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Abstract. A model of epidemic bacterial infections in hospitals is developed.
The model incorporates the infection of patients and the contamination of

healthcare workers due to environmental causes. The model is analyzed with

respect to the asymptotic behavior of solutions. The model is interpreted to
provide insight for controlling these nosocomial epidemics.

1. Introduction. We analyze a model of a nosocomial epidemic, that is, an epi-
demic of antibiotic resistant bacterial infections that occur in a hospital setting. The
increasing magnitude of nosocomial epidemics has recently been documented in the
WHO report Antimicrobial resistance: Global report on surveillance [8]. Although
there has been extensive mathematical modeling of nosocomial epidemics, there has
been little attention given to environmental contamination as a factor in their devel-
opment and severity. In 2011 an outbreak of Klebsiella pneumoniae carbapenemase
(KPC) infections arose in the Clinical Center at the National Institutes of Health in
Bethesda, Maryland (CCNIH) [15]. The KPC outbreak at CCNIH, one of the most
prestigious hospitals in the US, has caused great concern about the transmission
and control of antibiotic resistant bacterial infections in hospitals. There is yet an
incomplete understanding of the infection transmission routes for patient infections
in this KPC outbreak.

The events in this KPC outbreak at CCNIH are as follows: A single patient
with KPC was admitted to CCNIH, which had never had a previous case of KPC.
This patient received high level infection control measures to prevent further patient
infections, and was later discharged with no new infections having occurred. But
several weeks later several patients, with no link to this first patient (no ICU time
together, no common healthcare workers (HCW), no shared equipment) tested pos-
itive for the same strain of KPC. Over a period of months more patients contracted
this resistant KPC strain and 11 died. With the implementation of extreme hygiene
measures the epidemic seemed to have been contained. But one year later a new
infection of the same KPC strain arose and this patient died.

Until recently, control of nosocomial epidemics was focused on HCW-patient hy-
giene measures, with less attention given to environmental infection routes. But the
absence of symptomatic cases over extended time periods in this outbreak at CCNIH
indicates transmission routes may not have been only through direct patient-HCW
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contacts. The timing, locales, and strict hygiene measures of the KPC cases at
CCNIH raise the possibility that environmental transmissions played a significant
role in this nosocomial epidemic. There has been recent interest in incorporating
environmental transmission into epidemiological models, including mathematical
models of nosocomial epidemics [4, 10, 17, 18, 19]. Our goal here is to further
develop models of nosocomial epidemics that incorporate environmental infection
transmission pathways, as well as standard HCW-patient contact infection trans-
mission pathways.

A major difficulty in incorporating hospital environmental features into noso-
comial epidemic models is the complexity of environmental factors involved [5].
Gram-negative bacteria such as KPC, Clostridium difficile, and Acinetobacter bau-
mannii have the ability to persist for long time periods, even years, on bed rails,
curtains, IV lines, faucets, switches, and many other inorganic surfaces. Inclusion
of many such variables into a modeling framework poses great difficulties in orga-
nization and parameterization. On the other hand, a single abstract environmental
compartment framework fails to characterize the important distinctions in the mul-
tiplicity of environmental contributions. Recently, several epidemiological studies
in hospitals have collected and analyzed data on patient room contamination and
cleaning, along with their effect on subsequent infection of patients and HCW con-
tamination [6, 7, 14]. Thus, in order to include complexity, analytic tractability,
and epidemiological relevance in modeling environment transmission of nosocomial
infection, we choose an intermediate contamination framework: hospital environ-
mental contamination in terms of patient rooms. We designate two levels of room
contamination: level 0 rooms are uncontaminated or contaminated at low levels
and level 1 rooms are contaminated at significantly higher levels. Our models can
be extended to a hierarchal sequence of room contamination levels, from low to
high, but for simplicity we only consider two levels here. The advantage of this
approach is that patient infection status can be tracked through room occupancy
and room change. Additionally, environmental control measures can be applied to
room cleaning efforts. The influence on the environment can thus be formulated,
parameterized, and evaluated in terms of patient status, HCW status, and room
status.

2. The Patient-HCW-Rooms nosocomial model. The model consists of the
following six compartments: uninfected patients susceptible to acquiring the in-
fection in level 0 contaminated rooms (S0), uninfected patients susceptible to ac-
quiring the infection in level 1 contaminated rooms (S1), infected patients in level
0 contaminated rooms (I0), infected patients in level 1 contaminated rooms (I0),
uncontaminated HCW (HU ), and contaminated HCW (HC). The assumptions of
the model are as follows:

(1) All patients are uninfected at admission.
(2) Infection of patients by HCW and contamination of HCW by patients occur

during patient-HCW visits in patient rooms.
(3) Infection of patients by the environment and contamination of HCW by the

environment occur independently of patient-HCW direct contacts (but not neces-
sarily independently of patient-HCW visits).

(4) The ratio ρ of HCW to patients is constant.
(5) There is an average length of time TV between visits of HCW for patient-

HCW visits. The probability that any patient is visited by any HCW during the
time interval TV is ρ. The time units of TV are (fractions of) days.
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(6) Uninfected patients in level 0 (level 1) rooms who exit their rooms are replaced
by uninfected patients in level 0 (level 1) rooms.

(7) Infected patients in level 0 (level 1) contaminated rooms exit their rooms
at rate 1/T0 (1/T1), where T0 (T1) is their average length of stay in these rooms
(RLOS). Room exit may result from transfer to another unit of the hospital, a
change of room, hospital discharge, or other reasons. The RLOS may correlate to
severity of infection, which in turn may correlate to level of room contamination.

(8) The fraction α0 (α1) of infected patients in level 0 (level 1) rooms who exit
their room are replaced by uninfected patients in level 1 (level 0) rooms and the
fraction 1−α0 (1−α1) are replaced by uninfected patients in level 0 (level 1) rooms.
Lower α0 and α1 values correspond to more effective room cleaning at each patient
room exit. We allow α0 > 0, since cases with severe symptoms may result in higher
level room contamination upon room exit.

(9) During each patient-HCW-visit in a level 0 (level 1) contaminated room by
an uncontaminated HCW and an infected patient there is a probability ω0 (ω1)
of contamination of the HCW. Note that the probability ω0 should only describe
contamination due to patient-HCW direct contact, whereas ω1 describes both con-
tamination due to direct contact and due to the environment. In addition, there is
a probability ξ1 of an uncontaminated HCW becoming contaminated by the envi-
ronment during a visit with an uninfected patient in a level 1 contaminated room.
These probabilities of contamination take into account the hygiene of the HCW
during the visit and at the conclusion of the visit.

(10) It is assumed that HCW remain contaminated an average time length TV
during one subsequent HCW-patient visit. This assumption on the average time of
HCW contamination can be relaxed, but to reduce the number of parameters and
emphasize the fast time scale of HCW de-contamination, we utilize this assumption.

(11) During each patient-HCW visit in a level 0 (level 1) contaminated room by
a contaminated HCW and an uninfected patient, there is a probability π0 (π1) of
infection of the patient. When an uninfected patient is infected in a level 0 (level
1) contaminated room, the patient remains in the same room, but is classified as
an infected patient in a level 0 (level 1) room.

(12) Infected patients in level 0 (level 1) contaminated rooms transition (while
remaining in the same room) to infected patients in level 1 (level 0) contaminated
rooms at rate δ0 (δ1) per day. Higher δ0 values correspond to less effective room
cleaning each day and higher δ1 values correspond to more effective room cleaning
each day of rooms with infected patients. We assume δ1 > 0 to incorporate the
daily environmental degradation of bacteria, separate from decrease due to daily
room cleaning.

(13) Uninfected patients in level 1 contaminated rooms transition to uninfected
patients in level 0 contaminated rooms at rate ν1 per day (while remaining in the
same room). Higher ν1 values correspond to more effective room cleaning each
day of level 1 contaminated rooms occupied by uninfected patients. We assume
ν1 > 0 to incorporate the daily environmental degradation of bacteria, separate
from decrease due to daily room cleaning.

