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ABSTRACT. We consider the so-called prion equation with the general inci-
dence term introduced in [14], and we investigate the stability of the steady
states. The method is based on the reduction technique introduced in [11]. The
argument combines a recent spectral gap result for the growth-fragmentation
equation in weighted L1 spaces and the analysis of a nonlinear system of three
ordinary differential equations.

1. Introduction. Prion diseases, also referred to as transmissible spongiform en-
cephalopathies, are infectious and fatal neurodegenerative diseases. They include
bovine spongiform encephalopathy in cattle, scrapie in sheep, and Creutzfeld-Jakob
disease in human. It is now widely admitted that the agent responsible for these
diseases, known as prion, is a protein which has the ability to self-replicate by an
autocatalytic process [15, 23]. The infectious prion, called PrPS¢ for Prion Protein
Scrapie, is a misfolded form of a normally shaped cellular prion protein, the PrP¢ .
The so-called nucleated polymerization was proposed by [16] as a conversion mecha-
nism of PrP¢ into PrP5¢ . According to this theory the PrP5¢ is in a polymeric form
and the polymers can lenghten by attaching PrP® monomers and transconforming
them into PrPS¢ . To understand more qualitatively this mechanism, a mathemat-
ical model consisting in a infinite number of coupled ordinary differential equations
(ODEs) was introduced in [19]. Then a partial differential equation (PDE) version
of this model was proposed in [13] (see also [6] for a rigourous derivation). This
equation, known as the prion equation, was studied in various works in the last few
years [8, 24, 26, 28, 18, 5, 4, 10]. A more general model including general incidence
of the total population of polymers on the polymerization process and a coagulation
term was proposed in [14].

In the present work we propose to investigate the prion equation with general
incidence, but without coagulation, which writes

dy(t) = A=0V(t) - % /OOO 7(x)u(t,z) dz,
(1)
Ou(t, ) —% Oz (T(x)u(t, ) — p(x)u(t,z) + Fu(t,z),

2010 Mathematics Subject Classification. Primary: 92D25; Secondary: 35B35, 35B40, 35Q92,
45K05.

Key words and phrases. Prion equation, growth-fragmentation equation, spectral gap, self-
similarity, long-time behavior, stability.

This work was supported by the french ANR project “KIBORD”, ANR-13-BS01-0004-01.

789


http://dx.doi.org/10.3934/mbe.2015.12.789

790 PIERRE GABRIEL
where F defined by
Fu(z) =2 / Byl y)uly) dy — Blz)u(z)

is the fragmentation operator. Dynamics (1) is subjected to nonnegative initial con-
ditions Vj and ug(z). The unknown V' (¢) represents the quantity of PrP® monomers
at time ¢ while u(¢,z) is the quantity of PrP5¢ polymers of size x. The PrP¢ is
produced by the cells with the rate A and degraded with the rate 8. The PrPS°
polymers have a death rate pu(x) and they can break into two smaller pieces with
the fragmentation rate S(x). The kernel x(x,y) gives the size distribution of the
fragments. The “general incidence” corresponds to the term m in front of
the polymerization rate 7(z), with w > 0 and p > 0. The case w = 0 corresponds to
the mass action law, i.e. the original model without general incidence. The more in-
teresting case w > 0 corresponds to the case when the total population of polymers
induces a saturation effect on the polymerization process. In [14] the parameter
p is equal to 1, meaning that the saturation is a function of the total number of
polymerized proteins. To be more general and to take into account the fact that
the polymers are not necessarily linear fibrils but can have more complex spatial
structure (see [19]), we consider in our study any parameter p > 0. In [14], the poly-
merization rate 7(z) is supposed to be independant of x. But some works [10, 25]
indicate that the polymerization ability, which relies on the infectivity of a polymer,
may depend on its size. For mathematical convinience in our work we assume that
this dependence is linear

