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Abstract. A 3-compartment model for metronomic chemotherapy that takes

into account cancerous cells, the tumor vasculature and tumor immune-system

interactions is considered as an optimal control problem. Metronomic chemo-
therapy is the regular, almost continuous administration of chemotherapeutic

agents at low dose, possibly with small interruptions to increase the efficacy

of the drugs. There exists medical evidence that such administrations of spe-
cific cytotoxic agents (e.g., cyclophosphamide) have both antiangiogenic and

immune stimulatory effects. A mathematical model for angiogenic signaling
formulated by Hahnfeldt et al. is combined with the classical equations for

tumor immune system interactions by Stepanova to form a minimally param-

eterized model to capture these effects of low dose chemotherapy. The model
exhibits bistable behavior with the existence of both benign and malignant

locally asymptotically stable equilibrium points. In this paper, the transfer of

states from the malignant into the benign regions is used as a motivation for
the construction of an objective functional that induces this process and the

analysis of the corresponding optimal control problem is initiated.

1. Introduction: Administration of chemotherapeutic agents. The admin-
istration of chemotherapeutic agents in the treatment of cancer still is an issue that
has not yet been settled satisfactorily in all cases. Cancer is a widely symptomless
disease that often is only detected in an advanced stage which makes it imperative
to take strong action as soon as possible. As a result, so-called MTD-strategies that
give maximum tolerated doses with upfront dosing are common. Such procedures
indeed are the optimal solutions when mathematical models of homogeneous tumor
populations are considered that consist of chemotherapeutically sensitive cells (e.g.,
see [26, 27, 43, 44, 45, 47]). However, if heterogeneity is taken into account (as
tumors often consist of subpopulations of cells of widely varying chemotherapeutic
sensitivities), this no longer need be the case (e.g., see [28, 31, 46]). In view of
the existence of possible drug resistant strains, it seems to be intuitive, and also
has been argued in the medical literature, that in such a case it might be a better
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strategy to maintain a level of chemotherapeutically sensitive cells to keep the more
resistant and harmful strain of cells in check (adaptive therapy, [13]). Other strate-
gies pursued in medical research that have shown effectiveness for certain types of
cancer are so-called chemo-switch protocols that follow an initial MTD dose with
administrations at significantly reduced dose rates [18, 35] or metronomic protocols
that administer chemotherapeutic agents at significantly lower dose rates, almost
continuously, with only short interruptions to increase the efficacy of the drugs
[2, 5, 8, 22]. The rationale behind reducing dosage is that, in the absence of severe
limiting toxic side effects, it will be possible to give chemotherapy over prolonged
time intervals so that, because of the greatly extended time horizon, the overall
effect may be improved when compared with repeated short MTD doses [20, 49].
Such strategies seem to be especially of interest in pediatric cancers.

From a treatment perspective, it is still a question of utmost importance how
one can optimize the overall effects of therapy by modulating the administration
schedules. This does not only include the cytotoxic effects of drugs on tumor cells,
but also includes possible ancillary features that operate within a tumor’s microen-
vironment such as antiangiogenic or pro-immune effects. Mathematical models for
therapy that consider specific aspects of the tumor microenvironment have been
considered, for example, in [3, 9, 11, 12, 14, 21, 30, 32]. There exists medical ev-
idence that low-dose chemotherapy, while still having a moderate cytotoxic effect
on cancerous cells in the absence of significant negative side effects, has antiangio-
genic (e.g., [5, 8, 16]) and immune stimulatory effects (e.g., see [1, 2, 19, 33] and
the editorial [34]) whereas high-dose chemotherapy often suppresses the immune
system and thus takes out one beneficial factor of a tumor’s microenvironment that
could have come to the aid in fighting the tumor. In addition, the argument that
low-dose chemotherapy promotes drug resistance which also led to the “kill as much
as possible, as quickly as possible” paradigm is being questioned. For example, in
clinical experiments it has been observed that cell cultures that were drug resistant
to high concentrations responded to low-dose concentrations of the very same agent.
In addition, because of the low expenses of some of the drugs used in this context
(such as cyclophosphamide), such a strategy becomes an important option for can-
cer treatment in low-income countries and, in view of excessive health care costs,
also in developed countries. Hence, and of course depending on the specific cancer
and patient situation, metronomic administration schedules of chemotherapy could
provide a viable alternative to classical procedures. Indeed, mathematical models
that compare the long-term benefits of metronomic and MTD chemotherapy [4, 16]
generally come to the conclusions that metronomic administrations fare better.

