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Abstract. In this paper, we study a diffusive plant-herbivore system with
homogeneous and nonhomogeneous Dirichlet boundary conditions. Stability

of spatially homogeneous steady states is established. We also derive condi-

tions ensuring the occurrence of Hopf bifurcation and steady state bifurcation.
Interesting transient spatio-temporal behaviors including oscillations in one or

both of space and time are observed through numerical simulations.

1. Introduction. In this paper we consider the following diffusive plant-herbivore
system

∂u

∂t
= d1uxx + ru(1− u)− uv

1 + βu
, x ∈ Ω, t > 0,

∂v

∂t
= d2vxx +

uv

1 + σu
− κv, x ∈ Ω, t > 0

(1)

with Dirichlet boundary conditions

u(t, x)|x∈∂Ω = v(t, x)|x∈∂Ω = 0, t > 0 (2)

or
u(t, x)|x∈∂Ω = u1, v(t, x)|x∈∂Ω = v1, t > 0 (3)

where

u1 =
κ

1− κσ
, v1 =

r(1− κσ − κ)(1− κσ + κβ)

(1− κσ)2
. (4)

Here u(x, t) and v(x, t) represent the population densities of the plant and herbivore
location x ∈ Ω (For simplicity, we take Ω = (0, π)) and time t > 0, respectively;
d1 and d2 are the diffusion coefficients; r is the intrinsic growth rate of the plant
in the absence of herbivores; κ is the death rate of the herbivore; The positive
constants β and σ are the scaling parameters of functional response (characterized
by the function u

1+βu ) and numerical response (characterized by the function u
1+σu ),

respectively.
If β = σ, then (7) reduces to the diffusive predator-prey model in which numerical

response is assumed to be proportional to functional response, which has been
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extensively studied in the literature. See, for example, [1, 2, 4, 5, 9, 12] and the
references therein.

In this paper, we do not necessarily assume that β = σ since in plant-herbivore
interaction, the numerical response is generally not proportional to the functional
response. As pointed out in [8] that at high plant density, herbivore may cut off,
discard without consuming them so that the herbivore reproduction is not a linear
function of its consumption. Also assuming β 6= σ may have applications in plant
defense [6, 10].

The rest of this paper is organized as follows. Section 2 is devoted to the dynamics
of System (1) with boundary condition (2). In Section 3, we study the linear stability
and instability of the positive spatially homogeneous steady state of System (1) with
the boundary condition (3) and investigate the occurrence of Hopf bifurcation and
steady state bifurcation. Transient spatio-temporal patterns induced by Hopf and
steady state bifurcations are explored in Section 4. We summarize and discuss our
work in Section 5.

Throughout this paper, for convenience, we introduce the notations: N(a) =
{a, a + 1, a + 2, · · · }, N(a, b) = {a, a + 1, · · · , b − 1, b} for a < b, N(a, a) = {a},
N(a, b) = ∅ if b < a, bsc is the largest integer that is less than or equal to s.

2. System (1) with homogeneous Dirichlet boundary condition. In this
section, we consider System (1) with homogeneous Dirichlet boundary condition
(2), i.e., we consider the following diffusive system:

∂u

∂t
= d1uxx + ru(1− u)− uv

1 + βu
, x ∈ (0, π), t > 0,

∂v

∂t
= d2vxx +

uv

1 + σu
− κv, x ∈ (0, π), t > 0, (5)

u(t, 0) = u(t, π) = v(t, 0) = v(t, π) = 0, t > 0.

For System (5), the only spatially homogeneous steady state is E0 = (0, 0). Our
next result shows that E0 is indeed the only nonnegative steady state of System (5)
if r < d1 and there will be another nonnegative steady state if r > d1.

Theorem 2.1. Consider System (5). If r < d1, then E0 is the only nonnegative
steady state, which is stable. If r > d1, then E0 is unstable and there exists an
additional nonnegative steady state (u0, 0) with u0(x) > 0 for x ∈ (0, π).