T(x) =TI (r>0). (2)
Notice that for such a function 7(z) there is no need of a boundary condition at
x = 0 for the equation on u(t,x). In [14] they restrict their study to linear global
fragmentation rates S(x) and to the homogeneous fragmentation kernel x(z,y) =
1/y. Together with the assumption of a constant death term u, it allows them to
reduce the PDE model to a system of three ODEs. Here we keep the assumption
of a constant death term

p(z) =p >0, (3)
but we consider more general global fragmentation rates
Blx) =pz” (8,7 >0) (4)

and more general (self-similar) fragmentation kernel
1 rz
R(Z,Y) = 7@(7> bl
(@y) =20y ()

where p(z) is a smooth function defined on [0, 1]. To ensure the conservation of the
total number of PrP5¢ monomers during the fragmentation, the operator F must
verify fooo xFu(x)dr = 0 for any function u. This property is satisfied under the
following assumption on p

2/0 co(2)dz = 1. (6)

Condition (6) is fulfilled for g a symmetric, in the sense that p(z) = (1 — 2),
probability measure. We additionnally suppose that the derivative of p satisfies

/0 10/(2)] dz < +oc. (7)
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Our study of Equation (1) is performed in the space R x X, where we have
denoted X := L*(R,,dz) N LY(Ry, 2"dz) with 7 > 1. More precisely we work in the
positive cone R} x X which is invariant under the dynamics (1). We take r > p in
order to have L' (R, ,2Pdx) C X, so that the general incidence term is well defined.
The space X is a Banach space for the natural norm || - ||x = || - |lo + || - ||» where
lulla = 5 |u(z)|z*dx. But for a part of our study, we also need to consider the
weaker norm || - ||; on X.

Denote by Xy, the space X endowed with its weak topology. The solutions of
Equation (1) are understood in the following weak sense.

Definition 1.1. Given V5 > 0 and ug € X, we call (V,u) a (global) weak solution
to Equation (1) if

(i) V € CY(R,) is a non-negative solution to

V=a- o+ v

(i) w € C(R4, Xw) N L}, (Ry, L' (27 dz)) and for all t > 0, u(t,-) € X4,

(iii) for all t > 0 and ¢ € WH*°(R,) there holds

/0OO u(t,)p(x) de = /000 uo(z)p(x) dz
+ T/t V(s) fooo zuls, x)ap, DT s — / / u(s, z)p(x) dxds

1+wf0

+ ﬁ/ / zu(s, x) /01 p(zz)p(z)dz — go(x)} dxds.

The question of the existence and uniqueness of solutions is addressed in [26, 28,
18, 9] for very similar equations. In the present paper we are interested in the long
time behavior of the solutions to Equation (1) — in the sense of Definition 1.1 — |
assuming their existence.

We easily check that (V = %, 0) is a steady state of our equation. We call this
trivial steady state the disease free equilibrium (DFE) since there is no polymerized
proteins in this situation (u = 0). A natural question is to know whether there
exist endemic equilibria (EE), namely steady states (Vao,uso) € Ry x X% where
X% = X\ {0}. For an EE, we get by testing the equation on u., against z and

using the relation [;° 2Fuo () dz = 0 that

VeoT
- 8
o foran (8)
and then u., is a positive solution to
u(a:uoo(x))l + poo (T) = Fus (). (9)

The existence of an EE as well as the stability of the DFE depend on the basic
reproduction rate Ry of Equation (1), which indicates the average number of new
infections caused by a single infective introduced to an entirely susceptible popu-
lation. To find this parameter Rg, we linearize the equation on u about the DFE
(V,0) and we test the resulting equation against z to obtain

d o0

— xu(t,x) dr ~ ‘77‘/ zu(t, x) dr — u/ xu(t, x) dz.
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We deduce that Ry is given by

Rozﬁ AT

po o

It is worth noticing that this parameter does not depend on the fragmentation
coefficients (3, v, and p. We can now summarize the results of the paper in the
following main theorem.

Theorem 1.2. If Ry < 1, the unique equilibrium in Ry x X 4s the DFE. It is
globally asymptotically stable for the norm |V |+ ||lul|1.

If Ry > 1, then there exists a unique EFE which coexists with the DFE. The EE
is locally stable for the norm |V| + ||ul|x, and the nontrivial trajectories cannot
approach the DFFE in the sense that

w#Z0 = lim inf/ zu(t,z) dz > 0.
t——+o0 0

In the case when p > 1 and § > u, the EE is globally asymptotically stable in

Ry x X% for the norm |V| + |lul x.

The paper is organized as follows: In Section 2 we explain the method which
allows to reduce Equation (1) to a system of ODEs, and in Section 3 we take
advantage of this reduction to prove Theorem 1.2.