The literature on mathematical models for metronomic chemotherapy is small
and this topic has not been explored extensively. In this paper, we consider a mini-
mally parameterized 3-compartment mathematical model for metronomic chemothe-
rapy that takes into account both the effects of chemotherapy on the cancerous cells
and its effects on the two principal components of a tumor’s microenvironment, the
tumor vasculature and tumor immune-system interactions. This is achieved by
merging a mathematical model for angiogenic signaling formulated by Hahnfeldt
et al. in [17] with the classical equations for tumor immune system interactions by
Stepanova [41]. The model considered here was introduced and analyzed from a
dynamical systems point of view in [39]. It exhibits a wide range of dynamical be-
haviors that encompass a variety of medically realistic scenarios. These range from
cases when low-dose metronomic chemotherapy is able to completely eradicate the
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tumor (in the sense that all trajectories converge to the tumor free equilibrium
point) to situations when tumor dormancy is induced (a unique, globally asymp-
totically stable benign equilibrium point with small positive tumor volume exists)
to multi-stable situations that have both persistent benign and malignant behav-
iors (the typical multi-stable scenario of mathematical models for tumor-immune
system interactions) to situations when tumor growth simply is dominant and the
disease cannot be cured by low-dose metronomic chemotherapy. Thus, despite its
simplicity, the model is able to capture the most important structural features of
tumor development. From a practical point of view, the most relevant and interest-
ing scenario is when the model exhibits bistable behavior with the existence of both
benign and malignant locally asymptotically stable equilibrium points. This is the
case we consider in this paper. We briefly summarize the mathematical model in
Section 2 and recall the most important features of the corresponding dynamical
system under constant low-dose metronomic chemotherapy [39]. In Section 3 we
then formulate an optimal control problem whose objective functional is designed
to transfer states from the malignant into the benign region. Since metronomic
dosing aims to be almost uninterrupted, in this paper we explore the structure and
optimality status of specific time-varying control structures that are called singular
in optimal control.

2. A minimally parameterized mathematical model for metronomic che-
motherapy. Metronomic chemotherapy is a relatively new concept in medicine
(see also [37]) and in the absence of clear protocols and guidelines, mathematical
modeling can be useful in shedding some light into adminstration schedules for the
drugs. So far, however, there do not seem to exist established mathematical models
on this topic that would capture the multi-dimensional effects of this treatment on
the various compartments of the tumor microenvironment. In an effort to formulate
such a mathematical model that also is minimally parameterized, we combine the
model of tumor growth under angiogenic signaling developed by Hahnfeldt, Pani-
grahy, Folkman and Hlatky [17] with the classical model for tumor-immune system
interactions by Stepanova [41]. This leads to the following equations:

ṗ = −ξp ln

(
p

q

)
− θpr, (1)

q̇ = p−
(
µ+ dp

2
3

)
q, (2)

ṙ = α
(
p− βp2

)
r + γ − δr. (3)

Here p denotes the primary tumor volume, q the carrying capacity of its vasculature
(measured in terms of the volume of the endothelial cells that provide the lining
for the newly formed vessels and capillaries) and r is a non-dimensional, normal-
ized, order of magnitude quantity related to the activities of various types of T -cells
activated during the immune reaction. We summarily refer to it as the immunocom-
petent cell density. All other letters in these equations denote constant coefficients.
Note that, if we define r̂ = λr and rescale the parameters γ and θ as γ̂ = λγ and

θ̂ = θ
λ , then the solutions are unchanged. We use this 1-parameter group of scaling

symmetries to normalize the set point value for r.
We briefly discuss the modeling premises. Equation (2) is taken from [17] and

describes the interactions between the tumor and its vasculature consisting of a
balance between stimulatory and inhibitory terms. Tumor-derived stimulators act
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locally which is reflected in a fast clearing of these agents while inhibitors have a
more systemic action. In [17], an asymptotic expansion of the solutions for the
underlying consumption-diffusion equation is made that suggests specific relations
between the stimulation and inhibition terms. Based on this analysis, the authors
take the stimulation term proportional to the tumor volume, bp, with b a constant
mnemonically labeled for ‘birth’ and take the inhibition term in the form dp

2
3 q with

d labeling a tumor stimulated ‘death’ term. The functional relation p
2
3 q reflects

an interaction of the carrying capacity q with the tumor surface through which
inhibitors need to be released. The constant µ denotes the natural rate of death
for cells related to the carrying capacity and generally is small, often set to zero.
The third equation, (3), summarizes the main interactions of the tumor with the
immune system and is taken from Stepanova’s paper [41]. Various organs such as the
spleen, thymus, lymph nodes and bone marrow, each contribute to the development
of immune cells in the body and the parameter γ models a combined rate of influx
of T -cells generated through these primary organs; δ is simply the rate of natural
death of the T -cells. The first term in this equation models the proliferation of
lymphocytes. For small tumors, it is stimulated by the tumor antigen and this
effect here is taken to be proportional to the tumor volume p. It is argued in [41]
that large tumors suppress the activity of the immune system. The reasons lie in
an inadequate stimulation of the immune forces as well as a general suppression
of immune lymphocytes by the tumor (see [41] and the references therein). This
feature is expressed in the model through the inclusion of the term −βp2. Thus
1/β corresponds to a threshold beyond which the immunological system becomes
depressed by the growing tumor. The coefficients α and β are used to calibrate
these interactions and collectively describe a state-dependent net influence of the
tumor on the stimulation of the immune system. The first equation, (1), models
tumor growth. Following [17], here a Gompertzian growth rate has been chosen
with ξ a tumor growth coefficient. Other models are equally viable and have been
considered in the literature. In Stepanova’s original research an exponential model
was used while Kuznetsov, Makalkin, Taylor and Perelson [23] use a logistic model.
A Gompertzian model has also been used in the work by de Vladar and Gonzalez
[48]. The qualitative structure of the dynamical properties of the underlying system,
however, are not effected by the choice of the growth model (e.g., see [25]). The
second term, −θpr, models the beneficial effects of the immune system reaction
on the cancer volume and θ denotes the rate at which cancer cells are eliminated
through the activity of T -cells.