Proof. Linearization of (5) at E0 gives the characteristic equation:

z2
n − T 0

nzn +D0
n = 0, n = 1, 2, 3, . . . , (6)

where

T 0
n := r − κ− (d1 + d2)n2

and

D0
n := (d1n

2 − r)(κ+ d2n
2).

If r < d1, then D0
n > D1 > 0 and T 0

n < T1 < 0 for n = 1, 2, . . . . This implies that
all eigenvalues of the characteristic equation have negative real parts for each n and
hence E0 is stable. If r > d1, then D0

1 < 0, which implies that for n = 1, there
exists one positive real eigenvalue. Therefore, E0 is unstable if r > d1.

Theorem 1.B in [9] states that if M(0, 0) ≤ λ1, then (0, 0) is the only nonnegative
solution. Here M = r(1 − u) − v

1+βu and λ1 is the first eigenvalue of the operator
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− ∂2

∂x2 . That is, M(0, 0) = r, and λ1 = d1. Hence E0 is the unique nonnegative
steady state of (5) if r < d1.

By [9, Lemma 1.1], if r > d1, then System (5) admits a nonnegative steady
state (u0(x), 0), where u0(x) is the unique positive solution of the equation 0 =
d1uxx + ru(1− u) with u(t, 0) = u(t, π) = 0.

Theorem 2.2. For System (5), Hopf bifurcation can never occur at E0. Further-
more, a steady state bifurcation occurs provided r

d1
= n2 for some n ≥ 1.

Proof. It follows from the definitions of T 0
n and D0

n that D0
n < 0 whenever T 0

n = 0.
This implies that the condition for Hopf bifurcation can never be satisfied. Thus
Hopf bifurcation can never occur at E0. On the other hand, if D0

n = 0 for some
positive integer n, then T 0

n 6= 0. This indicates that steady state bifurcation occurs

at E0 if
r

d1
= n2 for some n ≥ 1.

3. System (1) with nonhomogeneous boundary condition. In this section
we consider System (1) with the boundary condition (3), that is, we consider the
following diffusive system:

∂u

∂t
= d1uxx + ru(1− u)− uv

1 + βu
, x ∈ (0, π), t > 0,

∂v

∂t
= d2vxx +

uv

1 + σu
− κv, x ∈ (0, π), t > 0, (7)

u(t, 0) = u(t, π) = u1, v(t, 0) = v(t, π) = v1, t > 0,

where u1 and v1 are given in (4). If σ < σ0 = 1
k − 1, then System (7) has a unique

spatially homogeneous steady state E∗ = (u1, v1). Next we consider the linear
stability and instability of the steady state E∗.

The linearized operator of System (7) at the steady state (u1, v1) is given by

L̄
(
φ̄
ψ̄

)
= D̄

(
φ̄xx
ψ̄xx

)
+ J

(
φ̄
ψ̄

)
, (8)

where

D̄ =

(
d1 0
0 d2

)
, J =

 r − 2ru1 −
v1

(1 + βu1)2
− u1

1 + βu1
v1

(1 + σu1)2

u1

1 + σu1
− κ

 .

The characteristic equation of the linear operator L̄ is

L̄
(
φ̄
ψ̄

)
= λ

(
φ̄
ψ̄

)
, (9)

where (
φ̄
ψ̄

)
=

∞∑
n=0

(
ēn
l̄n

)
sin (nx) (10)

and ēn, l̄n are coefficients.
The linear stability of the steady state E∗ of System (7) is then determined by

the eigenvalues of the characteristic equation:

z2
n − Tnzn +Dn = 0, n = 1, 2, 3, . . . , (11)

where
Tn := T (β)− (d1 + d2)n2, (12)
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Dn := d1d2n
4 − d2T (β)n2 +D (13)

with T (β) =
rκ (β − 2βκ− 1 + κ(1− β)σ)

(1− σκ)(1 + βκ− σκ)
and D = rκ(1− κ− σκ) > 0. If Tn < 0

and Dn > 0 for all n = 1, 2, 3, . . . , then E∗ is stable.