2. Reduction to a system of ODEs. As suggested by Equation (9), we use the
properties of the linear growth-fragmentation equation

dpu(t,z) + p oy (zu(t, ) + pu(t, z) = Fult,z). (10)
This equation is also known as the self-similar fragmentation equation (see [9, 2, 3,

12, 21]). Using Assumption (6) we obtain (at least formally) that Equation (10)
preserves the mass

vt >0, / zu(t,x)de = g := / zug(x) dx. (11)
0 0

Under Assumptions (2)-(6), this equation admits a unique (up to normalization)
positive steady state U(x) (see [9, 7]), i.e. a unique U € L' (R, x dz) satisfying

p(zU(z)) + pl(z) = F(z), U(z) >0, /Oocxl/l(x)dle.

This steady state belongs to L'(R,,x%dx) for any o > 0, so it belongs to X,.
The convergence of the solutions to this equilibrium has been investigated in [9, 20]
and recent results give the exponential relaxation under some assumptions and in
suitable spaces (see [22, 17, 2, 3, 1, 12, 21]). Here we use the spectral gap result
recently proved in [21] under the assumption that p is a smooth function satisfying
Assumption (7).

Theorem 2.1 ([21]). Under Assumptions (2)-(7), there exist a > 0 and C > 0
such that
Yug € X, Vt >0, llu(t, ) — ooU||x < Ce " |lug — 0o U|| x- (12)

The method we use to prove Theorem 1.2 is based on a (time dependent) self-
similar change of variable introduced in [11] which allows to transform a solution
of the prion equation into a solution to the linear growth-fragmentation equation.
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Then we combine the spectral gap result (12) with an asymptotic analysis of the
change of variable to get the long time behavior of Equation (1).

The change of variable is defined as follows. Starting from wu(t,z) > 0 and
V(t) > 0 solution to Equation (1) we define for k := 1

o(h(t), ) = WE(t)u(t, W*(t)z) ert="D)
with W solution to
; T
W =AW ( oV — W
K (1 +w [zPu H )’

and h the solution to i = W, h(0) = 0. We choose W (0) = 1 to have v(t = 0, ) = uo.
Since V is positive we have W > —yuW? and so W > As a consequence

1
14+~ypt”
h(t) > ﬁ In(14+~ut) — 400 when t — 400 so h is a bijection of R and v(t, -) is well
defined for all ¢ > 0. We can check that v is a solution to the linear equation (10).
Then the convergence result of Theorem 2.1 ensures that

olt, @) 7 00 U().
We deduce, for « € [0, r], the equivalence

o)
/ zu(t,z)de ~  ooMyWre(t) et M=t
0

t——+oo

where M, = [;° 2°U(z) dz. This equivalence allows us to obtain an (asymptoti-
cally) closed system of ODEs which provides the behavior of the change of variables.
Define Q(t) = oo e*("®) =) which satisfies

Q= pQ(W —1).
Then denoting f(I) = Troar7 we have

W o~ AW (f(WPQWV — uW
o AW WV — uW)
and, since M1 =1 by definition Of[/{,

Vo~ A=V(©+ fWrPQWrQ).

t——+oo

To make these equivalences more precise, we define for o > 0

ealt) = W— i /Qo u( x) —U(x))z® dx.

The following Lemma ensures that £,(t) — 0 when ¢t — 400 if a € [0, r].
Lemma 2.2. For any o € [0, 7], there exists C > 0 such that
lea(t)] < Clleg 'uo — Ul x e~

Proof. Using Theorem 2.1 we have

(] < M5 [ log "v(h(0) ) ~ Ulz)la” da

< M eg M o(h(t),) — Ullx
< Cllog tuo — U|| x e,
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For @ = 1 we even have, using M; = 1 and the mass conservation law (11), that
W0,  et) = /(gglv(h(t),x) CU(2))zde =0

and as a consequence [, zu(t, ) de = WH(t)Q(t). Setting f(;1) = f((1+ €)I),
we get that (V, W, Q) is solution to the sytem

vV o= /\—V(6+f(5p;Wk”Q)WkQ)7
W= W (e WQ)V — uW), (13)

with the initial condition (Vp, Woy, Qo) = (Vo, 1, o). Defining the relevant quantity
P(t) = Wk(#)Q(t) and using it instead of @ as an unknown we obtain the other
system

v

A V(é + flep; W’“(”*I)P)P),

W

yw(f(ep;w’“@*”P)V - uW), (14)
Po= P(feW PV - p).