The main properties of low-dose chemotherapy that we incorporate into the
model are a moderate cytotoxic effect, distinctive antiangiogenic features and im-
mune stimulatory properties. Using the linear log-kill hypothesis [40, 50], the influ-
ence of the chemotherapeutic agent on the tumor volume p and its carrying capacity
q are modeled in the form −ϕ1pu and −ϕ2qu, respectively. Immune stimulatory
effects of metronomic chemotherapy are well documented (e.g., [19, 33]) and include
both direct and indirect mechanisms. For example, it depletes Treg and inhibits
MDSC (myeloid derived suppressor cells), which, as a result, downregulates im-
munosuppression; it also enhances dendritic cell function which leads to increased
activity of the immune system. Metronomic chemotherapy stimulates the immune
system further by enhancing the immunogenicity of the tumor, for example, by
increasing tumor associated antigens and exposure of calreticulin and heat shock
proteins [19]. At the level of modeling pursued here, and in the spirit of minimally
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parameterizing the model, we therefore also use a term of the form ϕ3ru to de-
scribe the immune stimulatory effect of chemotherapy. For a number of cytotoxic
drugs (like cyclophosphamide) for which experimental data are available, low dose
metronomic chemotherapy has a strong antiangiogenic effect while the cytotoxic
and pro-immune effects are lower. Generally, however, these relations depend on
the specific drug-tumor combination and these properties would be represented by
inequality relations between the parameters ϕi. In our theoretical analysis below,
however, we do not need to make any assumptions on these values. Overall, the
controlled equations take the following form:

ṗ = −ξp ln

(
p

q

)
− θpr − ϕ1pu, (4)

q̇ = bp−
(
µ+ dp

2
3

)
q − ϕ2qu, (5)

ṙ = α
(
p− βp2

)
r + γ − δr + ϕ3ru. (6)

For simplicity, we do not include a standard linear pharmacokinetic model and
identify the dose rate with the concentration of the agent.

In the paper [39] we have analyzed the system (4)-(6) for a constant metronomic
dosing, u(t) = u ≡ const, from a dynamical systems point of view and we summarize
the main results in the theorem below.

Theorem 2.1. [39] The dynamical system (4)-(6) has at most three equilibria with

positive p-values, (p
(i)
∗ , q

(i)
∗ , r

(i)
∗ ) for i = 1, 2, 3, with saddle-node bifurcations gener-

ically occurring at points where the graphs of the functions

Φ(p) = ξ ln

(
µ+ ϕ2u+ dp

2
3

b

)
+ ϕ1u

and

Ψ(p) = − θγ

αβp2 − αp+ δ − ϕ3u
intersect tangentially. If there exists only one equilibrium point, then it is globally
asymptotically stable. If there exist three equilibrium points and if these equilibria

are ordered according to their tumor volumes p
(i)
∗ , p

(1)
∗ < p

(2)
∗ < p

(3)
∗ , then the low

equilibrium point (p
(1)
∗ , q

(1)
∗ , r

(1)
∗ ) and the high equilibrium point (p

(3)
∗ , q

(3)
∗ , r

(3)
∗ ) are

locally asymptotically stable while the intermediate equilibrium point (p
(2)
∗ , q

(2)
∗ , r

(2)
∗ )

is unstable with a 2-dimensional stable manifold.

It also follows from the results in [39] that the tumor volumes for the low equi-
librium point cannot exceed 1

2β by much and generally are quite smaller. The low

equilibrium point can therefore be interpreted as a microscopic tumor and we call
this equilibrium point benign and its corresponding region of attraction the benign
region. We recall that if x∗ is a locally asymptotically stable equilibrium point for a
dynamical system ẋ = f(x) defined on a region G (i.e., an open and connected set),
then its region of attraction, A(x∗), consists of all initial conditions x0 for which
the corresponding solution exists for all t ≥ 0 and converges to x∗ as t→∞,

A(x∗) =
{
x0 ∈ G : x(t;x0) exists for all t > 0 and lim

t→∞
x(t;x0) = x∗

}
.