(14) Uninfected patients in level 1 contaminated rooms become infected due to
environmental contamination at rate ε1 per day. We assume that level 0 rooms
have sufficiently low contamination such that environmental infection of patients or
environmental contamination of HCW is not possible.
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Let S0(t) (S1(t)) be the fraction of susceptible patients in level 0 (level 1) rooms,
Let I0(t) (I1(t)) be the fraction of infected patients in level 0 (level 1) rooms, let
HU (t) (HC(t)) be the fraction of uncontaminated (contaminated) HCW at time t
(in days). It is assumed that the number of patients remains constant over time, as
does the number of HCW. The equations of the model are as follows:

dS0(t)

dt
=

1− α0

T0
I0(t) +

1− α1

T1
I1(t)− π0 ρ

TV
HC(t)S0(t) + ν1S1(t) (1)

dS1(t)

dt
=
α0

T0
I0(t) +

α1

T1
I1(t)− π1 ρ

TV
HC(t)S1(t)− ε1S1(t)− ν1S1(t) (2)

dI0(t)

dt
= − 1

T0
I0(t) +

π0 ρ

TV
HC(t)S0(t) + δ1I1(t)− δ0I0(t) (3)

dI1(t)

dt
= − 1

T1
I1(t) +

π1 ρ

TV
HC(t)S1(t) + ε1S1(t)− δ1I1(t) + δ0I0(t) (4)

dHU (t)

dt
=

1

TV
HC(t)− 1

TV

(
ω0I0(t) + ω1I1(t) + ξ1S1(t)

)
HU (t) (5)

dHC(t)

dt
= − 1

TV
HC(t) +

1

TV

(
ω0I0(t) + ω1I1(t) + ξ1S1(t)

)
HU (t) (6)

The dynamics of the six differential equations compartments are illustrated in
Fig. 2. Notice that S0(t) + S1(t) + I0(t) + I1(t) = 1 for all time t (since
d
dt (S0(t) + S1(t) + I0(t) + I1(t)) = 0 for all t and it is assumed that S0(0)+S1(0)+
I0(0) + I1(0) = 1); thus one of the patient equations can be eliminated. Likewise,
HU (t) + HC(t) = 1 for all t, so one of the HCW equations can also be removed.
Therefore, by substituting S0(t) = 1−S1(t)− I0(t)− I1(t) and HU (t) = 1−HC(t),
we arrive at the following system of four differential equations:

dS1(t)

dt
=
α0

T0
I0(t) +

α1

T1
I1(t)− π1ρ

HC(t)

TV
S1(t)− ε1S1(t)− ν1S1(t) (7)

dI0(t)

dt
= − 1

T0
I0(t) + π0ρ

HC(t)

TV

(
1− S1(t)− I0(t)− I1(t)

)
+ δ1I1(t)− δ0I0(t)

(8)

dI1(t)

dt
= − 1

T1
I1(t) + π1ρ

HC(t)

TV
S1(t) + ε1S1(t)− δ1I1(t) + δ0I0(t) (9)

dHC(t)

dt
= − 1

TV
HC(t) +

1

TV

(
ω0I0(t) + ω1I1(t) + ξ1S1(t)

)(
1−HC(t)

)
(10)

3. Theoretical analysis. The basic reproduction number R0 can be defined uti-
lizing the next-generation approach [16]. First define the feasible region for the
system (7)-(10) as

Γ =
{

(S1, I0, I1, HC) ∈ R4
+ : S1 + I0 + I1 ≤ 1, HC ≤ 1

}
,

where R4
+ denotes the non-negative orthant of R4. We note that the original system

(1)-(6) is quasi-positive, and thus its solutions remain non-negative when their initial
values are nonnegative. Since the right-hand sides of (1)-(6) sum to 0, the solutions
the system (7)-(10) remain in Γ when their initial values are in Γ. Notice that
E0 := (0, 0, 0, 0) is the disease-free equilibrium of system (7)-(10), corresponding to
no infected patients, no contaminated HCW, and no contaminated rooms.

We define a next-generation matrix by considering the linearized system at the
disease-free equilibrium, E0. Write the linearized system as x′ = (F−V )x where x =
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Figure 1. Schematic diagram of the model compartments and
model parameters. The parameter corresponding to direct envi-
ronmental infection of patients is ε1and direct environmental con-
tamination of HCW is ξ1. The parameters corresponding to patient
infection by patient-HCW contacts are π1, π2. The parameters cor-
responding to HCW contamination by patient-HCW contacts are
ω1, ω2. The parameters corresponding to room cleanings are δ0,
δ2, and ν1.

(S1, I0, I1, HC)T , where F contains entries corresponding to new patient infections,
and −V contains all other terms in the Jacobian matrix evaluated at E0. Thus, we
consider the following matrices:

F =


0 0 0 0
0 0 0 π0

ρ
TV

ε1 0 0 0
0 0 0 0

 , V =


ε1 + ν1 −α0

T0
−α1

T1
0

0 1
T0

+ δ0 −δ1 0

0 −δ0 1
T1

+ δ1 0

−ξ1 1
TV

−ω0
1
TV

−ω1
1
TV

1
TV

 .

The next-generation matrix describing expected number of new patient infections
caused by infected patients (through the routes of HCW or environmental transmis-
sion) is then defined as K := FV −1 [16]. Note that terms corresponding to HCW
contamination events are not counted as new infections. Contaminated HCW are
never actually infected, and therefore we are only interested in quantifying the re-
production number with respect to new patient infections. In other words, we treat
HCW contamination (and environmental contamination) as an extended state of
patient infectiousness [1]. This decomposition is not unique and other “epidemio-
logical interpretable” splittings can be utilized where HCW or environmental con-
tamination is counted as “new infections”. Each splitting yields a different formula
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for basic reproduction number and these formulas all agree at the threshold value
of 1, but yield different values away from unity.

It can be checked that this next-generation decomposition satisfies all the as-
sumptions of the general approach in [16]. The basic reproduction number, R0, is
the spectral radius of K, %(K):

R0 = %(K) = %(FV −1), (11)

The formula for R0 in terms of model parameters can be calculated utilizing Math-
ematica software and is found to be:

R0 =
A+ (A2 − 4B)

1
2

2TV (1 + δ0T0 + δ1T1)(ε1 + ν1)
(12)

where

A = TV (α1 + T0α1δ0 + T1α0δ1)ε1 +

π0ρ

(
α0(ξ1 + T1δ1ε1) + T0(α1δ0ξ1 + (ε1 + ν1)( ω0 + T1δ1ω0 + T1δ0ω1))

)
and

B = TV (1 + T0δ0 + T1δ1)ε1π0ρ(ε1 + ν1)(T0α1ω0 − T1α0ω1)

By utilizing Theorem 2 in [16], it can be shown that R0 provides a local sta-
bility threshold for the disease-free equilibrium E0, which is stated in the following
proposition.

Proposition 1. If R0 < 1, then E0 is locally asymptotically stable. On the other
hand, E0 is unstable if R0 > 1.

We first consider (7)-(10) in the special case that room cleaning measures are
highly effective. We require that all patient admissions are into level 0 contaminated
rooms (α0 = 0, α1 = 0), which corresponds to highly effective cleaning of rooms
occupied by infected patients upon their exit. In this caseR0 in (12) has the formula

R0 =
T0π0ρ(ω0 + T1δ1ω0 + T1δ0ω1)

TV (1 + δ0T0 + δ1T1)
.

We also require highly effective daily room cleaning of level 0 contaminated rooms
occupied by infected patients (δ0 = 0). If we then add (7) and (9), we obtain

dS1(t)

dt
+
dI1(t)

dt
= −1 + (δ1 + ν1)T1

T1
S1(t) ≤ − 1

T1
S1(t),

which implies S1(t) + I1(t) is nonincreasing and

1

T1

∫ t

0

S1(s)ds ≤ S1(0) + I1(0)− S1(t)− I1(t) ≤ S1(0) + I1(0).

Then, (9) implies(
1

T1
+ δ1

)∫ t

0

I1(s)ds ≤
(
π1ρ

TV
+ ε1

)∫ t

0

S1(s)ds+ I1(0)− I1(t).

Thus, S1(t) + I1(t) is nonincreasing and integrable on [0,∞) and limt→∞ S1(t) =
limt→∞ I1(t) = 0. Thus, for α0 = 0, α1 = 0, δ0 = 0, we have

R0 =
ω0π0ρT0
TV

, (13)
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and the system (7)-(10) reduces to

dI0(t)

dt
= − 1

T0
I0(t) + π0ρ

HC(t)

TV

(
1− I0(t)

)
(14)

dHC(t)

dt
= − 1

TV
HC(t) +

ω0I0(t)

TV

(
1−HC(t)

)
. (15)

The solutions of (14), (15) have the following asymptotic behavior:

Proposition 2. If R0 in (13) is < 1, then E0 = (0, 0) is the only steady state of
(14),(15) in Γ0 =

{
(I0, HC) ∈ R2

+ : I0 ≤ 1, HC ≤ 1
}

and E0 is globally asymptoti-
cally stable in Γ0. If R0 in (13) is > 1, then

E1 =

(
T0ω0π0ρ− TV

(TV + T0π0ρ)ω0
,
T0ω0π0ρ− TV
T0π0ρ(1 + ω0)

)
is also a steady state in Γ0 and E1 is globally asymptotically stable in Γ0.

Proof. See Appendix A.