Lemma 3.1. If 0 < β ≤ 1 or β > 1 and 0 < σ < σ∗ < σ0, where σ∗ = 1
κ −

2β

β − 1
,

then E∗ is locally asymptotically stable.

Proof. Under the given conditions, E∗ is the unique positive equilibrium of the
corresponding local system, which can be shown to be locally asymptotically stable.
That is, we have T (β) < 0. Thus, from (12) and (13), we have Tn < 0 and Dn > 0
for all n = 1, 2, 3, . . . . This shows that the steady state E∗ of System (7) is locally
asymptotically stable.

Remark 1. Lemma 3.1 shows that the diffusion in System (7) does not destabilize
a rather stable local system. Indeed, as we will show later, it is interesting to note
that the steady state E∗ of System 7 may be stable even if the local system is
unstable when the diffusion coefficients are sufficient large (see Figures 3 and 4),
which indicates that the diffusion has a stabilizing effect.

To further study the stability and instability of E∗, we first establish several
lemmas.

Lemma 3.2. If

r(1− 2κ− κσ)

1− κσ
≤ 2

√
d1D

d2
, (14)

then Dn > 0 for any n ∈ N(1).

Proof. Note Dn = d1d2n
4−d2T (β)n2+D can be regarded as a quadratic polynomial

of n2 with the discriminant

δ(Dn) := d2
2T

2(β)− 4d1d2D.

Since T ′(β) = rκ(1−κσ−κ)
(1−κσ+βκ)2 > 0 and

T (β) < lim
β→∞

T (β) =
r(1− 2κ− κσ)

1− κσ
,

condition (14) implies that δ(Dn) < 0. Thus Dn > 0 for any n = 1, 2, . . . .

Next we assume that

r(1− 2κ− κσ)

1− κσ
> 2

√
d1D

d2
. (15)

Solving Dn = 0 for β gives the critical point of neutral stability:

β = β1c(n) =
(1− κσ)(rκd2n

2 + (1− κσ)(D + d1d2n
4))

κ[r(1− 2κ− κσ)d2n2 − (1− κσ)(D + d1d2n4)]
(16)

for n ∈ N(bn−c+ 1, bn+c), where

n± =

√
r(1− 2κ− κσ)d2 ±

√
∆

2(1− κσ)d1d2
(17)
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with ∆ = (rd2(1− 2κ− κσ))
2 − 4(1− κσ)2d1d2D > 0 (By (15)). Since

dβ1c(n)

dn
=

2rd2n(1− κσ)2(1− κ− κσ)(d1d2n
4 − rκ+ rκ2 + rκ2σ)

k[r(1− 2κ− κσ)d2n2 − (1− κσ)(D + d1d2n4)]2
,

β1c(n) is decreasing with respect to n for n < n̄ and increasing for n > n̄, where

n̄ = 4

√
rκ(1−κ−κσ)

d1d2
if it is an integer or one of the two closest integers. At this critical

wave number n̄,

β1c(n̄) = min{β1c(n), n ∈ N(bn−c+ 1, bn+c)}.

Lemma 3.3. If
0 < β < β1c(n̄), (18)

then Dn > 0 for all n ∈ N(1). Moreover, if

β > β1c(n̄), (19)

then there exists at least one n such that Dn < 0.

Proof. Note that T ′(β) > 0 and

∂Dn

∂β
= −d2n

2T ′(β) < 0. (20)

Therefore, for n ∈ N(bn−c+ 1, bn+c),{
Dn < 0 if β > β1c(n),
Dn > 0 if 0 < β < β1c(n),

(21)

and Dn > 0 for all n when 0 < β < β1c(n̄).

Remark 2. The above lemma shows that condition (19) implies that the charac-
teristic equation admits a positive real root resulting in the instability of E∗.

Lemma 3.4. If
r(1− 2k − kσ)

(1− kσ)
≤ d1 + d2, (22)

then Tn < 0 for any n ∈ N(1).