This set consists of the totality of all initial states of the system for which a low-
dose metronomic chemotherapy u(t) = u ≡ const is able to limit the cancer at
the benign equilibrium point. Situations when this is the only equilibrium point
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in the system are related to the concepts of tumor dormancy and immunosurveil-
lance of the medical literature [42]. On the other hand, the tumor volumes for the
high equilibrium point are by an order of magnitude larger than for the low equi-
librium point and these can be interpreted as a macroscopic tumor with the high
value indicating that the patient will succumb to the disease. We therefore call the
high equilibrium point malignant and its region of attraction the malignant region.
This region corresponds to initial conditions for which tumor growth overcomes the
effects of the low dose chemotherapy, is able to evade the actions of the immune
system and tumor dormancy and eventually, unless other treatment options will be
pursued, becomes lethal. Naturally, reality is far more complicated than accounted
for in this simplified model, and random (and otherwise) events take place that will
consistently perturb the state of the system. In the case when both benign and ma-
lignant regions exist, transitions between these regions are possible (because some
events simply are not covered in the model which leads to random perturbations
that misplace the state of the system). Once such a temporary disturbance has
passed, the system will settle down to follow the trajectories in the phase portrait.
Clearly, if the malignant region is quite large, then it is easily possible under such
a scenario that the state will end up in this malignant region and these models
correspond to more aggressive forms of the disease. In fact, since such ‘perturba-
tions’ are a constant recurrence, it is quite likely that this eventually will happen
and the disease cancer will develop. Naturally, thus the boundary between the be-
nign and malignant behaviors is the most interesting and important structure. The
model (4)-(6) is Morse-Smale [15] and this boundary is formed by a 2-dimensional
embedded submanifold, the stable manifold of the saddle point.

The analytical results described above are generally valid and we briefly illustrate
these features for a specific set of parameter values. Biologically validated data
for the separate models are given for the model of angiogenic signalling in the
paper by Hahnfeldt et al. [17] for Lewis lung carcinoma implanted in mice and
for the mathematical model for tumor-immune system interactions in the paper by
Kuznetsov et al. [23] based on in vivo experimental data for B-lymphoma BCL1 in
the spleen of mice. Clearly, these parameter values cannot just be combined. The

equilibrium of the model for angiogenic signaling from [17] is given by
(
b−µ
d

) 3
2

and

is by an order of magnitude larger than the carrying capacity for the model in [23].
We therefore adjusted the values of b and d that determine the high equilibrium
point to be in the same range as the carrying capacity for the tumor-immune system
model. Also, the dynamical model for the immunocompetent density in [23] is taken
of the form

ṙ =

(
ρ

η + p
− µ

)
rp+ γ − δr

and for the parameter values from [23] we approximated the expression ρ
η+p −µ by

the linear term α (1− βp) employed in [41] that has the same value for p = 0 and
the same zero. Table 1 lists the numerical values that we use for the computations
shown here. Following [23], p and q are given in multiples of 106 cells and y is
a dimensionless quantity that describes the immuno-competent cell density on a
relative order of magnitude basis. For the given parameter values this set-point is
taken to be 1. The time scale is taken relative to the tumor cell cycle in mice and
and is in terms of 0.11 days [23]. But we emphasize that these values are only for
numerical illustration.
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Figure 1. Two-dimensional projections of trajectories of the dy-
namical system (1)-(3) into the (p, q) and (p, r)-planes for γ = 0.03
(top) and γ = 0.06 (bottom).

The phase portrait of the dynamical system (4)-(6) consists of the totality of all
its solutions plotted in the 3-dimensional (p, q, r)-space. In order to better visualize
its structures, Figure 1 shows two examples of 2-dimensional projections of the
phase portraits into the (p, q) and (p, r) planes. The overlaps of trajectories seen in
these figures are caused by the projections, but are not present in the 3-dimensional
phase portrait. In each figure, the malignant equilibrium point is marked by a blue
star and the unstable equilibrium by a red star. The benign equilibrium point has
a very small tumor volume and is located almost at the origin. It is not shown
in these diagrams. The red curves through the unstable equilibrium point depict
corresponding sections of the 2-dimensional stability boundary between benign and
malignant behaviors and its 1-dimensional unstable manifold is shown as the black
curve. While keeping all other parameters constant, we show two cases for γ, γ =
0.03 and γ = 0.06. This parameter represents the constant influx of immune cells
from the primary organs. The qualitative behavior of the system is identical and,
more generally, the same behavior persists until a saddle-node bifurcation occurs
for γ∗ = 0.07524. The figures illustrate how the unstable and malignant equilibrium
points move towards each other as γ approaches γ∗. For values of γ larger than
γ∗, the benign equilibrium point is globally asymptotically stable and the immune
system is strong enough to control the cancer in a form of immunosurveillance.