The formula for R0 in (13) has the following interpretation for the threshold of
endemicity for (14)-(15): on average, the total number of patient-HCW visits per
patient over the average length of stay of a patient times the probability of patient
infection per visit times the probability of HCW contamination per visit is greater
than 1. We note that increasing TV or decreasing ρ results in fewer HCW visits per
patient, and thus reduces R0.

We next consider the opposite extreme to the case of highly efficient room clean-
ing, namely, that all rooms are contaminated without distinction of contamination
level and no room contamination status changes due to room cleaning or bacteria
degradation: S0 = 0, I0 = 0, T0 = 0, α0 = 0, α1 = 1, ω0 = 0, π0 = 0, δ0 = 0, δ1 =
0, ν1 = 0. From (8) we see that limt→∞ I0(t) = 0, and (7)-(10) reduces to

dI1(t)

dt
= − 1

T1
I1(t) + π1ρ

HC(t)

TV

(
1− I1(t)

)
+ ε1(1− I1(t)) (16)

dHC(t)

dt
= − 1

TV
HC(t) +

1

TV

(
ω1I1(t) + ξ1(1− I1(t))

)(
1−HC(t)

)
(17)

In this case the epidemic can be extinguished only if ε1 = 0 (no environmental
infection of patients), ξ1 = 0 (no environmental contamination of HCW), and
π1ω1ρT1/TV < 1. The solutions of (16)-(17) have the following asymptotic be-
havior:

Proposition 3. Let ξ1 = 0. If ε1 = 0 and π1ω1ρT1/TV < 1, then the unique steady
state of (16),(17) in Γ1 =

{
(I1, HC) ∈ R2

+ : I1 ≤ 1, HC ≤ 1
}

is E0 = (0, 0), and E0
is globally asymptotically stable in Γ1. If ε1 = 0 and π1ω1ρT1/TV > 1, then

E1 =

(
T1ω1π1ρ− TV

(TV + T1π1ρ)ω1
,
T1ω1π1ρ− TV
T1π1ρ(1 + ω1)

)
6= (0, 0)

is also a steady state in Γ1 and E1 is globally asymptotically stable in Γ1. Let ξ1 6= 0.
Then E0 is not a steady state of (16),(17), and there is a unique steady state (not
6= E0) in Γ1, which is globally asymptotically stable in Γ1.

Proof. See Appendix A.
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For the model (7)-(10) with the distinction of level 0 and level 1 environmentally
contaminated rooms, the parameter π0 is crucial for the behavior of solutions. If
π0 = 0, then R0 in (12) is

R0 =
(α1(1 + δ0)T0 + α0δ1T1)ε1
(1 + δ0T0 + δ1T1)(ε1 + ν1)

,

and the solutions have the following asymptotic behavior:

Proposition 4. If π0 = 0, α1 < 1, and either ν1 > 0 or ε1 > 0, then R0 < 1, E0 =
(0, 0, 0, 0) is the only steady state of (7)-(10) in Γ, and E0 is globally asymptotically
stable in Γ.

Proof. See Appendix A.

Proposition (4) demonstrates the importance of maximally effective hand hygiene
during patient-HCW visits in level 0 contaminated rooms (π0 = 0) and minimally
effective cleaning of level 1 contaminated rooms occupied by infected patients upon
their exit (α1 < 1). If, additionally, ν1 > 0 or ε1 > 0, the epidemic extinguishes.
Intuitively, ε1 > 0 worsens the epidemic, but in this case it acts indirectly to transfer
uninfected patients from level 1 rooms to level 0 rooms by replacing those that
become infected with new admissions in level 0 rooms, where the probability π0
of infection due to patient-HCW visits is 0. This transfer is accomplished directly
if the daily cleaning of level 1 rooms occupied by uninfected patients is minimally
effective (ν1 > 0). We note that the time to extinction may require an extended
period, dependent on initial conditions. We note also that if ν1 = 0, α0 = 1, and
α1 = 1, then R0 = 1 and there exist multiple nontrivial steady states of (7)-(10) in
Γ, dependent on initial conditions.

Proposition (4) shows that for the model (7)-(10), environmental transmission
cannot sustain an epidemic in the absence of direct transmission (π0 = 0) when
there is environmental decay of bacteria (ν1 > 0). However, if an additional con-
tamination route is included in the system, then we find that a threshold quan-
tity determines whether the bacteria persists in the case π0 = 0, ν1 > 0. Indeed,
consider the possibility that during patient visits, contaminated HCW can contam-
inate rooms which were previously uncontaminated. Thus, the mass-action term
β0

ρ
TV
HCS0 can be a loss term in the S′0 equation and a positive term in the S′1

equation, representing contamination of rooms with uninfected patients by contam-
inated HCW. Also, an an analogous term β1

ρ
TV
HCI0 can be incorporated into the

I0 and I1 equations. In order to simplify the model, we consider this additional
contamination route in the special case where there is only one infected patient
compartment I1, i.e. all infected patients are assumed to have level 1 contaminated
rooms (δ0 → ∞). We also assume that π1 = 0 and ω1 = ξ1, so that there is only
environmental transmission. Then, with the additional parameter β0, we obtain the
following system:

dS1(t)

dt
= β0ρ

HC(t)

TV

(
1− S1(t)− I1(t)

)
+
α1

T1
I1(t)− (ε1 + ν1)S1(t) (18)

dI1(t)

dt
= − 1

T1
I1(t) + ε1S1(t) (19)

dHC(t)

dt
= − 1

TV
HC(t) +

ξ1
TV

(
I1(t) + S1(t)

)(
1−HC(t)

)
(20)
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The basic reproduction number, R0, for this model (defined similar to (11)) is
as follows:

R0 =
ε1(β0ρξ1T1 + α1TV )

TV (ε1 + ν1)− β0ξ1ρ
. (21)

Notice that the denominator inR0 contains a term which can go to zero and become
negative. Thus, in order for R0 to be positive and finite, the condition ε1 + ν1 >
ξ1β0

ρ
TV

is required. This condition compares the rate at which bacteria is spread
solely through HCW contamination with the rate of transfer of uninfected patients
in level 1 rooms. For this special case of the model, the following proposition can
be obtained:

Proposition 5. Consider the model (18)-(20). If ε1 + ν1 > ξ1β0
ρ
TV

and R0 < 1,
then the disease-free equilibrium E0 is globally asymptotically stable. On the other
hand, if R0 > 1 or ε1 + ν1 ≤ ξ1β0

ρ
TV

, then E0 is unstable, the disease is uniformly

persistent and there is a unique endemic equilibrium E1 = (S∗1 , I
∗
1 , H

∗
C), given by

S∗1 =
(TV (ε1 + ν1)− β0ξ1ρ)(R0 − 1)

(1 + T1ε1)ξ1 (ρβ0(1 + T1ε1) + ν1 + (1− α1)ε1)
, I∗1 = T1ε1S

∗
1 ,

H∗C =
ξ1(S∗1 + I∗1 )

1 + ξ1(S∗1 + I∗1 )
.

Proof. See Appendix A.

Thus the inclusion of contamination of rooms by contaminated HCW, described
by the probability β0, allows for persistence of the epidemic by environmental trans-
mission only. Now we return to the original model (7)-(10). Note that the repro-
duction number R0 (11) and the following two theorems can be extended to hold
in the case that β0 and β1 are included in (7)-(10). However, for simplicity, we will
neglect these factors. Instead, we give emphasis to the case that the epidemic would
extinguish in the absence of environmental factors, that is, ω0π0ρT0/TV < 1, as in
Proposition 2, but would not extinguish in the presence of constant environmental
contamination in all rooms as in Proposition 3. We evaluate interventions that pre-
vent endemicity in the model (7)-(10). These interventions, which are distinguished
by room contamination levels 0 and 1, involve the parameters α0, α1 (cleaning of
rooms occupied by infected patients upon exit), δ0, δ1 (daily cleaning of rooms occu-
pied by infected patients), ν1 (daily cleaning of level 1 contaminated rooms occupied
by uninfected patients), ε1 (environmental infection of uninfected patients in level
1 contaminated rooms), and ξ1 (environmental contamination of uncontaminated
HCW in level 1 contaminated rooms occupied by uninfected patients).

Notice that the basic reproduction number R0 (11) does not contain the param-
eter π1 corresponding to infection of susceptible patients in contaminated rooms
through visits by contaminated HCW. Intuitively, one might expect this parameter
to play a role in determining whether the disease persists. The absence of π1 in R0

can be attributed to the local nature of the threshold R0. Since R0 is only derived
as a local threshold, it is of great interest to determine when local stability of E0
implies global stability of E0. If certain conditions involving π1 are satisfied, then
it can be proved that the disease-free equilibrium is globally asymptotically stable
when R0 < 1. The result is contained in the following theorem:
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Theorem 3.1. Consider the model (7)-(10). Define the following quantities:

κ =
π1
π0

(
1 +

1

T0δ0

)
, Ki =

1 + αi (κ− 1)

Ti
for i = 0, 1.

