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ABSTRACT. The cancer-immune interaction is a fast growing field of research
in biology, where the goal is to harness the immune system to fight cancer
more effectively. In the present paper we review recent work of the interaction
between T cells and cancer. CD8T T cells are activated by IL-27 cytokine
and they kill tumor cells. Regulatory T cells produce IL-35 which promotes
cancer cells by enhancing angiogenesis, and inhibit CD8% T cells via TGF-3
production. Hence injections of IL-27 and anti-IL-35 are both potentially anti-
tumor drugs. The models presented here are based on experimental mouse
experiments, and their simulations agree with these experiments. The models
are used to suggest effective schedules for drug treatment.

1. Introduction. The immune system may recognize tumor cells by their tumor
specific antigen, and then try to kill them. But tumor cells may escape immune
surveillance, and may even be able to exploit the immune systems to their own
advantage. This is the case, for example, with regard to macrophages. Tumor cells
in breast cancer attract macrophages by secreting M-CSF, and “educate” them to
secrete VEGF, which promotes angiogenesis and tumor growth. But these tumor
associated macrophages (TAMs) can be “re-educated” by a drug, such as GM-
CSF, and then these cells will secrete sVEGF-R which blocks VEGF [8, 16, 17,
18, 53]. Macrophages appear in two polarized forms: poinflammatory macrophages
(or classically activated macrophages) Mj, and anti-inflammatory macrophages (or
alternatively activated macrophages) M. M; macrophages secrete a high level of
proinflammatory cytokine IL-12, and a low level of anti-inflammatory cytokine IL-
10, whereas M> macrophages secrete a low level of IL.-12 and a high level of IL-10.
IL-12 is an anti-tumor cytokine. Indeed, by cue from surface protein MHCII on
macrophages, I1-12 activates CD4™ T cells and indirectly (by IL-2 produced by
CD4™ T cells), also CD8" T cells, and CD8% T cells (also known as cytotoxic T
cells, CTLs) kill cancer cells.

On the other hand, IL-10 produced by macrophages has been shown to block
CD8* T cell activity. Hence it is in the interest of the tumor to polarize macrophages
from M; to M5. This indeed is what occurs, for example, in pancreatic cancer: The
tumor secretes TGF-3 and activates pancreatic stellate cells (PSCs) so that they
also secrete TGF-3, as well as IL-6, and TGF-S and IL-6 polarizes M; into M,
[37, 38, 42, 49].
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The IL-12 family includes four cytokines: I11.-23, IL-12, IL-27, and IL-35. Al-
though of similar structure, they have different proinflammatory/anti-inflammatory
effects. In particular, they affect tumor in different ways. In Section 2 we describe
general properties of these interleukins with regard to tumor growth, and in Sections
3 and 4 we focus on IL-27 and IL-35, respectively.

2. The IL-12 family. Interleukin 23 (IL-23) is a proinflammatory cytokine which
plays a role in tumor progression by inducing inflammation in the tumor microen-
vironment [30]. However, whether this inflammation promotes or inhibits tumor
growth depends on the specific tumor. IL-23 acts as anti-tumor agent in childhood
B-acute lymphoblastic leukemia cells [10]. It has been shown to induce tumoral
infiltration of CD8' T cells and to suppress tumor growth in pre-existing tumor
mice [27]. IL-23 may also regulate metastatic prostate cancer [66]. On the other
hand IL-23 promotes tumor growth in colon cancer [29]. It has also been shown
that IL-23 and IL-12 play opposing roles in tumor growth [45, 55].

Interleukin-12 (IL-12) is a proinflammatory cytokine that plays a central role in
the connection of the innate resistance and adaptive immunity by promoting Thl
and cytotoxic T lymphocyte activities, such as IFN-v secretion. IL-12 could be a
powerful therapeutic agent to eradicate tumor or to prevent the development of
metastasis [4, 7, 14, 44]. However, 11-12 has also been shown to be excessively
toxic [5, 39], In recent years there has been increasing interest to investigate the
role of another member of the IL-12 family, namely, Interleukin-27 (IL-27), which
is less toxic than IL-12; as a potential anti-tumor agent [23]. Since Hisada et al.
[23] first reported on the anti-tumor efficacy of IL-27 in 2004, the potent anti-tumor
activity of IL-27 has been verified in various tumor models [24, 52, 69]. Many
studies suggest a role of IL-27 in enhancing anti-tumor CD8% T cell responses
[9, 23, 47, 48, 68]. The enhancing role of IL-27 in generating anti-tumor CTL
response was also demonstrated using IL-27R deficient mice [40, 50].