3. Optimal control formulation for the combined model. We formulate an
optimal control problem to transfer an initial state that lies in the malignant re-
gion into the benign region. It is assumed that the system (1)-(3) has a bi-stable
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variable/ numerical
parameters interpretation values used dimension Ref.

for figures
p tumor volume 106 cells [41]
q carrying capacity 106 cells [17]

of the vasculature
r immuno-competent orders of magnitude [41]

cell density non-dimensional
u concentration of the mg of dose/106 cells

cytotoxic agent
α tumor stimulated 0.0529 non-dimensional

proliferation rate
of immune system

β inverse threshold 0.00291 non-dimensional [23]
of tumor suppression

γ constant influx 0.03/0.06 106 cells/unit time [23]
into immune system

δ death rate 0.3743 non-dimensional [23]
θ tumor immune system 0.1

interaction rate
ξ tumor growth 0.0347 cells/unit time

parameter
b tumor induced 5 cells/unit time

stimulation parameter
of vasculature

d tumor induced 0.0667 non-dimensional
inhibition parameter

of vasculature
µ loss of vascular support 0 cell/unit time

through natural causes
ϕ1 cytotoxic killing 0.005 106 cells/mg of dose

parameter
ϕ2 antiangiogenic 0.06 106 cells/mg of dose

elimination
parameter

ϕ3 immune stimulatory 0.01 106 cells/mg of dose
parameter

Table 1. Variables and parameter values used in numerical computations.

behavior with z∗ = (p
(2)
∗ , q

(2)
∗ , r

(2)
∗ ) the unstable intermediate equilibrium point and

we denote by N its 2-dimensional stable manifold. Ideally, if a formula for N were
available in the form N = {(p, q, r) : σ(p, q, r) = 0}, then one would want minimize
or maximize this function at the endpoint depending on whether σ is negative or
positive in the benign region. But generally these manifolds are defined by highly
transcendental relations and rarely such expressions can be determined. However,
linear approximations are easily obtained since the tangent space to N at the hyper-
bolic equilibrium point z∗ is spanned by the two stable eigenvectors of the Jacobian
matrix at z∗. It thus is reasonable to include in the objective a linear penalty term at
the terminal point of the form Ap(T )+Bq(T )−Cr(T ) where the vector (A,B,−C)
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could be chosen either as a (properly oriented) normal vector to the tangent space to
N at z∗ or simply as the unstable eigenvector. In each case, the p and q components
of these vector are positive while the r component is negative and for this reason we
label the vector as (A,B,−C) with all coefficients positive. Clearly, this also makes
sense since the aim is to lower the tumor volume and its carrying capacity while
increasing the activities of the immune system. But rather than making arbitrary
choices, here we use the underlying geometry of the uncontrolled system (u ≡ 0) to
come up with meaningful coefficients.

The side effects of treatment are measured indirectly by the total dosage of agents
given. We therefore include the control u in the Lagrangian of the objective with
a weight M . Furthermore, the existence of the benign region allows for trajectories
that improve the objective value without incurring a cost and this may lead to a
mathematically ill-posed structure with ‘optimal’ solutions defined over an infinite
horizon. We therefore also include a penalty on the terminal time. This simply
generates a well-posed optimal control problem for which the existence of solutions
is guaranteed by standard results [10]. Overall, we therefore take the objective
functional in the following Bolza format,

J(u) = Ap(T ) +Bq(T )− Cr(T ) +

∫ T

0

(Mu(t) + S) dt, (7)

and consider the following optimal control problem:

[M]: For a free terminal time T , minimize the objective (7) over all Lebesgue
measurable functions u : [0, T ] → [0, umax] subject to the dynamics (4)-(6)
with initial condition (p0, q0, r0).

We write the state as z = (p, q, r)T and introduce the drift and control vector
fields f and g,

f(z) =


−ξp ln

(
p
q

)
− θpr

bp− (µ+ dp
2
3 )q

α(p− βp2)r + γ − δr

 and g(z) =


−ϕ1p

−ϕ2q

ϕ3r

 ,

so that the dynamics takes the form

ż = f(z) + ug(z). (8)

Furthermore, we define the Hamiltonian of the control problem, H = H(λ, z, u), as

H = Mu+ S + 〈λ, f(z) + ug(z)〉 (9)

where λ = (λ1, λ2, λ3) is a 3-dimensional row vector, λ ∈
(
R3
)∗

. Explicitly,

H = Mu+ S + λ1

(
−ξp ln

(
p

q

)
− θpr − ϕ1up

)
(10)

+ λ2

(
bp− (µ+ dp

2
3 )q − ϕ2uq

)
+ λ3

(
α(p− βp2)r + γ − δr + ϕ3ur

)
.