Suppose that R0 < 1 and consider the two following conditions:

(i) κ ≤ 1

(ii) max(K0,K1) ≤ ε1 + ν1.

If (i) holds, then E0 is globally asymptotically stable in the entire state space Γ. If (ii)
holds, then E0 is globally asymptotically stable for initial conditions in Γ satisfying
I0(0) + I1(0) + (1− κ)S1(0) ≥ 0.

Proof. See Appendix A.

The condition (i) in Theorem 3.1 requires that π0 ≥ π1

(
1 + 1

T0δ0

)
> π1. It is

possible that π0 > π1 if rooms at risk of contamination are identified (for example
by tracking rooms previously occupied by infected patients), and extra hygiene
measures are taken by HCW visiting these rooms. However, it may be more likely
that π0 ≤ π1 since the contaminated rooms can have a higher probability of patient
infection during a visit by a contaminated HCW worker. In this case condition (i)
fails, but it may be true that condition (ii) holds, ensuring global extinction when
R0 < 1. Condition (ii), in a sense, compares the exit rate of the S1 compartment
with the exit rates of the I0 and I1 compartments, along with considering the
magnitude of κ from the first condition and requiring the initial conditions to be
contained in an invariant subset of the state space.

If the two conditions are not satisfied, it is possible that E0 is only a local at-
tractor and multiple positive equilibria are present when R0 < 1 (sub-threshold
positive equilibria). In this case, if we consider a bifurcation parameter for which
R0 increases to larger than 1 as the parameter is increased, there will be a backward
bifurcation at R0 = 1. More precisely, consider a parameter of system (7)-(10), call
it µ, and write the system as ẋ = f(x, µ). Suppose that there exists µY such that
R0 < 1 for µ < µY and R0 > 1 for µ > µY . Then the Jacobian Dxf(0, µY ) has
a zero eigenvalue and it can be shown that there is a transcritical bifurcation at
x = 0, µ = µY . In order to determine the nature of the transcritical bifurcation,
we can apply Theorem 4 in [16], a result based on center manifold theory. Define v
and w to be the left and right eigenvectors corresponding to the zero eigenvalue of
Dxf(0, µY ). It can be shown that these eigenvectors can be chosen positive. Let

a :=
1

2

4∑
i,j,k

viwjwk
∂2fi

∂xj∂xk
(0, µY ).

If a < 0, then there is a forward bifurcation at (0, µY ), i.e. a locally asymptot-
ically stable positive equilibrium branches out from (0, µY ) for µ > µY . If a > 0,
then there is a backward bifurcation at (0, µY ), i.e. an unstable positive equilibrium
branches out from (0, µY ) for µ < µY . The distinction between the two cases is
important. A forward bifurcation usually signals that R0 < 1 implies global extinc-
tion, whereas a backward bifurcation implies the disease may persist when R0 < 1.
In the case a > 0, R0 = 1 does not provide a global threshold quantity, and there is
some value 0 < µX < µY in which a saddle node bifurcation abruptly brings upon
a change from global extinction to a regime of bistability for µX < µ < µY , where
R0 < 1.
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Considering the right-hand side of (7)-(10), it is found that a =

w4

[
ρw1

(
π1v3 − π1v1 − π0v2 −

ξ1v4
ρ

)
− w2 (ρ π0v2 + ω0v4)− w3 (ρ π0v2 + ω1v4)

]
(22)

Notice that all terms of a are negative except for the positive term π1(ρw4w1v3).
While the complexity of the system does not allow for the eigenvectors to be calcu-
lated and an explicit condition for backward bifurcation to be found, the formula
does signal that the parameter π1 is crucial in determining the nature of the bifur-
cation. In Section 4, examples of the different types of bifurcations will be explored
and the epidemiological implications will be discussed.

For the case of R0 > 1, the disease will uniformly persist. More precisely, the
following result holds:

Theorem 3.2. If R0 > 1, then the system is uniformly persistent, i.e. there exists
ε > 0 such that if S1(0) + I0(0) + I1(0) +HC(0) > 0, then

lim inf
t→∞

S1(t), I0(t), I1(t), HC(t) > ε.

Furthermore, there exists a positive endemic equilibrium when R0 > 1.

Proof. See Appendix A.

4. Examples of steady state behavior. In Figures 2-7 we illustrate three dif-
ferent steady state behaviors of the model dependent on parameters.

In Figures 2 and 3, α1 is a bifurcation parameter corresponding to the fraction of
newly admitted uninfected patients replacing infected patients exiting level 1 rooms.
All other parameters are held constant. R0 = R0(α1) is an increasing function for
0.0 < α1 < 1.0. As α1 increases through the critical value α1X ≈ 0.672, E0 loses
global stability, but is locally stable for α1X < α1 ≤ 1.0. For α1 > α1X , two steady
states branch from values significantly above 0 for each state variable (Figure 2,
the branching for HC is similar). The lower branch is unstable, and disappears as
α1 increases to α1Y ≈ 0.804, which is the value such that R1(α1Y ) = 1.0. Thus,
there is a backward bifurcation at α1Y , as defined and discussed in the previous
section. Indeed the quantity a expressed in (22) can be computed and is found
to be a = 0.0197 > 0, which confirms the backward nature of the transcritical
bifurcation in the figure. The upper branch is locally stable for α1X < α1 < 1.0.
In this example R0 does not distinguish epidemic extinction from endemicity. The
epidemic extinguishes when α1 < α1X , but is endemic when α1X < α1 < α1Y , even
though R1(α1) < 1.0 for these values. In Figure 3A and 3B, α1 = 0.68, and a small
increase in the number of uninfected patients initially in level 1 rooms separates
epidemic extinction from endemicity. In Figure 3C α1 = 0.9 and a small number of
uninfected patients initially in level 1 rooms results in an epidemic outbreak after
about one-half year.

In Figures 4 and 5, π1 is a bifurcation parameter corresponding to the probabil-
ity of uninfected patients in level 1 rooms being infected by contaminated HCW.
All other parameters are held constant. R0 ≈ 0.975 (independent of π1). As π1
increases through the critical value π1X ≈ 0.477, E0 loses global stability, but is
locally stable for π1X < π1 ≤ 1.0. For π1 > π0X , two steady states branch from
values significantly above 0 for each state variable (Figure 4). The lower branch is
unstable, and remains present as π1 increases to 1.0. The upper branch is locally
stable for π1X < π1 ≤ 1.0. In this example R0 again does not distinguish epidemic
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Figure 2. Saddle-node bifurcation of nontrivial steady states for
A: S1, B: I0, C: I1 as the bifurcation parameter α1 increases
through the critical value α1X ≈ 0.672. The upper branch is lo-
cally stable and the lower branch is unstable. The other parameter
values are α0 = 0.0, δ0 = 0.2, δ1 = 0.1, π0 = 0.02, π1 = 0.5, ω0 =
0.3, ω1 = 0.4, T0 = 7, T1 = 7, TV = 1/48, ε1 = 0.05, ξ1 = 0.1, ν1 =
0.1, ρ = 1/3. ω0π0ρT0/TV in (13) = 0.672 < 1.
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Figure 3. Trajectories of S1(t) (green) I0(t) (red), I1(t) (black),
HC(t) (blue) for the bifurcation parameter α1 as in Figure 2. A:
α1 = 0.68, S1(0) = 0.01, I0(0) = 0.0, I1(0) = 0.0, HC(0) = 0.0;
B: α1 = 0.68, S1(0) = 0.1, I0(0) = 0.0, I1(0) = 0.0; C: α1 =
0.9, S1(0) = 0.05, I0(0) = 0.0, I1(0) = 0.0, HC(0) = 0.0.

extinction from endemicity. The epidemic extinguishes when π1 < π1X , but is en-
demic when π1X ≤ 1.0 even though R0 < 1.0 for these values. In Figure 5A the
epidemic extinguishes for π1 = .45 with a small initial value for I1(0). In Figure 5B
a larger initial value S1(0) results in rapid endemicity with π1 = 0.5. In Figure 5C
the epidemic slowly extinguishes for a large value of π1 = 0.9, but a small initial
value for S1(0).

