; or d2 by decreasing the strengths of
the positive cycles, namely, D, (by decreasing k4) and Sy, (by decreasing k).

6. Conclusions. We propose that two feedback loops in the interactions between
an OCG and a TSG are key targets in the initiation of cancer: one is a pFBL
involving the OCG which endows it the ability to amplify proliferative signals and
to set a threshold for activation, and the other is a nFBL between the OCG and
TSG - specifically, the OCG promoting the activity of the TSG and the latter in-
hibiting the former. Using only this qualitative information, we have derived simple
general conditions in terms of the strengths of cycles for the steady states of the
OCG and TSG to be stable. We also have shown that transitions to instability
are governed by saddle-node and Hopf bifurcations — the former characterized by
switching between separated branches of steady states, and the latter by oscillatory
behavior. As illustrated by the MYC-p53 couple, perturbations may include the
introduction of a new pathway — in this case, the OCG inhibiting the TSG — which
creates a pFBL (double inhibition) between the OCG and the TSG. The pFBLs of
the network are destabilizing while the nFBLs are stabilizing, and we have derived
conditions that can be used to manipulate the relative strengths of these cycles to
control stability. The strengths of the negative 1-cycles depend on unique parame-
ters (corresponding to the individual decay rate coefficients of the OCG and TSG,
assuming first-order kinetics) and are therefore easy to control, and predictions on
the existence of threshold values for these cycle strengths to maintain stability are
given. In contrast, the strengths of the 2-cycles are more difficult to control by vary-
ing one parameter at a time (but it could be done after solving the steady states
of the OCG and TSG as functions of parameters, and substituting these steady
states and parameters to the expressions of the 2-cycle strengths). Ultimately, the
advantage of stability analysis using the language of cycles is that it can identify
specific destabilizing cycles that can be targeted and suppressed to return the net-
work to stability. Identifying the dominant destabilizing cycles could be a useful
strategy for finding drug targets (perturbation targets) because identification of a
small number of destabilizing cycles reduces the complexity of the network control
problem.
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