First-order necessary conditions for optimality of a control u∗ are given by the
Pontryagin maximum principle [36] (for some recent references, see [6, 7, 38]): If u∗
is an optimal control defined over an interval [0, T ] with corresponding trajectory
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z∗ = (p∗, q∗, r∗)
T , then there exists an absolutely continuous covector λ defined on

[0, T ], λ : [0, T ]→
(
R3
)∗

, that satisfies the adjoint equations

λ̇1 = −∂H
∂p

= λ1

(
ξ

(
1 + ln

(
p

q

))
+ θr + ϕ1u∗

)
− λ2

(
b− 2

3
dqp−

1
3

)
− λ3 (α(1− 2βp)r) , (11)

λ̇2 = −∂H
∂q

= −λ1ξ
p

q
+ λ2(µ+ dp

2
3 + ϕ2u∗), (12)

λ̇3 = −∂H
∂r

= λ1θp− λ3
(
α(p− βp2)− δ + ϕ3u∗

)
, (13)

with terminal condition λ(T ) = (A,B,−C) such that for almost every time t ∈ [0, T ]
the optimal control u∗(t) minimizes the Hamiltonian over the control set [0, umax]
along (λ(t), z∗(t)) with minimal value given by 0. Note that the adjoint equations
can succinctly be expressed in the form

λ̇(t) = −λ(t)(Df(z∗(t)) + u∗(t)Dg(z∗(t))) (14)

since the Lagrangian term of the objective does not depend on the state variables
p, q and r.

The key condition of the maximum principle is the minimization property. Since
the Hamiltonian H is linear in u and the control set is a compact interval, it follows
that the optimal control u∗ satisfies the following property:

u∗(t) =

{
0 if M + 〈λ(t), g(z∗(t))〉 > 0,

umax if M + 〈λ(t), g(z∗(t))〉 < 0.
(15)

In principle, the minimization property allows for any control value u ∈ [0, umax] to
be optimal if M + 〈λ(t), g(z∗(t))〉 = 0. The function

Φ(t) = M + 〈λ(t), g(z∗(t))〉 = M −ϕ1λ1(t)p∗(t)−ϕ2λ2(t)q∗(t) +ϕ3λ3(t)r∗(t) (16)

is called the switching function of the optimal control problem [M]. For, if Φ(τ) = 0,

but the derivative Φ̇(τ) does not vanish, then the function Φ changes sign at time
τ and the optimal control switches between the values 0 and umax: from 0 to
umax if Φ̇(τ) < 0 and from umax to 0 if Φ̇(τ) > 0. A junction of this type is
called a bang-bang switch and the constant controls u ≡ 0 and u ≡ umax are
called bang controls. However, in general, little more is known about the zero set
Z = {t ∈ [0, T ] : Φ(t) = 0} than that it is a closed set. But there is one case
in which the situation simplifies considerably, namely when a switching function
vanishes over an open interval I. In this case all derivatives of Φ need to vanish
as well and, aside from degenerate situations, this enables the computation of the
control on this interval. Controls of this kind are called singular. Strictly speaking,
to be singular is not just a property of the control, but also depends on the multiplier
λ defining the switching function.

Definition 3.1. (Singular controls and extremals) Let Γ be an extremal lift
for the problem [M] consisting of a controlled trajectory (z∗, u∗) defined over the
interval [0, T ] with corresponding adjoint vector λ : [0, T ] → (R3)∗ such that the
conditions of the maximum principle are satisfied. The extremal lift Γ is said to
be singular on an open interval I ⊂ [0, T ] if the switching function Φ vanishes
identically on I. We say the control u∗ is singular on I and call the corresponding
portion of the trajectory z∗ a singular arc.
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This classical terminology is somewhat unfortunate in that it would seem to
indicate that this type of controls are an aberration while nothing could be further
from the truth. The terminology has its historical origin in the simple observation
that the switching function can be expressed as

Φ(t) =
∂H

∂u
(λ(t), z∗(t), u∗(t))

and thus, formally, the condition Φ(t) = 0 is the first-order necessary condition for
the Hamiltonian to have a minimum in the interior of the corresponding control
interval. For a general (multi-input) optimal control problem, extremal lifts are
called singular, respectively nonsingular, over an open interval I if the first-order
necessary condition

∂H

∂u
(λ(t), z∗(t), u∗(t)) = 0

is satisfied for t ∈ I and if the matrix of the second-order partial derivatives,

∂2H

∂u2
(λ(t), z∗(t), u∗(t)),

is singular, respectively nonsingular, on I. For the control-affine problem [M], this
quantity is identically zero and thus portions of an optimal control that take values
in the interior of the control set are automatically singular. While the terminology
is a bit misleading, singular controls nevertheless are the most natural candidates
for optimality. They provide what has also been called turnpikes for the control
problem with switchings between bang controls making the transitions to and from
these structures or simply arising only when singular controls are inadmissible or
simply do not exist.