In Figures 6 and 7, δ0 is a bifurcation parameter corresponding to the lack of
cleaning efficiency of level 0 rooms occupied by infected patients. All other param-
eters are held constant. R0 = R0(δ0) is an increasing function for 0.0 < δ0 < 1.0,
and R0(δ0Y ) = 1.0 for δ0Y = 0.099. In this example, there is a forward bifurcation
as the calculated value a = −0.0176 (from equation (22)) confirms. As δ0 increases
through δ0Y , E0 loses global stability, and becomes unstable. For δ0 > δ0Y , one
globally stable steady state rises from 0 for each state variable (Figure 4). In this
example R0(δ0) distinguishes epidemic extinction from endemicity. In Figure 7A
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Figure 4. Saddle-node bifurcation of nontrivial steady states for
A: S1, B: I0, C: I1 as the bifurcation parameter π1 increases through
the critical value π1X ≈ 0.477. The upper branch is locally stable
and the lower branch is unstable. The other parameter values are
ε1 = 0.1, α0 = 0.5, α1 = 0.8, δ0 = 0.033, δ1 = 0.04, π0 = 0.05, ω0 =
0.1, ω1 = 0.2, T0 = 6, T1 = 5, TV = 1/48, ξ1 = 0.03, ν1 = 0.1, ρ =
1/3. ω0π0ρT0/TV in (13) = 0.48 < 1.
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Figure 5. Trajectories of S1(t) (green) I0(t) (red), I1(t) (black),
HC(t) (blue) for the bifurcation parameter π1 as in Figure 4. A:
π1 = 0.45, S1(0) = 0.0, I0(0) = 0.001, I1(0) = 0.0, HC(0) = 0.0;
B: π1 = 0.5, S1(0) = 0.3, I0(0) = 0.0, I1(0) = 0.0; C: π1 =
0.9, S1(0) = 0.01, I0(0) = 0.0, I1(0) = 0.0, HC(0) = 0.0.

δ0 = 0.01 and the epidemic extinguishes slowly for a small initial value for S1(0). In
Figure 7 B δ0 = 0.5 and the epidemic rapidly becomes endemic for a larger initial
value for S1(0). In Figure 7C δ0 = 0.9, and the epidemic slowly becomes endemic
for a small initial value for I0.

5. Sensitivity analysis of R0. We provide a sensitivity analysis of R0 as a func-
tion of model parameters in Figures 8-12.

Figure 8 illustrates the dependence of R0 on α0 and α1. Lower values of α0

(α1) correspond to more efficient cleaning of level 0 (level 1) rooms occupied by
infected patients when they exit their rooms. To maintain R0 < 1, a greater effort
is required for level 1 room cleanings than level 0 room cleanings when infected
patients exit their rooms..

Figure 9 illustrates the dependence of R0 on π0 and π1. Lower values of π0 and
π1 correspond to greater hygiene efforts of HCW during visits to uninfected patients
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Figure 6. Appearance of nontrivial steady states as the bifurca-
tion parameter δ0 increases through the critical value δ0Y ≈ 0.099.
E0is globally stable for δ0 < δ0Y and unstable for δ0Y < 1.0. The
nontrivial steady state is globally stable for δ0Y < 1.0. The other
parameter values are α0 = 0.1, α1 = 0.1, δ1 = 0.1, π0 = 0.05, π1 =
0.5, ω0 = 0.1, ω1 = 0.1, T0 = 10, T1 = 14, TV = 1/48, ε1 = 1.0, ξ1 =
0.1, ν1 = 0.1, ρ = 1/3. ω0π0ρT0/TV in (13) = 0.8 < 1.
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Figure 7. Trajectories of S1(t) (green), I0(t) (red), I1(t) (black),
HC(t) (blue) for the bifurcation parameter δ0 as in Figure 6. A:
δ0 = 0.01, S1(0) = 0.01, I0(0) = 0.0, I1(0) = 0.0, HC(0) = 0.0; B:
δ0 = 0.5, S1(0) = 0.1, I0(0) = 0.0, I1(0) = 0.0; C: δ0 = 0.9, S1(0) =
0.0, I0(0) = 0.02, I1(0) = 0.01, HC(0) = 0.0. The other parameters
are the same as in Figure 6.

in level 0 and level 1 rooms, respectively. R0 is independent of π1, and reduction of
R0 requires only reduction of π0. The epidemic may persist, however, even though
R0 < 1.0, if (π0, π1) is in the region of bistability. We remark that π0 = 0.0 (or
π0 sufficiently small) implies the globally stability of E0 for all π1 ∈ [0, 1], as in
Proposition 4. Thus, reduction of patient infection during patient-HCW visits in
level 0 contaminated rooms may be sufficient to control the epidemic, independently
of patient infection during patient-HCW visits in level 1 contaminated rooms.

Figure 10 illustrates the dependence of R0 on δ0 and δ1. Lower values of δ0
(higher values of δ1) correspond to more efficient daily cleaning of level 0 (level
1) rooms occupied by infected patients. To maintain R0 < 1, a greater effort
is required for level 1 room daily cleanings than for level 0 room daily cleanings
occupied by infected patients.

Figure 11 illustrates the dependence of R0 on ω0 and ω1. Lower values of ω0 and
ω1 correspond to greater hygiene efforts of HCW during visits to infected patients
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Figure 8. Dependence of R0 on α0 and α1. The stability of E0
is illustrated in the right panel, where the blue graph corresponds
to R0(α0, α1) = 1.0. The other parameters are ε1 = 0.05, δ0 =
0.08, δ1 = 0.08, π0 = 0.025, π1 = 0.5, ω0 = 0.3, ω1 = 0.3, T0 =
6, T1 = 8, TV = 1/48, ξ1 = 0.3, ν1 = 0.5, ρ = 1/3. ω0π0ρT0/TV in
(13) = 0.72 < 1.
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Figure 9. Dependence of R0 on π0 and π1. The dashed line cor-
responds to the value π0 = 0.05 in Figure 4. The stability of E0 is
illustrated in the right panel, where the blue graph corresponds to
R0(π0, π1) = R0(π0) = 1.0. The other parameters are as in Figure
4.

in level 0 and level 1 rooms, respectively. To maintain R0 < 1, a greater effort is
required for level 1 room visit hygiene than for level 0 room visit hygiene. We remark
that ω0 = 0 (or ω0 sufficiently small) does not imply the globally stability of E0 for
all ω1 ∈ [0, 1], in contrast to the values of π0 relative to π1, as in Proposition 4. Thus,
reduction of HCW contamination during patient-HCW visits in level 0 contaminated
rooms may not be sufficient to control the epidemic, without concurrent reduction
of HCW contamination during patient-HCW visits in level 1 contaminated rooms.
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Figure 10. Dependence of R0 on δ0 and δ1. The dashed line
corresponds to the value δ1 = 0.1 in Figure 6. The stability of E0
is illustrated in the right panel, where the blue graph corresponds
to R0(δ0, δ1) = 1.0. The other parameters are as in Figure 6.
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Figure 11. Dependence of R0 on ω0 and ω1. The stability of E0
is illustrated in the right panel, where the blue graph corresponds
to R0(ω0, ω1) = 1.0. The other parameters are ε1 = 0.5, α0 =
0.5, α1 = 0.5, π0 = 0.025, π1 = 0.5, δ0 = 0.083, δ1 = 0.83, T0 =
6, T1 = 8, TV = 1/48, ξ1 = 0.3, ν1 = 0.5, ρ = 1/3. ω0π0ρT0/TV in
(13) is < 1 for ω0 < 0.41667.

Figures 12 and 13 show the sensitivity of R0 with respect to ε1 and ξ1. Notice
that for small values of ξ1, R0 is a increasing function of ε1, but for sufficiently
large values of ξ1, R0 is a decreasing function of ε1. A consequence is, that for
certain values of the probability ξ1 of HCW environmental contamination during
patient-HCW visits in level 1 contaminated rooms, an increase in the environmental
infection of uninfected patients in level 1 contaminated rooms results in epidemic
extinction. This phenomenon illustrates the complexity of infection transmission
pathways in the hospital. As previously mentioned in regard to Proposition 4,
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intuitively increasing ε1 worsens the epidemic, but it may actually reduce R0 by
infecting patients in contaminated rooms and, through cleaning upon discharge of
the infected patient, this may reduce secondary infections compared to the case
where the patient remains uninfected in a contaminated room.
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Figure 12. Dependence of R0 on ε1 and ξ1. The stability of E0
is illustrated in the right panel, where the blue graph corresponds
to R0(ε1, ξ1) = 1.0. The other parameters are α0 = 0.0, α1 =
0.5, ω0 = 0.2, ω1 = 0.3, π0 = 0.025, π1 = 0.025, δ0 = 0.1, δ1 =
0.1, T0 = 8, T1 = 8, TV = 1/48, ν1 = 0.01, ρ = 1/3. ω0π0ρT0/TV in
(13) ≈ 0.64 < 1.
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Figure 13. Trajectories of S1(t) (green) I0(t) (red), I1(t) (black),
HC(t) (blue). The initial conditions are S1(0) = 0.0, I0(0) = 0.01,
I1(0) = 0.0, and HC(0) = 0.0. The parameters are the same as in
Figure 12 and ξ1 = 0.05. A: the epidemic becomes endemic in about
two months with ε1 = 0.01. B: the epidemic slowly extinguishes
over two years with ε1 = 0.1.