Interleukin 35 (IL-35) is the only member of the IL-12 family which is anti-
inflammatory. IL-35 supports tumor growth by enhancing VEGF production by
tumor cells [61], and by inducing differentiation of myeloid cells into myeloid derived
suppressor cells (MDSCs) which inhibit CD8% T cells activation [43, 56, 57, 61].
IL-35 is also produced by regulatory T cells (Tegs) in order to mediate the activities
of toxic T cells [3, 36, 46, 61]. In summary, IL-27 is anti-cancer and could be used as
therapeutic agent in cancer treatment, while IL-35 is pro-cancer so that anti-I1L-35
could be a therapeutic agent in cancer treatment

3. IL-27 and cancer. In a recent study, Liu et al. [33] investigated the effect of
IL-27 injection on plasmacytoma tumor in mice. They found that IL-27 significantly
enhances the survival of activated tumor antigen specific CD8" T cells, and induces
IL-10 upregulation in these T cells. It was also suggested in [33], and demonstrated
in [19, 22, 41, 54], that CTL IL-10 production contributes to tumor rejection.

Liao et al. [31] developed a mathematical model based on the experiments of Liu
et al. [33]. The model’s network is shown in Fig. 1. We note that IL-10 can have
inhibitory or stimulatory effect on cancer [21], but when produced by macrophages
it mainly plays a negative role in tumor rejection [1, 26, 60]; here it is produced by
CD8™ T cells and plays anti-cancer role by increasing survival of these cells. We
introduce the following variables:

In7(r,t) : concentration of Interleukin-27 in pg/cm?®,
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FIGURE 1. A network of IL-27. A network showing how IL-27 affects the
immune response to tumor cells. CD8F T cells are activated by P1A antigen
from tumor cells as well as by IL-27 which is secreted by tumor cells. Activated
CD8T T cells secrete IFN-y which is inhibited by IL-27, and IL-10 which is
enhanced by IL-27. IL-10 and IFN-v inhibit tumor cells.

Io(r,t) : concentration of Interleukin-10 in pg/cm?®,

T(r,t) : (tumor antigen specific) activated CD8* T cell density, cell/cm?,

L,(r,t) : concentration of Interferon-vy in pg/em?®,

c(r,t)  : tumor cell density, cell/cm?

and consider the radially symmetric case, with the tumor environment being a ball
{0 < r < L}. Based on Fig. 1, the following system of PDEs was introduced in
[31].
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We note that in the experiments of Liu et al. [33], they used gene transfected tumor
cells, J558-1L-27, to produce Io7 in the tumor microenvironment. Accordingly, we
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FIGURE 2. Evolution of cells and cytokines for different produc-
tion rates of IL-27. (A), (B), (C), (D), and (E) are the profiles of to-
tal number of Is7, Ii0, T, Iy, and c, respectively, within 90 days. In
(E), the curves displayed from top to bottom are for J558-Ctrl tumor cells,
J558-1L-27 tumor cells with small (ag7 = 1.5 x 1072 pg/cell/day), moder-
ate (27 = 7.5 x 1075 pg/cell/day), and large (27 = 3 x 10™% pg/cell/day)
production of IL-27, successively; L = 1 cm.

use the second term in the equation for I57 to represent the production of I57 by the
transfected J558-IL-27 tumor cells. Fig. 2 shows that by increasing the production
of IL-27 by cancer cells (i.e., by increasing as7) the tumor total mass is decreased.

The parameters of the system (3.1) are listed in Table 1 together with their
values; these values are taken from [31]. The simulation in Fig. 2 are in qualitative
agreement with the experimental results in [33].