Remark 1 (Interpretation of V, W, @ and P). By definition we have that V (t)
is the number of monomeric proteins (PrP¢ ). The relation P(t) = [ zu(t,z) dx
means that P(t) represents the number of polymerized proteins (PrPS¢ ). The
unknown Q(t) represents roughly the total number of polymers

/0 Tt a)de = (11 eo() MoQ(1),

and W (t) is related to the mean size of the polymers

[ zu(t, z) dx

Wk(t) = (1 +eo0(t))Mo W

Another relevant quantity is Y = V + P, the total number of proteins (PrP¢ +
PrP5¢ ). We have a system of ODEs satisfied by (Y, Q, P):
Y = A=0Y +(0—p)P,
Q = pQ (P”Q‘” — 1)7 (15)
P = P(f(fp; PPQITP)(Y - P) - u)~

We will use alternatively formulations (13), (14) and (15) to prove our main theorem.
These systems are not autonomous because of the term ¢,. But the property that
this term vanishes when ¢ — 400 (see Lemma 2.2) is sufficient to get the asymptotic
behavior of the change of variable, as we will see in the next section.

3. Proof of Theorem 1.2. We divide the proof of Theorem 1.2 into several propo-
sitions.
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Proposition 1. There exists an EFE if and only if Ro > 1. This FE is unique and
is explicitely given by

w4+ Aw, . Ro—1
oW, M Mo =Gt it Qe = Oar

Remark 2. It is worth noticing that Vo given in the proposition belongs to the
interval (£,V), recalling that V > £ when (and only when) R > 1.

Proof. We recall that an EE is a positive nontrivial steady state. We deduce from
Equation (9) and the uniqueness of U that the function us, of an EE is positively
colinear to U, i.e. uo = Qoo U with Qoo > 0. Then using the equation on V' at the
equilibrium and Equation (8) we get that (V, Qo) is solution to the system

A=0Vy + 71;)%@& , ,
o (16)
H=150M,Q0

We easily check that this system has a unique solution different from (V,0), given
by

Vo — -+ )\(JJMP Q . RO —1
T+ wM,’ I wM,
The value of QQ is positive if and only if Rg > 1. O

Now we give a useful lemma about the boundedness of V, P and W.

Lemma 3.1. Any solution to Equation (13) with (Vo, Wo, Py) € Ry x RY x Ry
satisfies
dKy >0, Vt>0, V(t)+ P(t) < Ky,

IKy, > K1 >0, Vt>0, K <WFrD@) <K,

Proof. We start from
%(V+P) =A—080V —puP <X —min(4, u)(V + P)

which ensures by the Gronwall lemma the global boundedness of V' 4+ P. Then from
d w w
ZW = —— (f(ei WETIP)V — uW ) < == (1Ko — uW)
we get the global boundedness (from above) of W by W > 0. From
4
dt
we obtain that liminf, o V(t) > ﬁ > 0. Then if p > 1 we deduce from
d w —k(p—1)
W o> = . _
W = = (fen W)V — )
that liminf; , . W(t) > ;flf(Wk(p_l)Ko) liminf; ;4 V() > 0 since we have
limy 4+ o0 €, () — 0. For the case p < 1 we write
s W f (ep; WEEP=D P)
dt kT
and we define

V> A= V(5 + 1K)

(7V = W (14 w1+ ) M WE D ) )

g(W) =W (1 +wM,WFP~V Ky).
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The function g is continuous and satisfies g(0) = 0 and limy 1 oo g(W) = 400, so
there exists Wi > 0 such that g(W1) = 7 liminf V" and for all W < W1, g(W1) <
ﬁlim inf V. Since €, — 0 when ¢t — 400, we deduce that liminf, , . W > W; > 0.
Finally we have proved the existence of K; and K5 because Wy =1 > 0 and W
cannot vanish in finite time. O

Proposition 2. If Ry < 1, then the DFE is globally asymptotically stable for the
norm |V| + ||lu|1.