Proof. The proof follows directly from the expression of Tn.

If
r(1− 2k − kσ)

(1− kσ)
> d1 + d2, (23)

then solving Tn = 0 for β yields the critical point of marginal stability

β = β2c(n) =
(1− σκ)

(
rκ+ (d1 + d2)(1− σκ)n2

)
κ [r(1− 2κ− σκ)− (d1 + d2)(1− σκ)n2]

(24)

for n ∈ N(1, NH), where

NH =

⌊√
r(1− 2κ− κσ)

(1− κσ)(d1 + d2)

⌋
. (25)

Lemma 3.5. If
0 < β < β2c(1), (26)

then Tn < 0 for all n ∈ N(1). If

β > β2c(1), (27)

there exists at least one n ∈ N(1, NH) such that Tn > 0.
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Proof. It is straightforward to verify that Tn is increasing in β and decreasing in n.
Therefore, for n ∈ N(1, NH),{

Tn > 0 if β > β2c(n),
Tn < 0 if 0 < β < β2c(n).

(28)

This shows that if (26) holds, then Tn < T1 < 0 for any n ∈ N(2) and this gives the
first statement. If (27) holds, then T1 > 0 and there exists at least one n ∈ N(1, NH)
such that Tn > 0.

We now present our result on the stability of E∗.

Theorem 3.6. Consider System (7) with σ < σ0. If 0 < β ≤ 1 or β > 1 and
0 < σ < σ∗ < σ0 or the following two conditions are satisfied:

(i) either (14) or (15) and (18),
(ii) either (22) or (23) and (26),

then the unique spatially homogeneous steady state E∗ is linearly stable.

Proof. It follows from Lemmas 3.2 and 3.3 that Dn > 0 for n ∈ N(1) if condition
(i) is satisfied. If condition (ii) is satisfied, then by Lemmas 3.4 and 3.5, we have
Tn < 0 for n ∈ N(1). Thus the stability of E∗ follows.

Our next result gives conditions under which the steady state E∗ becomes un-
stable as a positive real eigenvalue appears.

Theorem 3.7. If (15) and (19) hold, then the characteristic equation has positive
real eigenvalues and E∗ is a saddle point.

Proof. If (15) and (19) hold, then by Lemma 3.3, we know that Dn < 0 for some
n ∈ N(1). Thus for this n, the characteristic equation has a positive real root and
thus E∗ is a saddle point.

We next present an instability result of E∗ in which the characteristic equation
has complex eigenvalues for some n ∈ N(1) and thus E∗ is an unstable spiral. To
this end, we define several terms as below:

β− =
(1− κσ)2((d1 − d2)n2 − 2

√
D) + rκ(1− κσ)

rκ(1− 2κ− κσ)− κ(1− κσ[(d1 − d2)n2 − 2
√
D])

,

β+ =
(1− κσ)2((d1 − d2)n2 + 2

√
D) + rκ(1− κσ)

rκ(1− 2κ− κσ)− κ(1− κσ[(d1 − d2)n2 + 2
√
D])

,

β∗ =
1− κσ

1− 2κ− κσ
, β̂ = max (β∗, β−, β2c(n))

and

β̌ =

{
β+ if (14) holds,
min(β+, β1c(n)) if (15) holds.

Theorem 3.8. If (23) and

β ∈ (β̂, β̌) (29)

hold, then the characteristic equation admits complex eigenvalues with positive real
parts for some n ∈ N(1) and E∗ is an unstable spiral.
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Proof. The homogeneous steady state E∗ becomes unstable through complex eigen-
values of the characteristic equation (11) if Tn > 0, Dn > 0 and T 2

n < 4Dn for some
n ∈ N(1). It follows from T 2

n < 4Dn that

T (β−) := (d1 − d2)n2 − 2
√
D < T (β) < (d1 − d2)n2 + 2

√
D =: T (β+),

which, together with the monotonicity of T (β), derives that

β− < β < β+. (30)

Note that T (β) > 0 requires
β > β∗. (31)

Combining (23), (28), (30) and (31) and conditions for Dn > 0, we know that the
homogeneous steady state E∗ becomes unstable through complex eigenvalues of the
characteristic equation for some n ∈ N(1) if (23) and (29) hold.