Figure 14 illustrates the bistability of the locally stable steady state E0 for various
initial values with all parameters specified. The phase portrait in Figure 14A graphs
trajectories for various initial values close to E0, all of which converge to E0. The
phase portrait in Figure 14B graphs trajectories for various initial values slightly
away from E0, all of which converge to the locally stable nontrivial steady state E1.
The initial values HC(0) = 0.0 for all the trajectories (the trajectories of HC(t) are
not graphed). The black curves are the heteroclinic orbits connecting the steady
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states. Slightly higher initial values (S1(0), I0(0), I1(0), HC(0)) can precipitate an
epidemic outbreak, which otherwise would extinguish.
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Figure 14. Phase portraits of (S1(t), I0(t), I1(t)) with varying ini-
tial values. The locally stable trivial steady state is E0 = (0, 0, 0, 0)
(black dot). The locally stable nontrivial steady state is E1 ≈
(0.0128, 0.0692, 0.0494, 0.0379) (black dot). The unstable nontriv-
ial steady state is E2 ≈ (0.0078, 0.0375, 0.0228, 0.0200) (green dot).
The parameters are ε1 = 0.05, α0 = 0.52, α1 = 0.8, π0 = 0.025, π1 =
0.5, δ0 = 0.083, δ1 = 0.083, ω0 = 0.3, ω1 = 0.3, T0 = 6, T1 = 8, TV =
1/48, ξ1 = 0.3, ν1 = 0.5, ρ = 1/3. ω0π0ρT0/TV in (13) = 0.72 < 1.

6. Stochastic simulations. Because of the small population numbers in the hos-
pital, stochastic effects may be important. Thus, we develop a stochastic counter-
part to the ODE system (6). We consider a continuous time Markov chain model
on the discrete set

Ω =
{

(S0, S1, I0, I1, HU , HC) ∈ Z6
+ : S0 + S1 + I0 + I1 = NP , HU +HC = NH

}
,

where Z6
+ is the set of 6-tuples of non-negative integers, NP is the number of

patients and NH is the number of HCW. The state transitions in the Markov chain
correspond to the “reactions”, i.e. interactions, in system (1-6). For example,
the state transition and the rate of occurrence corresponding to infection of an
uninfected patient in a level 1 room can be written in the reaction format S1 +

HC
π1−→ I1 + HC , meaning that the transition S1 → S1 − 1, I1 → I1 + 1 occurs

at the rate π1S1HC (the time until next transition corresponding to this reaction
is exponentially distributed with mean 1

π1S1HC
). All reactions are modeled in this

way, and there are two Bernoulli random variables with parameters αi, i = 0, 1,
associated with the cleaning of discharged infected patients’ rooms. In this way,
the number of patients remains constant as in the ODE model. The stochastic
simulations are implemented by using Gillespie’s algorithm [3].

In Figure 15(a) and 15(b), one stochastic simulation of the model is presented for
a set of parameters corresponding to poor cleaning of uninfected patient contami-
nated rooms (ν1 = 0.0001). The simulation initiates with 1 contaminated room and
no infected patients or contaminated HCW, i.e. S1(0) = 1, I0(0) = I1(0) = HC(0).
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The remainder of the parameters are specified in the caption of Figure 15. Observe
that there is a long delay before an outbreak of infections occur. Of course, each
simulation of the stochastic model can be different, but it illustrates how environ-
mental contamination allows for a delayed outbreak, as was observed in the KPC
outbreak at CCNIH. It is possible that the initial KPC infected patient at CCNIH
caused a room to be contaminated, but did not cause any patient infections due to
extreme caution by HCW. If the cleaning of rooms was not sufficient, the bacteria
can persist for a long time in the contaminated room and cause an outbreak several
months later. In Figure 15(c), the average paths of 200 simulations are plotted
for the same parameters as Figure 15(a). Figure 15(d) displays the solution of
the deterministic ODE for this set of parameters and initial conditions. Compared
to the deterministic solutions, the averaged stochastic simulations result in lower
number of infected due to the possibility of extinction and a longer delay to reach
equilibrium distribution.

In Figure 16, the total infected patients as a function of time in the averaged
stochastic simulations and deterministic solutions are displayed for three different
values of the parameter ν1. Higher values of ν1 correspond to more effective cleaning
of uninfected patient contaminated rooms. Observe that increasing ν1 has a dra-
matic effect on the total infected patients in the averaged stochastic simulations,
but much less of an effect on the deterministic solutions. With the initial condi-
tion of one contaminated room, more effective cleaning of rooms can substantially
increase the probability of bacterial extinction, which is not possible in the ODE.

7. Discussion. The contribution of the hospital environment to nosocomial epi-
demics involves complex interrelated dynamic factors. We have analyzed models
that connect these factors to the environmental contamination status of patient
rooms. The movement of patients through model compartments based on rooms
is analogous to the flow of traffic through multiple lanes. Our rooms-based mod-
els separate environmental acquisition from patient-HCW contact acquisition. The
advantage of our approach is that hospital rooms can be tracked with regard to pa-
tient occupancy, patient infection status, patient-HCW visits, and hygiene measures
specific to rooms. We have emphasized the case that the epidemic would extinguish
in the absence of environmental factors, but becomes endemic in their presence,
particularly after extended time periods. We analyze the models with respect to
intervention strategies that can mitigate these outbreaks.

Our models identify parameters that play key roles in transmission dynamics.
These parameters, with the exception of π1 (HCW-patient transmission probability
in contaminated rooms), are distilled into a single value R0 that relates the roles of
these parameters. Necessarily, there is a large number of such parameters, but their
relative significance can be identified. The solutions of the model (7)-(10) possess
a complex behavior that involves bifurcation of endemic steady states from the
disease-free steady state E0. For most epidemic models, R0 < 1 implies epidemic
extinction andR0 > 1 implies endemicity. But the model (7)-(10) allows endemicity
even if R0 < 1, dependent on initial conditions. Figures 2-5 and Figure 12 illustrate
this initial condition dependence. Even if R0 < 1, the epidemic rises very slowly
when the initial populations S1(0), I0(0), I1(0), HC(0) are slightly above a very small
threshold. A small increase in α1 in Figures 2 and 3 (less effective cleaning of
level 1 contaminated rooms occupied by infected patients upon their exit), or a
small increase in π1 in Figures 4 and 5 (less effective HCW hand hygiene in level
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(a) (b)

(c) (d)

Figure 15. Simulations of S1(t) (green), I0(t) (red), I1(t) (black)
and HC(t) (blue) for the stochastic model. The parameters are
as follows: NP = 30, NH = 10, α0 = 0, α1 = 0.8, T0 = 6, T1 =
8, TV = 1/48, π0 = 0.05, π1 = 0.08, ε1 = 0.001, ν1 = 0.001, δ0 =
0.1, δ1 = 0.1, ξ1 = 0.03, ω0 = 0.2, ω1 = 0.23,R0 = 3.7116. The
initial conditions are S1(0) = 1, I0(0) = 0, I1(0) = 0, HC(0) = 0.
(a) S1(t), I0(t), I1(t) for one stochastic simulation illustrating the
possibility of an outbreak after a long period of time. (b) HC(t)
for the simulation in (a). (c) Average of 500 stochastic simulations
(d) Simulation of the deterministic model (10) for same parameters
and initial conditions (fractions of patients/HCW are converted to
number of individuals).

1 contaminated rooms), or a slightly increased re-set initial condition (in Figure
12) can explain an outbreak after an extended time when no infected patients are
recognized.

The saddle-node bifurcation of steady states in the model means that outbreaks
can arise suddenly. Figures 2 and 3 demonstrate this phenomenon in terms of
α1. As α1 increases through a critical value, both the I0 and I1 infected patient
compartments may increase in a few days from 0% to ≈ 3% (assuming there is
some environmental contamination), and the endemic level is much higher as α1

increases. Thus, reduction of α1 is effective in mitigating the epidemic. Figure 8
reveals, however, that it may be more effective to reduce α0 (the fraction of unin-
fected patient admissions assigned to level 0 contaminated rooms exited by infected
patients in those rooms). Figure 11 demonstrates similar claims for the probabilities
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(a) (b)

Figure 16. The effect of ν1 on the total infected patients I0(t) +
I1(t). (a) Stochastic Simulations averaged over 500 runs. (b) De-
terministic model.