If the control u is singular on an interval I, then all derivatives of the switching
function vanish. These derivatives can be written compactly using Lie brackets of
vector fields. Recall that the Lie bracket of two continuously differentiable vector
fields f : Rn → Rn and g : Rn → Rn is the vector field [f, g] : Rn → Rn given by
[f, g](z) = Dg(z)f(z)−Df(z)g(z). If h : Rn → Rn is a continuously differentiable
vector field and Ψ(t) = 〈λ(t), h(z(t))〉 where z a solution to the system equation
(8) corresponding to the control u and λ a solution to the corresponding adjoint
equation (14), then a straightforward computation (e.g., see [6, 7, 38]) verifies that

Ψ̇(t) = 〈λ(t), [f + ug, h] z(t)〉 . (17)

In particular, if an optimal control u∗ is singular on an open interval I, then it
follows that

Φ̇(t) = 〈λ(t), [f, g](z∗(t))〉 ≡ 0

with the Lie bracket given by

[f, g](z) =


−(ϕ1 − ϕ2)ξp+ ϕ3θpr

(ϕ1 − ϕ2)bp− 2
3ϕ1dp

2
3 q

ϕ1α(p− 2βp2)r + ϕ3γ

 .

Along an optimal controlled trajectory for problem [M] the Hamiltonian function
H vanishes identically and thus along a singular extremal we also have that

H = 〈λ(t), f(z∗(t))〉+ S ≡ 0.
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Except for a 2-dimensional surface where the vector fields f , g and [f, g] are linearly

independent, the conditions Φ(t) ≡ 0, Φ̇(t) ≡ 0 and H ≡ 0 determine the multiplier
λ and we have the following result:

Proposition 1. If an optimal control u∗ is singular on an open interval I, then,
away from the surface

L = {z = (p, q, r) : det (f(z), g(z), [f, g](z)) = 0}
the associated multiplier λ(t) is the unique solution of the equation

λ(t) (f(z∗(t)), g(z∗(t)), [f, g](z∗(t)) = (−S,−M, 0). (18)

Hence, away from the set L, equation (18) determines the multiplier λ along a
singular extremal as a feedback function of z, λ = λsing(z). Singular controls are
then computed by solving the equation for the second derivative of the switching
function, Φ̈(t) ≡ 0, for the control. It follows from equation (17) that

Φ̈(t) = 〈λ(t), [f + ug, [f, g]](z(t))〉
and thus the singular control is given by the feedback function

using(z) = −〈λsing(z), [f, [f, g]](z)〉
〈λsing(z), [g, [f, g]](z)〉

. (19)

We can express the second-order Lie brackets [f, [f, g]] and [g, [f, g]] as linear com-
binations of the basis f , g and [f, g] in the form

[f, [f, g]](z) = ρ1(z)f(z) + ρ2(z)g(z) + ρ3(z)[f, g](z)

and
[g, [f, g](z) = ω1(z)f(z) + ω2(z)g(z) + ω3(z)[f, g](z).

Hence, along a singular arc we have that

〈λsing(z), [f, [f, g]](z)〉 = −ρ1(z)S − ρ2(z)M

and
〈λsing(z), [g, [f, g]](z)〉 = −ω1(z)S − ω2(z)M

so that the singular control is given as

using(z) = − ρ1(z)S + ρ2(z)M

ω1(z)S + ω2(z)M
. (20)

Note that, if the emphasis is put on quick actions, i.e., S � M , then using(z) '
−ρ1(z)/ω1(z) while using(z) ' −ρ2(z)/ω2(z) if M � S.

Singular controls can be both minimizing or maximizing and the Legendre-
Clebsch condition, a necessary condition for optimality of singular extremals, allows
to distinguish between these cases. For a minimization problem it requires that

〈λsing(z), [g, [f, g]](z)〉 = −ω1(z)S − ω2(z)M ≤ 0.

Since this is the denominator in the formula for the singular control, we have the
following result:

Proposition 2. Away from the surface L, the smooth vector field

S = f(z) + using(z)g(z)

defined by the singular feedback control (20) is a candidate for optimality in the
region where the strengthened Legendre-Clebsch condition is satisfied, i.e., where

ω1(z)S + ω2(z)M > 0.
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Thus, besides the constant bang controls u ≡ 0 and u ≡ umax, that correspond
to no or full dose treatments, there exists a third feedback control, using(z), defined
on the region

Dsing = {z /∈ L : ω1(z)S + ω2(z)M > 0, 0 < using(z) < umax} ,

which describes time-varying dosages at intermediate values and is a third prime
candidate for optimality.

Explicit formulas for the functions ρi and ωi can be given, but they are incon-
clusive about the signs of these functions. In fact, the vector field [f, [f, g]] consists
of full and lengthy expressions that do not offer much insight although [g, [f, g]]
reduces to the following simple form:

[g, [f, g]](z) =


ϕ2
3θpr

−(ϕ1 − ϕ2)2bp+ 4
9ϕ

2
1dp

2
3 q

−ϕ2
1α(1− 4βp)pr − ϕ2

3γ

 .