We conclude that injection IL-27 into the tumor may have benefits for cancer
treatment. The administration of the IL-27 drug can be modeled by revising the
equation for Iy as follows:

Yo 19,0y
—Z = e (rP ) — parlar 3.2
ot I27 2 or (7“ or ) + f(?“ ) parla7 ( )
diffusion injection of I27 degradation

The function f(r,t) is not a constant. We make the pharmacokinetic assumption
that f(r,t) decreases in r from the outer boundary of the tumor towards the inner
core, and take

r’+a
N

L2 +a’
where a is a positive constant; F' is viewed as the “amount” of drug injection. The
model was used in [31] to compare the efficacy of different protocols of injections of
IL-27. Fig. 3 shows a comparison between continuous and intermittent injections:
continuous injection is given a fixed amount F for 24 weeks, and the intermittent
injection is given the amount 2F for three weeks with three weeks spacing between
injection. The treatment ended after 24 weeks. We see that continuous injection has
better efficacy in reducing the tumor burden, but the benefits of IL-27 treatment
happen only while the treatment is ongoing; the treatment has neither short-term

frt)y=F (3.3)
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TABLE 1. Parameters for the IL-27 model.
Description Value with unit

Dy,, | diffusion coefficient of I»7 1.25 x 1073 em?/day
a7 | production rate of I37 by tumor 1.5 x 1075 pg/cell /day
po7 | degradation rate of Io7 2/day
Dy, | diffusion coefficient of I1o 1.25 x 1073 em?/day
s10 | production rate from CTL without IL-27 8.89 x 108 pg/cell /day
ajp | max production rate from CTL with IL-27 | 1.128 x 10~% pg/cell/day
o10 5 x 103 pg/em?
1o | degradation rate of Ijg 1.6 x 10/day
Dy | diffusion coefficient of CTL 4.32 x 1079 em?/day
ST production rate of CTL activated by tumor | 1.3968 x 10% cell/em?/day
cr 5.76 x 1010 cell/cm3
or 2 x 10~* pg/em?
Br 9
pnr | death rate of CTL 3 x 1071 /day
D, | diffusion coefficient of I, 1.25 x 1073 em?/day
a, | max production rate of I, by CTL 3.72 x 1075 pg/cell /day
Sy 5 x 10% pg/em?
[y degradation rate of I, 2.16/day
D, | diffusion coeflicient of tumor 8.64 x 1075 cm? /day
A1 max proliferation rate 4.68 x 1071 /day
Cs 107 cell/em?
1t | death rate of tumor 1.73 x 10~ /day
Ne inhibition rate of tumor by Iq 3.45 x 10*1/day
Oc 1.5 x 102 pg/cem?
My inhibition rate of tumor by IFN-vy 6 x 10~ /day
Se 3 x 10% pg/em?

benefits nor long term benefits after the drug has discontinued. Note that the
growth rate of tumor is faster during the intermittent treatment “off” periods. This
is due to the fact that the CD8™ T cell population decreased as the tumor decreased
during the treatment “on” periods. The faster growth rate of the tumor after the
end of treatment brings it, at the end of week 30, to almost to the same level as the
untreated tumor.

4. TL-35 and cancer. Interleukin-35 (IL-35) is produced by many human cancer
tissues, including melanoma, B cell lymphoma, lung cancer, and colorectal cancer
[35, 61, 67], and it plays important roles in tumor progression and tumor immune
evasion [61]. Fox3™ regulatory T cells (Tyegs) are common in tumor microenviron-
ment [34, 63], where they induce immuno-suppression. They do so by producing
various cytokines, including TGF-3, IL-10 [51], and IL-9 [15], thereby promoting
tumor growth. It was also shown that T,egs secrete IL-35 [6, 11, 12, 13, 58, 59, 64].

Recently Wang et al. [61] generated IL-35 producing plasmacytoma cancer cells
(J558-11L-35) and compared them with “normal” plasmacytoma cancer cells (J558-
Ctrl) to show that the expression of IL-35 in tumor microenvironment increased
the number of myeloid derived suppressor cells (MDSCs), and promoted tumor an-
giogenesis; furthermore, I11.-35 inhibited the infiltration of cytotoxic T lymphocytes
into the tumor microenvironment and rendered the cancer cells less susceptible to
CTL destruction.
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FIGURE 3. Comparison of continuous versus intermittent treat-
ment. The upper curve is for J558-Ctrl tumor cells, the dotted-dashed curve

(= —-— ) is for intermittent injection, and the dashed curve is for continuous
injection with F = 3 x 10* pg/em3/day and a = 2.25 cm?, for the first 24
weeks.