ω0 and ω1 of HCW contamination during patient-HCW visits. Again, reduction of
HCW contamination in level 0 contaminated rooms may be more important than
in level 1 rooms. Figures 4 and 5 demonstrate saddle-node bifurcation phenome-
non in terms of π1 (the probability of uninfected patients becoming infected during
patient-HCW visits in level 1 contaminated rooms). As π1 increases through a
critical value, both I0 and I1 may increase in a few days from 0% to ≈ 5%, and
the epidemic level is much higher as π1 increases. Although π1 does not appear in
the formula for R0 (11), it plays a significant role in the dynamic behavior of the
epidemic. It is thus important to reduce patient-HCW visit infection of patients
in level 1 contaminated rooms (Figures 4 and 5). But, as revealed in Figure 9, it
may be more effective to reduce π0 (the probability of uninfected patient becoming
infected during patient-HCW visits in level 0 contaminated rooms).

An important intervention relative to environmental contamination is daily room
cleanings of rooms occupied by infected patients and contaminated rooms with un-
infected patients. Distinction of level 0 and level 1 contaminated rooms may be
difficult, but could be accomplished by tracking their occupancy history or by de-
tection technology [9]. Figures 6,7, and 10 illustrate the roles of the parameters
δ0 (effectiveness of cleaning level 0 rooms occupied by infected patients) and δ1
(effectiveness of cleaning level 1 rooms occupied by infected patients). Figure 6
reveals that as δ0 increases past a critical value (less efficient cleaning), endemicity
arises, with most of the infected patients in level 1 rooms. Figure 7 reveals that the
outbreak may be delayed in time if the initial condition is mostly concentrated in
the I0 compartment rather than the S1 compartment. Figure 10, which compares
the roles of δ0 and δ1, shows that to mitigate the epidemic it may be more effective
to improve level 1 room daily cleanings than level 0 room daily cleanings. The
stochastic simulations in Figures 15 and 16 show the importance the parameter ν
(effectiveness of cleaning level 1 rooms occupied by uninfected patients). In partic-
ular, if there are no infected patients, increasing ν1 can substantially decrease the
probability of an outbreak when there are contaminated rooms. In future work,
we will further investigate intervention strategies by conducting parameter estima-
tion and more thorough sensitivity analysis in both the deterministic and stochastic
models.
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Appendix A. Proofs.

Proof of Proposition 2. By the Bendixson-Dulac Theorem, (14)-(15) cannot have
periodic solutions in Γ0, since

∂

∂I0

(
− 1

T0
I0 + π0ρ

HC

TV

(
1− I0

))
+

∂

∂HC

(
− 1

TV
HC +

ω0I0
TV

(
1−HC

))

= − 1

T0
− 1

TV
− HCπ0ρ

TV
− I0ω0

TV
< 0 .

Let R0 = ω0π0ρT0/TV < 1. Then E0 is the only steady state in Γ0 and by the
Poincare-Bendixson Theorem, E0 is a global attractor Γ0. Let R0 = ω0π0ρT0/TV >
1. If limt→∞HC(t) = 0, then

I ′0(t) +H ′C(t) =
(
− 1

T0
+
ω0

TV
−
( ω0

TV
+
π0ρ

TV

)
HC(t)

)
I0(t)

+
(π0ρ
TV
− 1

TV

)
HC(t) > 0

for t sufficiently large, and I0(t) + HC(t) cannot converge to 0. By the Dulac-
Bendixson Theorem, the only other steady state E1 in Γ0 must be a global attractor
in Γ0.

Proof of Proposition 3. By the Bendixson-Dulac Theorem, (16),(17) cannot have
periodic solutions in Γ1, since

∂

∂I1

(
− 1

T1
I1 + π1ρ

HC

TV

(
1− I1

)
+ ε1

(
1− I1

))

+
∂

∂HC

(
− 1

TV
HC +

ω1I1 + ξ1(1− I1)

TV

(
1−HC

))

= − 1

T1
− 1

TV
− ε1 −

ξ1
TV

(1− I1)− HCπ1ρ

TV
− I1ω1

TV
< 0.

Let ξ1 = 0, ε1 = 0, π1ω1ρT1/TV < 1. Then E0 = (0, 0) is the unique steady state
of (16),(17) in Γ1, and E0 is globally asymptotically stable in Γ1 by the Poincare-
Bendixson Theorem. Let ξ1 = 0, ε1 = 0, π1ω1ρT1/TV > 1. If limt→∞HC(t) = 0,
then

I ′1(t) +H ′C(t) =
(
− 1

T1
+
ω1

TV
−
( ω1

TV
+
π1ρ

TV

)
HC(t)

)
I1(t)

+
(π1ρ
TV
− 1

TV

)
HC(t) > 0

for t sufficiently large, and I1(t) + HC(t) cannot converge to 0. By the Dulac-
Bendixson Theorem, the only other steady state E1 in Γ1 must be a global attractor
in Γ1. Let ξ1 6= 0, ω1 = ξ1. Then the unique steady state of (16),(17) in Γ1 is

E2 =

(
T1(π1ω1ρ+ TV ε1(1 + ω1))

T1π1ω1ρ+ TV (1 + T1ε1)(1 + ω1)
,

ω1

1 + ω1

)
6= (0, 0),

and E2 is globally asymptotically stable in Γ1 by the Poincare-Bendixson Theorem.
Let ξ1 6= 0, ω1 6= ξ1. Then the unique steady state of (16),(17) in Γ1 is

E3 =

(
U −

√
V

2(TV (1 + T1TV ε1T1π1ρ)(ξ1 − ω1)
,

W +
√
V

2T1π1ρ(1 + ω1)

)
6= (0, 0)
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where
U = TV (1 + ξ1 + T1ε1(1 + 2ξ1 − ω1))− T1π1ρ(ω1 − 2ε1),

V = TV

(
TV ξ1(2 + ξ1) + T1

2ε1(1 + ω1)(2π1ρω1 + TV ε1(1 + ω1))

+ 2T1(TV ε1(1 + ξ1)(1 + ω1) + ξ1π1 ρ(2 + ω1))

)
+ (TV − T1π1ω1ρ)

2
,

W = T1π1ρω1 − TV (1 + ξ1 + T1ε1(1 + ω1)),

and E3 is globally asymptotically stable in Γ1 by the Poincare-Bendixson Theorem.

Proof of Proposition 4. Define V = S1(t) + I0(t) + I1(t). Then

V̇ = S′1(t) + I ′0(t) + I ′1(t) =
I0(t)T1(α0 − 1) + I1(t)T0(α1 − 1)− S1(t)T0T1ν1

T0T1
≤ 0

and V is a Lyapunov functional for (7)-(10). Since α1 < 1, V̇ = 0 implies I1 = 0
in the omega limiting set of any trajectory. The LaSalle Invariance Principle and
(8) then imply limt→∞ I0(t) = 0. If ν1 > 0 or ε1 > 0, (7) implies limt→∞ S1(t) = 0,
and then (10) implies limt→∞HC(t) = 0.

Proof of Proposition 5. Define

F =

 0 0 0
ε1 0 0
0 0 0

 , V =

ε1 + ν1 −α1

T1
−β0 ρ

TV

0 1
T1

+ δ1 0

−ξ1 1
TV

−ξ1 1
TV

1
TV

 .

Then, it can be shown that V −1 ≥ 0 if ε1 + ν1 > ξ1β0
ρ
TV

. Thus, if this condition is

satisfied, the next generation matrix K := FV −1 ≥ 0. To track secondary infected
patients caused by an infected patient, define the basic reproduction number R0 :=

%(K) (as in 11). We obtain (21), i.e. R0 = ε1(β0ρξ1T1+α1TV )
TV (ε1+ν1)−β0ξ1ρ

.

For the rest of the proof, it is best to utilize a different next generation decom-
position and the concept of the target reproduction number. Define

F̂ =

 0 α1

T1
β0

ρ
TV

ε1 0 0
ξ1

1
TV

ξ1
1
TV

0

 , V̂ =

ε1 + ν1 0 0
0 1

T1
+ δ1 0

0 0 1
TV

 .

Define the next generation matrix K̂ := F̂ V̂ −1. To track secondary infected patients
caused by an infected patient, define the (target) basic reproduction number T0 :=

%(P1K̂P2(I−K̂+P1K̂P2)−1) (as in 11), where P1 = diag(0, 1, 0), P2 = diag(1, 0, 0).

From here, we obtain (21), i.e. T0 = ε1(β0ρξ1T1+α1TV )
TV (ε1+ν1)−β0ξ1ρ

. Thus T0 = R0.