However, numerical computations of these vector fields and the associated singular
control (20) are easily done and below we give some illustrations of these quantities.
In Table 2 we list the weights that we used in the objective (7) and the initial
condition used. The coefficients A, B and C are derived from a properly oriented
unstable eigenvector at the unstable equilibrium point.

coefficient interpretation numerical value
used in computations

weight for the
A tumor volume 0.9068
B carrying capacity 0.4216
C immunocompetent cell density 0.0029

at the endpoint
M penalty on the total amount of drugs used 1
S penalty on the total time 0.01

initial values for the
p0 tumor volume 200
q0 carrying capacity 300
r0 immuno-competent cell density 0.1

Table 2. Values of the weights in the objective (7) used in the
numerical computations.

Figure 2 shows slices of the graphs of the feedback functions 〈λsing(z), [f, [f, g]](z)〉
and 〈λsing(z), [g, [f, g]](z)〉 (the Legendre-Clebsch condition) for the values r = 0.2
and r = 0.5 and the parameter values from Table 1 with the one change that
γ = 0.1. Note that the overall shape of the graphs is very much alike and shows
that these functions do not have a high sensitivity to low values of r. The graphs
of the corresponding singular control using(z) are shown in Fig. 3. The values of
the singular control are small—and this would agree with a model for metronomic
chemotherapy— when the carrying capacity is in the range q ∈ [100, 250] and the
tumor volumes are comparable to these values. But the singular control takes very
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Figure 2. Slices of the graphs of the feedback functions
〈λsing(z), [f, [f, g]](z)〉 (left) and 〈λsing(z), [g, [f, g]](z)〉 (right) for
constant values r = 0.2 (top) and r = 0.5 (bottom) and the pa-
rameters given in Tables 1 and 2.

large values for states with high tumor volume and low carrying capacity. How-
ever, such states do not correspond to medically realistic situations and thus are
not of interest for the underlying problem. In Fig. 4 we show the evolution of a
sample controlled trajectory for a singular control in time from the initial condition
(p0, q0, r0) = (200, 300, 0.1).

Similarly, Fig. 5 shows slices of the graphs of the functions 〈λsing(z), [f, [f, g]](z)〉
and 〈λsing(z), [g, [f, g]](z)〉 for high tumor volumes p and corresponding values q
in the range (p, q) ∈ [350, 500] × [350, 500]. In this case, 〈λsing(z), [g, [f, g]](z)〉 is
negative, i.e., the Legendre-Clebsch condition is satisfied, but 〈λsing(z), [f, [f, g]](z)〉
is negative as well and this generates negative and thus inadmissible values for the
singular control (see equation (19)). As a result, the optimal dose rate will be
maximal in this set. Thus, it is expected that for initial conditions in the malignant
region the control will start with a brief maximum dose rate chemotherapy and then,
once the system moves into the benign region, lower dose rate singular controls will
be used to eradicate the tumor.
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Figure 3. Graphs of the singular feedback control using(z) re-
stricted to the slices r = 0.2 and r = 0.5.
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Figure 4. Time evolution of the singular control (top) from the
initial condition (p0, q0, r0) = (200, 300, 0.1) and projections into
the (p, q) (bottom, left) and (p, r) planes (bottom, right). The
values of the parameters for the dynamics are from Table 1 and
the weights in the objective are from Table 2.

4. Conclusion. In this paper, for a minimally parameterized mathematical model
for metronomic chemotherapy that takes into account tumor vasculature and tumor
immune system interactions and was introduced in [39], we formulated the problem
of optimal drug administration as the problem of transferring an initial condition
that lies in the region of attraction of a malignant equilibrium point into the region
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Figure 5. Slices of the graphs of the feedback functions
〈λsing(z), [f, [f, g]](z)〉 (top), 〈λsing(z), [g, [f, g]](z)〉 (middle) and
the corresponding singular control using(z) (bottom) for (p, q) ∈
[350, 500]× [350, 500] and constant value r = 0.5. (The parameters
are given in Tables 1 and 2). The singular control is negative and
thus is inadmissible.
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of attraction of a benign equilibrium point. For this problem, besides the constant
controls that correspond to full dose treatment or no treatment, there exists a third
main candidate for optimality given by a globally defined feedback control using
determined by a singular control that takes time-varying intermediate values. We
have derived an explicit analytic formula for using and illustrated its structure for
some representative cases. Optimal controls will need to be synthesized from these
three candidates, u ≡ umax, u(z) = using(z) and u ≡ 0 through a further analysis
of the conditions of the maximum principle and this has not been done yet. Based
on earlier results about optimal controls for antiangiogenic treatment for the model
by Hahnfeldt et al. [29] and for the model of tumor immune system interactions by
Stepanova [24, 32], it is expected that singular controls will play a major role in the
solutions possibly preceded by a full-dose therapy interval if the initial tumor volume
is high. These structures will be developed elsewhere. However, even this initial
analysis shows the importance of singular controls that correspond to time-varying
low dose protocols prevalent in metronomic chemotherapy.
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