Proof. Define V =V — V. The stability of the DFE in norm |V| + |Jull; = [V|+ |P|
is ensured by the Lyapunov functional
d [ V2(t N\ -
dt(VP(t) + 2()> = —(u - fV)VP —6V2-V2fP <O.

It remains to prove the global attractivity.

First case. Ry < 1.
We have ~
d (- V2 —\ - ~ 9
il )< = _ _ .
= <VP+ : ) < (u fV)VP 5V
Since Rg < 1 we have p > 7V and

d(, V? . o V2
£ ) < —min(u— —).
o (VP + 5 ) < —min(p — 7V, 20) (VP + 5 )

We deduce the exponential convergence from the Gronwall lemma.

Second case. Ry = 1.
When Ry = 1 we only have
d (- v? _ 8 8
Clvpy )< —w(l - f)VP _ SV f72P
dt 2 T
so we need to be more precise and estimate the value of 1 — { Using System (14)
we have

f (14 ep)wM,WkP=D p

7 14 (1+e))wM,Wre-DP"

From Lemma 2.2 we can ensure the existence of a time to > 0 such that |, ()| < %
for all ¢t > tg. Then using Lemma 3.1 we get that for all ¢t > ¢,

d (- V2 TpwMyK, 5 -~ -
—(vP+ — )< ——""F " _yp _ _Vi_;V?P
( + ) S s R, L wY TV

. ThwM, K1 - _, 46 - _,4 (7 Vz)z
< - — =V = TV VP+ —) .
= mm{2+3prK2K0 K2 T T
After integration this gives for ¢t > tg
_ V2 1
VP + 5 < T ot o7 0
_— —T 00
VP V()2 |
where the constant C' = min {%Vﬁl, %‘%, TV’I} > 0. O

Proposition 3. If Ry > 1, then the unique EE is locally asymptotically stable for
the norm |V| + |lul x.
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Proof. We want to prove that for any € > 0 there exists n > 0 such that

Vo=Vl +luo—teollx <n = VE>0, |V() = Vol +]|ult, ) —usllx <e (17)

Step #1. We start from the homogeneous form of Equation (13) (obtained by
replacing €, by 0) which writes

Vo= A= V(54 FWRQUFQ),

W

W (F(VRQ)V — uw), (18)

Q = pQ(W-1).

We easily check from Equation (16) that (V, 1, Q) is the unique equilibrium of
System (18). First we prove the linear stability of this equilibrium by using the
Routh-Hurwitz criterion. The Jacobian of System (18) about (Vi, 1, Qo) is

—5-Qf(Q) —kVQ(PRSf(Q)+ f(Q) —-V(QS(Q)+ f(Q))
Jaceg = 7f(Q) pr’(Q)QV -y v (Q)V
0 W 0

where we have skipped the indices o, for the sake of clarity. To use the Routh-
Hurwitz criterion, we compute the trace

T=-6-yu—-Qf(Q)+pVQf(Q)
the determinant
D=~uVQ(51(Q) - f*(Q)),
and the sum of the three 2 x 2 principal minors
M =yu(6 + QF(Q) = VQ['(Q)) —pdVQS(Q) + VQF(Q).
We have T' < 0, D < 0, and from
T<—0—yu and  M>-yVQf(Q)+VQf Q)

we obtain that MT < D. By the Routh-Hurwitz criterion, we deduce that the
steady state (Voo, 1, Qo) is locally stable for Equation (18).

Step #2. By continuity of the function f, the steady-state (V, 1, Qo) is also
stable for System (13) provided that ||e,||o is small enough, é.e.

Ve, dn >0, |VO*VOO|+|WO*1|+|QO*QOO|+Hf‘:p”oo<77

(19)
— V20, [V(8) — Vil + [W(0) = 1] + Q1) - Quc] < c.