It can be seen that K̂ is irreducible and %(K̂ − P1K̂P2) =
√

β0ρξ1
TV (ε1+ν1)

< 1 if

ε1 +ν1 > ξ1β0
ρ
TV

. Then, by Theorem 2 in [16] and Theorem 2.1 in [11], T0 provides

a local stability threshold for E0 in system (18)-(20). Moreover, by Theorem 2.2 in

[12], E0 is globally asymptotically stable if %(K̂) < 1 and, on the other hand, the

system is uniformly persistent if %(K̂) > 1. Thus, by Theorem 2.1 in [11], the same
dichotomy holds for T0 when ε1 + ν1 > ξ1β0

ρ
TV

. Also, the formula for E1 can be

calculated from the system of equations, and when R0 > 1 or ε1 + ν1 ≤ ξ1β0 ρ
TV

, E1
is a positive equilibrium. . Thus, when ε1 + ν1 ≤ ξ1β0

ρ
TV

, E0 can not be globally
stable, hence, the system must be uniformly persistent since the dichotomy holds
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regardless of the sign of ε1 + ν1 − ξ1β0 ρ
TV

. We note that although R0 only can be

thought of as a reproduction number for system (18)-(20)when ε1 + ν1 > ξ1β0
ρ
TV

,

%(K̂) can always be defined. However, the formula (in terms of parameters) for

%(K̂) is fairly complicated and it does not have the same interpretation of tracking
secondary infected patients.

In the following proof, we consider a different next-generation decomposition
than the one utilized for computation of R0 in (11), which turns out to be advan-
tageous for constructing a Lyapunov function under the conditions prescribed in
the hypothesis of Theorem 3.1. In particular, we consider the linearization of the
system: x′ = (F̃ − Ṽ )x, where

F̃ =


0 α0

T0

α1

T1
0

0 0 δ1 π0
ρ
TV

ε1 0 0 0
ξ1

1
TV

ω0
1
TV

ω1
1
TV

0

 , Ṽ =


ε1 + ν1 0 0 0

0 1
T0

+ δ0 0 0

0 −δ0 1
T1

+ δ1 0

0 0 0 1
TV


We remark that this next-generation decomposition does not seem to have an epi-
demiological interpretation since the term corresponding to the room cleaning pa-
rameter δ1 is counted as “new infection”, i.e. in the F̂ matrix.

Note that assumptions (A1)-(A5) are satisfied in [16]. Thus, a quantity can be

defined as the spectral radius of F̃ Ṽ −1, which provides a local stability threshold:

L0 = %(F̃ Ṽ −1).

We use the notation L0 in order to avoid confusion with the basic reproduction
number R0 defined earlier in (11). L0 is not intended to measure the basic re-
production number of the system; it solely acts as a threshold quantity which is
particularly useful in constructing the Lyapunov function in the proof below.

Proof of Theorem 3.1. Note that L0 < 1 ⇔ R0 < 1 and L0 > 1 ⇔ R0 > 1. Also,
F̃ ≥ 0 and Ṽ −1 ≥ 0. Indeed, the following can be calculated:

Ṽ −1 =


1

ε1+ν1
0 0 0

0 T0

T0δ0+1 0 0

0 T0T1δ0
(T1δ1+1)(T0δ0+1)

T1

T1δ1+1 0

0 0 0 TV

 .

By the Perron-Frobenious Theorem, L0 = %(F̃ Ṽ −1) = %(Ṽ −1F̃ ) is an eigenvalue

of the non-negative matrix Ṽ −1F̃ with a non-negative left eigenvector, denoted
by uT = (u1, u2, u3, u4). Utilizing a similar approach to [12], we claim that Q =

uT Ṽ −1x is a Lyapunov function where x = (S1, I0, I1, HC)T . Differentiating along
the solutions of (7)-(10), we obtain:

Q′ = uT Ṽ −1x′

= uT Ṽ −1(F̃ − Ṽ )x− uT Ṽ −1g(x)

= (uT Ṽ −1F̃ − uT I)x− uT Ṽ −1g(x)

= uT (L0 − 1)x− uT Ṽ −1g(x) (A1)



NOSOCOMIAL EPIDEMIC MODEL 785

where

g(x) =


π1

ρ
TV
HCS1

π0
ρ
TV
HC(S1 + I0 + I1)

−π1 ρ
TV
HCS1

(ξ1S1 + ω0I0 + ω1I1) 1
TV
HC

 .

Then

uT Ṽ −1g(x) ≥ u1π1
ρ

TV
HCS1

(
1

ε1 + ν1

)
+ u2π0

ρ

TV
HC

T0
T0δ0 + 1

(S1 + I0 + I1)

+ u3π0
ρ

TV
HC

T0T1δ0
(T1δ1 + 1)(T0δ0 + 1)

(
S1 + I0 + I1 − S1

π1
π0

T0δ0 + 1

T0δ0

)
= u1π1

ρ

TV
HCS1

1

(ε1 + ν1)
+ u2π0

ρ

TV
HC

T0
T0δ0 + 1

(S1 + I0 + I1)

+ u3π0
ρ

TV
HC

T0T1δ0
(T1δ1 + 1)(T0δ0 + 1)

(
I0 + I1 + S1

[
1− π1

π0

(
1 +

1

T0δ0

)])

Notice that the first term in the sum is non-negative since α0, α1 ≤ 1. Suppose

that κ = π1

π0

(
1 + 1

T0δ0

)
≤ 1 holds. Then, since π1

π0

T1δ1
T1δ1+1 ≤ κ ≤ 1, we obtain that

uT Ṽ −1g(x) ≥ 0. Then, (A1) implies that Q′ ≤ 0 since L0 < 1 and uT Ṽ −1g(x) ≥ 0.
Thus Q is a Lyapunov function. furthermore Q′ = 0 if and only if x = 0 since g(0) =

0 and Ṽ −1F̃ is irreducible which implies uT > 0. By the Lasalle Invariance Principle,
the omega limit set of any solution is contained in the largest invariant set where
x = 0, which is {E0}. This proves the theorem for the case κ ≤ 1. Now suppose
that (ε1 + ν1) ≥ max(K0,K1). Define the function h(x) = I0 + I1 + (1− κ)S1. We
claim that the set Γ1 := {(x) ∈ Γ : h(x) ≥ 0} is positively invariant. Suppose that
h(x) = 0, then we show that d

dth(x) ≥ 0.

d

dt
h(x) = I ′0 + I ′1 + (1− κ)S′1

= − 1

T0
I0 +

ρ

TV
π0HC(1− S1 − I0 − I1) + δ1I1 − δ0I0

− 1

T0
I1 +

ρ

TV
π1HCS1 + ε1S1 − δ1I1 + δ0I0

+ (1− κ)

(
α0

T0
I0 +

α1

T1
I1 −

ρ

TV
π1HCS1 − (ε1 + ν1)S1

)
= HC

ρ

TV
(π0(1− S1 − I0 − I1) + κπ1S1) + (ε1 + ν1)(1− κ)S1 −K0I0 −K1I1

= HC
ρ

TV
(π0(1− S1 − I0 − I1) + (ε1 + ν1)(I0 + I1)−K0I0 −K1I1

(since h(x) = 0⇒ (1− κ)S1 = I0 + I1)

≥ (ε1 + ν1 −K0)I0 + (ε1 + ν1 −K1)I1

≥ 0,

by the assumption that (ε1 + ν1) ≥ max(K0,K1). Thus, Γ1 is positively invariant.
Then, Q is a Lyapunov function on the positively invariant set Γ1. It is not hard
to show that the system has a global attractor A containing E0 which must be
contained in Γ1. Since E0 is the global minimum of the function Q, using a LaSalle
Invariance type argument, we find that A = {E0}. This proves the statement.
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Proof of Theorem 3.2. We apply Theorem 4.3 in [2]. Let X = R4 and E = Γ. The
requirement for the system to be dissipative is clearly satisfied. The maximal invari-
ant set N on the boundary ∂E is the singleton {E0}. This set is acyclic in ∂E since
there is no nontrivial solution on the boundary which links E0 to itself. Let Bε denote
the neighborhood of radius ε around E0 = 0 in Γ. Consider the Lyapunov function
Q from the proof of Theorem 3.1. If R0 > 1, then there exists ε > 0 such that Q′ =
uT (L0− 1)x− uT Ṽ −1g(x) > 0 on Λε := Bε ∩ {x ∈ Γ : xi > 0 for some i = 1, 2, 3, 4}
since ∂g

∂xi
|(0) = 0 for all i and the eigenvector u is strictly positive. Also, Q(0) = 0

and Q(x) > 0 if xi > 0 for some i. It follows that solutions are “pushed out” of Λε.
Thus, {E0} is isolated and W s(E0)∩Eo = ∅ where W s(E0) is the stable manifold of
E0 and Eo is the interior of the set E. By Theorem 4.3, the system is uniformly per-
sistent. Uniform persistence and the positive invariance of the compact set Γ imply
the existence of a positive endemic equilibrium of the system (7)-(10) by Theorem
D.3 in [13].
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