These experimental results suggest that blocking IL-35 may be an effective ther-
apeutic approach to human cancer. To explore this possibility , Liao et al. [32]
developed a mathematical model based on the mice experiments of Wang et al.
[61] which includes tumor cells, MDSCs, CD8" T cells, Tyegs, M-CSF, TGF-4,
and IL-35, as well as VEGF, endothelial cells and oxygen, since IL-35 promotes
angiogenesis. Fig. 4 displays the network introduced in [32]. Note that tumor
cells attract MDSC which secretes TGF-$ and IL-10 to promote T,eg [20, 65], and
MDSC is also involved in a positive feedback loop

Treg — IL-35 — MDSC — T,

where the last activation is mediated by TGF-8 and IL-10. The presence of CD8%
T cells was established experimentally in [61]. We hypothesize that their pres-
ence is due to MDSC. Indeed, MDSC secretes MCP-1 [2, 28] and MCP-1 attracts
macrophages from the blood; macrophages then secrete IL-12 which activates CD4™
T cells of class Thl that in turn produce IL-2 which activates CD8% T cells. But
MDSC also modulates the production of CD8T T cells via IL-10 production, and
its pro-tumor activities enhance of I1L-35 and VEGF.

Liao et al. [32] introduced a system of partial differential equations based on
the network of Fig. 4, which included the following variables: ¢(r,t) = tumor cell
density, ¢(r,t) = M-CSF concentration, M (r,t) = Myeloid derived suppressor cell
(MDSC) density, I35(r, t) = Interleukin-35 concentration, R(r,t) = regulatory T cell
density, Ig(r,t) = TGF-5 concentration, T'(r,t) = T cell density, h(r,t) = VEGF
concentration, e(r,t) = endothelial cell density, w(r,t) = oxygen concentration.
They assumed that the tumor is radially symmetric and is contained in a sphere
0 < r < L. The model equations in the nondimensional form are as follows:
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FIGURE 4. A network showing how IL-35 promotes tumor growth.
M-CSF secreted by tumor cells promotes the differentiation of myeloid cells
to MDSCs. M-CSF also attracts MDSCs to the tumor microenvironment by
chemotaxis and promotes the secretion of VEGF by MDSCs. VEGF secreted
by tumor cells and MDSCs attracts endothelial cells to trigger angiogenesis.
IL-35 secreted by tumor cells, regulatory T cells and MDSCs promotes the
secretion of VEGF by tumor cells and enhances the production of MDSCs.
MDSCs promote Tregs, but also secrete MCP-1 to attract macrophages into
the tumor microenvironment. Macrophages secrete IL-12 to activate CD4+ T
cells, and CD41 T cells secrete IL-2 which activates CD8T T cells. MDSCs also
produce large amount of IL-10, which inhibits the chemotaxis and activation
of CD4t T cells.
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Wang et al. [61] used gene transfected tumor cells, J558-11.-35, to produce I35 in
the tumor microenvironment, in addition to the IL-35 which is secreted by Tyegs.
Accordingly, Liao et al. varied the parameter value of a5 such that assc > S35R >
v35M for gene transfected J558-11-35 cancer cells and B35 R > ~v35M > agsc for
(wild type) J558-Ctrl cancer cells. Fig. 5 displays the simulation results in [32]; as
it is seen, they agree quantitatively with the measurements reported in Wang et al.
[61].

The parameters of the system (4.1) are listed in Tables 2 and 3 together with
their values; these values are taken from [32]. We note that we have introduced in
this model all the variables that were measured in [61], namely, ¢ (cancer cells), M
(MDSC), I35, R (Tyeg), T (CD8%) and h (VEGF) so that we could compare the
model simulations with the experimental data in [61]. In addition we introduced the
most essential quantities that make connections among the above variables, namely,
q (M-CSF), e (endothelial cells) and w (oxygen). In this sense the model, although
quite complex, is minimal.

Next, Liao et al. [32] introduced the effect of anti-IL-35 drug, which inhibits the
production of IL-35, into the model by modifying the equation for I35 as follows:

Ol _ 10 500s) 1
ot 72 Or or f(rt) ~~
production by tumor
diffusion
+  BR + Y35 M | — paslss, (4.2)
— —— ——
production by Treg production by MDSC decay

where f(r,t) is taken to be as in (3.3).