Linear stability diagrams resulting from the above analysis are illustrated in
Figure 1 with parameter values given by: r = 8, κ = 0.08, σ = 5, d1 = 0.008,
d2 = 0.08. By Theorem 3.6, the spatially homogeneous steady state E∗ is linearly
stable if β ∈ (0, 1.50) and is unstable if β > 1.50.

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

n

β

β = β1c(n)

(D)

(C)

β = β2c(n)

β = β+(A)

(B)

β = β∗

Figure 1. Linear stability diagrams in the β−n space. Region
(A): E∗ is an unstable node; Region (B): E∗ is an unstable spiral
with complex eigenvalues; Region (C): E∗ is stable; Region (D):
E∗ is a saddle point with Dn < 0. Parameter values used: r = 8,
κ = 0.08, σ = 5, d1 = 0.008, d2 = 0.08.

3.1. Hopf bifurcation and steady state bifurcation. In this section we regard
β as a bifurcation parameter to explore the occurrence of Hopf bifurcation and
steady state bifurcation at the homogeneous steady state E∗. We have the following
result on Hopf bifurcation and steady state bifurcation of System 7. It follows from
the general Hopf bifurcation theory [7] that if for a positive integer n ∈ N(1), there
exists a critical value βHn such that the characteristic equation (11) has a pair of
simple purely imaginary eigenvalues zn = ±iω(βHn ) satisfying the transversality

condition dRe(zn)
dβ |β=βH

n
6= 0, then β = βHn is a Hopf bifurcation value. Applying

the abstract bifurcation theorem of Crandall and Rabinowitz [3], we know that a
steady state bifurcation occurs if there exists a critical value βSn for some integer
n ∈ N(1) at which

Dn = 0, Tn 6= 0, Dj 6= 0, j 6= n (32)

and
∂Dn

∂β

∣∣∣∣
β=βS

n

6= 0. (33)
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Theorem 3.9. Assume σ < σ0. For System (7) with β1c(n), β2c(n), Nh, n± de-

fined in (16), (24), (25) and (17), respectively, if r(1−2k−kσ)
(1−kσ) > d1 + d2, then Hopf

bifurcation occurs at βHn with

βHn ∈ {β2c(j) : Dj > 0, j ∈ N(1, Nh)} . (34)

Proof. We first prove that there are finite number of Hopf bifurcation values. Note

that Re(zn) = Tn

2 and dRe(zn)
dβ = 1

2
dTn

dβ = 1
2T
′(β) > 0. Thus the transversality

condition always holds. If (23) holds, then it follows from (24) that there are finite
number of critical points βHn = β2c(n) at which Tn(βHn ) = 0 and Tj(β

H
n ) 6= 0

for j 6= n, where n, j ∈ N(1, Nh). If further for the same n, Dn(βHn ) > 0, i.e.,
β2c(n) < β1c(n), then such a βHn is a Hopf bifurcation value. These critical points
can be easily located geometrically from the plots of (β1c(n), n) and (β2c(n), n) (see
Figures 2 and 9).

Theorem 3.10. Assume σ < σ0. For System (7) with β1c(n), β2c(n), Nh, n± de-

fined in (16), (24), (25) and (17), respectively, if r(1−2κ−κσ)
1−κσ > 2

√
d1D
d2

, then steady

state bifurcation occurs at βSn with

βSn ∈ {β1c(j) : Tj 6= 0, j ∈ N(bn−c+ 1, bn+c)}. (35)

Proof. We prove that there are finite number of steady state bifurcation values.
The transversality condition (33) follows from (20). Note that Dn = 0 is possible
only when (15) holds. Under (15), by (16), there are finite number of critical points
βSn = β1c(n) at which Dn = 0, Dj 6= 0 for j 6= n, n, j ∈ N(bn−c + 1, bn+c). These
critical values βSn are steady state bifurcation values provided βSn 6= β2c(n).