We would like to replace |[Wy — 1| + |Qo — Qoo| + |l€pllee i (19) by |Juo — teo||x-
From our choice of Wy, we have |Wy — 1| = 0. For |Qo — Qoo| we have Qp = 9o and

|QO - Qoo| =

/0 " (o (2) — s (@) d| < [luo — e x. (20)

For the last term ||ep||oc we know from Lemma 2.2 that

leplloe < Clieg "o — Ul x-
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But using (20) we also have

g o Ul = - Hu H
X

< (\Qm ool + [0 — s x)
Qoo

= Uy — Ueo || X -

At this stage we have proved that for all € > 0 there exists n > 0 such that

Vo—Voo|Flluo—uscllx <n = ¥t 20, V() = Voo |[+[W(t) = 1[+]Q(t) - Qo] < €.
(21)

Step #3. It remains to deduce (17) from (21). We write
lu(t,) = usellx < llu(t, ) =QE)W (UMW ~*(t)-)||x
+HQEW FOUW T (1)) — Qocld | x
For the first term we have
lu(t,-) = QU)W (t)UW ¥ (t)-)l|x

Q) [ 1oy elh(0).2) ~U@)|(1+ W ()27 do
< (Quo +1Q = Quel) (1 1W = 11) " gy "o — ]| x
<2(1+ \QQ -1+ W - 1|)’“’“||uO —usllx. (22

For the second term we have by dominated convergence that

Ye>0, 3 >0, [W—1+]Q-Quxl<n = QW UW ") - Qul|x <.
(23)
Combining (21), (22) and (23), we obtain (17) and the proposition is proved. O

Proposition 4. If Ry > 1, then the trajectories cannot approach the DFE in the
sense that

t—+o0

lim inf/ zu(t,x)dx > 0.
0

Proof. We are in the case Rg > 150 0 := 7V — > 0.
First case. Vt, V(t) > V. Using System (14), Lemma 3.1 and Lemma 2.2 we have

>

—P P(f(eps WHP=DP)V — 1)
P((f(eps WFP=DP) — 1)V + 7V — pi)

TwM,(1 4 ,) WFP-1 p
+0
14 wMy(1 4, Wkr-DP

P< TwM,(1+ C|loy uo—u|)K1KOP+9)

and we deduce that

. . 0
liminf P > =1 >
tmspo0 TwM,(1+ C|log 'uo — U|) K1 Ko
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Remark that this case cannot hold since the positivity of the lim inf P together with
the equation on V' implies that V' becomes lower than V' in finite time. So we are
always in the second case.

Second case. 3ty > 0, V(ty) < V. Define the positive function V() = V —

V() (Vt > tg, V(t) > 0). As in [4] we compute, for a > 0 to be chosen later,

() 2 (V=70 =) o

Ve

_ P
v
We choose « large enough so that 7 := ad — p > 0. Denoting R = PV~ we have

R > R(n—arVRY*P'=1/*)

and, choosing o > 1,

p:pfgv_u+u@_;)_4;f“)
> Pé (9 MKy P — T<%) W)
> P{ <9 - (WMPKQKO(% + R; )Pl/a>.

The first inequality tells us that

oo arVKLe

Then the second inequality ensures that

liminf P > ( 271 T ) > 0.
e pwM, KoKy + TR =

O

Proposition 5. In the case when Rg > 1 and additionnaly p > 1 and § > p, the
EEFE is globally asymptotically stable for the norm |V| + ||ul x.

Proof. Consider the homogeneous form of System (15) (by replacing €, by 0). The
matrix of partial derivatives has the sign pattern

- 0 sgn(d — )
0 * +
+ sen(p—1) *

In the case p > 1 and § > p, this indicates an irreducible cooperative system. Then
by Theorems 2.3.2, 4.1.1 and 4.1.2 on respective pages 18, 56 and 57 of [27], the
homogeneous form of System (15) exhibits monotone dynamical flow and solutions
must approach an equilibrium. From Proposition 4 the trajectories cannot approach
the DFE when Rg > 1, so they necessarily approach the EE. Using the stability
result of Proposition 3 we deduce the global asymptotic stability of the EE.

To conclude to the same result for the original System (15), we use the fact that
gp(t) = 0 when ¢ — +o0o and Lemma 4.2 in [11]. O
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4. Conclusion. We have considered a prion model with less terms than in [14],
but with more general coefficients. Compared to the results in [14] we have proved
the global stability of the DFE in the critical case Ry = 1 and the global asymptotic
stability of the EE when the system is cooperative.

The results in Theorem 1.2 remain valid for more general incidence functions
f provided that they are decreasing. Indeed it has been proved in [11] that for
increasing functions f, periodic solutions can exist. This indicates that Equation (1)
can exhibit various behaviors and their classification in the general case is still an
open question.
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