Fig. 6 shows the simulation results in [32] for continuous and intermittent pro-
tocols of administering the drug, under different production rates ass, with fixed
total amount of drug. As it is seen, administering the drug continuously at fixed
amount yields better results than every alternate week at twice the amount They
also found that the percentage of tumor reduction under anti-IL-35 drug improves
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FIGURE 5. Evolution of cells and cytokines for J558-IL-35 and J558-
Ctrl mice models. Panels (A) to (F) show the profiles of the total numbers
of tumor cells, MDSCs, I35, Tregs, CD8F T cells, and VEGF for J558-IL-35
tumor cells with large Iss production (solid curve) and J558-Ctrl tumor cells
(dashed curve).

when the production of IL-35 by cancer is increased, as in fact was reported in lung
and colorectal cancers [35, 67].

5. Conclusion. In this paper we reviewed some recent papers on the interaction
between interleukines IL-27 and IL-35 (both from the IL-12 family) and cancer;
IL-27 is anti-cancer and IL-35 is pro-cancer. We presented mathematical models
by systems of partial differential equations, based on in vivo mice experiments.
The model simulations agree quantitatively with the experimental results. The
models were used to determine how drugs can be administrated (continuously or
intermittently) in order the better reduce tumor growth. However, our conclusions
should be viewed as hypotheses to be tested experimentally.

The model simulations in Sections 3 and 4 are in agreement with experimental
results [33, 61]. Tt would be interesting to explore the competing nature of IL-27 and
IL-35. While IL-27 is a drug injected externally into the tumor, I1.-35 is produced
intrinsically by Tiegs. In the experiments in [33] only CD8" T cells were considered,
but IL-27 is known to activate also Th1 cells and regulatory T cells [25, 62]. It would
be interesting to model the interaction between tumor cells and all these T cells
under IL-27 injection, that will include the various cytokines produced by the T
cells (e.g. TGF-4, IL-10, IL-12, IFN-7), including IL-35.



1212

[1]
2]

[3]

[4]

[5]
[6]

AVNER FRIEDMAN AND KANG-LING LIAO
TABLE 2. Parameters for the IL-35 model.
Description Dimensional
D, | Diffusion coefficient of tumor cells 4.32 x 107% em?/day
c¢* | Carrying capacity of tumor cells 10° cell/em?
te | Apoptosis rate of tumor cell 4.15 x 10~ /day
1. | Killing rate of tumor cells from T cells 3.1574 x 10~ %cm? /cell /day
A1 | Maximal proliferation rate of tumor cells 2.5/day
A2 | Maximal necrosis rate of tumor cells 8.3 x 10~1/day
wy, | Oxygen lower bound in necrotic 3.57 x 107 pg/cm?®
wp, | Oxygen lower bound in extremely hypoxic 108 pg/cm?®
wo | Normal oxygen level 4.65 x 10% pg/cm?
D, | Diffusion coefficient of M-CSF 1.728 x 10~ T em?/day
ag | Production rate of M-CSF by tumor cell 2.7648 x 10~° pg/cell /day
fg | Decay rate of M-CSF 4.1472/day
oo | Source of MDSC 1.10345 x 10° cell/em?[day
o1 | Maximal production rate via I3s 4.65518 x 10%/day
cm 10° pg/cm?
D), | Diffusion coefficient of MDSC 4.32 x 1079 em?/day
k, | Chemotaxis rate of MDSC for M-CSF 5.2 x 1077 em?® /pg/day
ayr | Polarization rate of MDSC by M-CSF 7.5 x 10~ /day
My | Density of myeloid precursor cells 8 x 10% cell/em?
o 7.5 x 10 pg/em?
uar | Death rate of MDSC 3 x 1072 /day
Dy, | Diffusion coeflicient of I35 1.25 x 1073 em? /day
ass | Iss production rate by tumor for J558-1L-35 | 10~ pg/cell/day
ass | Iss production rate by tumor for J558-Ctrl | 10~ "pg/cell/day
B35 | Production rate of I35 from Theg 1.67 x 1073 pg/cell/day
35 | Production rate of I35 from MDSC 10~% pg/cell/day
u3s | Decay rate of Iss 2/day
Dpr | Diffusion coefficient of T,eg 4.32 x 1079 em?/day
Onr | Maximal activation rate of Ty by MDSC 1.25 x 108 cell/em? /day
OR 107 cell/em?
65 | Maximal activation rate of Tyeg by TGF-8 | 3.327 x 10° cell/cm?/day
og 2.4 x 10% pg/em?
pr | Death rate of Tyeg 10~ /day
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Description Dimensional
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