Remark 3. There are three possible scenarios: (i) there exist some Hopf bifurcation
values and also some steady state bifurcation values; (ii) there are Hopf bifurcation
values but no steady state bifurcation values; (iii) there are steady state bifurcation
values but no Hopf bifurcation values. For example, (i) is possible if (15) and (23)
hold; (ii) is possible if (14) and (23) hold; and (iii) occurs if (15) and (22) hold.

4. Transient spatio-temporal patterns induced by Hopf and steady state
bifurcations. In this section, we present some numerical simulations to illustrate
our analytical results and explore those three possible scenarios mentioned in Re-
mark 3. To this end, three sets of parameters were used: (i) r = 8, κ = 0.08, σ = 5,
d1 = 0.008, d2 = 0.08; (ii) r = 8, κ = 0.08, σ = 5, d1 = 0.08, d2 = 0.0008; (iii)
r = 0.2, κ = 0.08, d1 = 0.08, d2 = 0.8, σ = 5.

With parameter set (i), (15) and (23) hold, by Theorems 3.9 and 3.10, there
are two Hopf bifurcation values βH1 ≈ 1.50 and βH2 ≈ 1.93 and 27 steady state
bifurcation values {1.95, 1.99, 2.02, · · · }. The determination of these critical values
are demonstrated in Figure 2. Theorems 3.6, 3.9 and 3.10 show that the spatially
homogeneous steady state E∗ is stable if β ∈ (0, 1.50) and if β > 1.50, then E∗

becomes unstable and there are spatially nonhomogeneous periodic solutions bifur-
cating from E∗ when β is near the Hopf bifurcation values and there are spatially
nonhomogeneous steady states bifurcating from E∗ when β is close to the steady
state bifurcation values.

We take β = 1.45, which is smaller than the first Hopf bifurcation value βH1 =
1.50, as shown in Figure 3, the spatially homogeneous steady state E∗ is stable.
Note that for this set of parameter values, the positive equilibrium E∗ of the cor-
responding local system is unstable (see Figure 4). This confirms that diffusion
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1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

β

n

βH
2 βS

7 βS
3 βS

8 βS
2

Figure 2. Determination of Hopf bifurcation values and steady
state bifurcation values for System (7). Parameter values used:
r = 8,κ = 0.08, σ = 5, d1 = 0.008, d2 = 0.08. Hopf bifurcation
values are: βH1 = 1.5, βH2 = 1.93. Partial steady state bifurcation
values are: βS2 = 3.35, βS3 = 2.25, βS4 = 1.99, βS5 = 1.95, βS6 = 2.02,
βS7 = 2.15, βS8 = 2.33.

can stabilize a rather unstable system. If we increase β to β = 1.52, which is near
βH1 = 1.50, as shown in Figures 5 and 6, the solution does not approach E∗, instead,
a spatially non-homogeneous periodic solution appears and attracts the solutions
of System (7).

0
1

2
3

4

450
460

470
480

490
500

0.133

0.1335

0.134

xt

u

Figure 3. The u−component of a numerical solution of System (7)
with parameter values: r = 8, κ = 0.08, σ = 5, d1 = 0.008,
d2 = 0.08, β = 1.45 and initial condition: u0(x) = u1 + 0.01 sin(x),
v0(x) = v1 + 0.2 sin(x). Since β = 1.45 < βH1 = 1.50, E∗ is stable.

We further increase the value of β to β = 2, which is now close to the steady
state bifurcation value βS4 = 1.99. Different from Figure 6, we can observe very
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0 20 40 60 80 100 120 140 160 180 200
0.05

0.1

0.15

0.2

0.25

0.3

t

u

Figure 4. The u−component of a numerical solution of the cor-
responding local system with parameter values: r = 8, κ = 0.08,
σ = 5, d1 = 0.008, d2 = 0.08, β = 1.45. The positive equilibrium
E∗ is unstable and the solution converges to a stable periodic so-
lution.

Figure 5. The u−component of a numerical solution of System (7)
with parameter values: r = 8, κ = 0.08, σ = 5, d1 = 0.008,
d2 = 0.08, β = 1.52 and initial condition: u0(x) = u1 + 0.01 sin(x),
v0(x) = v1 + 0.2 sin(x). Here β = 1.52, which is near the Hopf
bifurcation value β = 1.50. Hopf bifurcation occurs resulting a
stable periodic solution.
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Figure 6. A numerical solution of System (7) with parameter val-
ues: r = 8, κ = 0.08, σ = 5, d1 = 0.008, d2 = 0.08, β = 1.52 and
initial condition: u0(x) = u1 + 0.01 sin(x), v0(x) = v1 + 0.2 sin(x).
Here we plot u(t, x) at location x = 2.

interesting transient dynamics: as shown in Figures 7 and 8, if the initial distribution
is of u0(x) = u1 + ε1 sin(4x), v0(x) = v1 + ε2 sin(4x), where ε1 and ε2 are small real
numbers, then the solution of System (7) follows around the bifurcated steady state
with the wave number n = 4 for a short time period before it converges to a stable
periodic solution.

With parameter set (ii), (14) and (23) hold, there are 8 Hopf bifurcation values
{1.49, 1.88, 2.62, 3.87, 6.02, 10.08, 19.76, 67.27}, and there are no steady state bifur-
cation values (see Figure 9). Combining Theorems 3.6, 3.9 and 3.10, we conclude
that the spatially homogeneous steady state E∗ is stable if β ∈ (0, 1.49) and be-
comes unstable if β > 1.49, there are spatially nonhomogeneous periodic solutions
bifurcating from E∗ when β is near the Hopf bifurcation values. Take β = 1.51,
which is near the Hopf bifurcation value βH1 = 1.49. As shown in Figure 10, a stable
periodic solution bifurcates from the steady state E∗ resulting oscillations.

Take β = 1.89, which is near the Hopf bifurcation value βH2 = 1.88. For solu-
tions with initial conditions near the bifurcated spatially non-homogeneous periodic
solution with small amplitude, they undergo transient oscillations for a short time
period and then evolve to a stable periodic solution with a larger amplitude. This
is shown in Figure 11, where only the u(t, x) is plotted and the v(t, x) component
behaves similarly.

With parameter set (iii), (15) and (22) hold, and there is one steady state bi-
furcation value βS1 = 15.60 and there is no Hopf bifurcation value. Combining
Theorems 3.6, 3.9 and 3.10, we conclude that the spatially homogeneous steady
state E∗ is stable if β ∈ (0, 15.60) and becomes unstable if β > 15.60 and there
are spatially nonhomogeneous steady states from E∗ when β is near the bifurcation
value. Choosing β = 15.61, our numerical simulations confirm that the spatially
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Figure 7. A numerical solution of System (7) with parameter val-
ues: r = 8, κ = 0.08, σ = 5, d1 = 0.008, d2 = 0.08, β = 2.0 and
initial condition: u0(x) = u1+0.01 sin(4x), v0(x) = v1+0.2 sin(4x).
Here we plot u(t, x) at location x = 2.
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Figure 8. The spatial distributions of u at various times. Param-
eter values: r = 8, κ = 0.08, σ = 5, d1 = 0.008, d2 = 0.08, β = 2.0
and initial condition: u0(x) = u1 + 0.01 sin(4x), v0(x) = v1 +
0.2 sin(4x).

homogeneous steady state E∗ becomes unstable. Moreover, simulations suggest
that there are two spatially nonhomogeneous steady states, and both are stable.
That is, a supercritical pitch-fork bifurcation occurs. For example, the solution
with initial condition u0(x) = u1 + 0.01 sin(x), v0(x) = v1 + 0.2 sin(x) converges to
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Figure 9. Determination of Hopf bifurcation values for Sys-
tem (7). Parameter values used: r = 8, κ = 0.08, σ = 5,
d1 = 0.008, d2 = 0.08. Hopf bifurcation values are 1.49, 1.88, 2.62,
3.87, 6.02, 10.08, 19.76, 67.27.
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Figure 10. The u−component of a numerical solution of Sys-
tem (7) with parameter values: r = 8, κ = 0.08, σ = 5,
d1 = 0.08, d2 = 0.0008, β = 1.51 and initial condition: u0(x) =
u1 + 0.01 sin(x), v0(x) = v1 + 0.2 sin(x). Since β = 1.51 is near
the Hopf bifurcation value βH1 = 1.49, a stable periodic solution
bifurcates from the steady state E∗.

one spatially nonhomogeneous steady state (see Figure 12 for the u−component of
the numerical solution, where the transient dynamics is omitted and see Figure 13
for the steady state profiles), while the solution with u0(x) = u1 + 0.01 sin(x),
v0(x) = v1 + 0.18 sin(x) converges to another spatially nonhomogeneous steady
state (see Figures 14 and 15).

A bifurcation diagram is sketched in Figure 16, where we plotted the steady state
distributions at location x = 3 against the bifurcation parameter β. As β crosses the
steady state bifurcation value βS1 = 15.60, two (stable) spatially nonhomogeneous
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Figure 11. A numerical solution (the u-component) of System (7)
with parameter values: r = 8, κ = 0.08, σ = 5, d1 = 0.08, d2 =
0.0008, β = 1.89 and initial condition: u0(x) = u1 + 0.01 sin(2x),
v0(x) = v1+0.2 sin(2x). Since β = 1.89 is near the Hopf bifurcation
value βH2 = 1.88, the solution follows the bifurcated spatially non-
homogeneous periodic solution with small amplitude for a short
time period and then evolves to a stable periodic solution with a
larger amplitude.
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Figure 12. The u−component of a numerical solution of Sys-
tem (7) with parameter values: r = 0.2, κ = 0.08, d1 = 0.08, d2 =
0.8, σ = 5, β = 15.61 and initial condition: u0(x) = u1+0.01 sin(x),
v0(x) = v1 + 0.2 sin(x).

steady states bifurcate from the unstable spatially homogeneous steady state E∗,
indicating a supercritical pitch-fork bifurcation.
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Figure 13. The profiles of bifurcated spatially non-homogeneous
steady state of System (7) with parameter values: r = 0.2, κ =
0.08, d1 = 0.08, d2 = 0.8, σ = 5, β = 15.61 and initial condition:
u0(x) = u1 + 0.01 sin(x), v0(x) = v1 + 0.2 sin(x).
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Figure 14. The u-component of a numerical solution of Sys-
tem (7) with parameter values: r = 0.2, κ = 0.08, d1 = 0.08, d2 =
0.8, σ = 5, β = 15.61 and initial condition: u0(x) = u1+0.01 sin(x),
v0(x) = v1 + 0.18 sin(x).

0 0.5 1 1.5 2 2.5 3
0.1333

0.1334

0.1335

x

u

0 0.5 1 1.5 2 2.5 3
0.534

0.5341

0.5342

x

v

Figure 15. The profiles of bifurcated spatially nonhomogeneous
steady state of System (7) with parameter values: r = 0.2, κ =
0.08, d1 = 0.08, d2 = 0.8, σ = 5, β = 15.61 and initial condition:
u0(x) = u1 + 0.01 sin(x), v0(x) = v1 + 0.18 sin(x).
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Figure 16. Bifurcation diagram of System (7) with parameters
r = 0.2, κ = 0.08, d1 = 0.08, d2 = 0.8 and σ = 5. Here the
steady state distributions at location x = 3 are plotted against the
bifurcation parameter β.

5. Summary and discussion. In this paper we have considered a diffusive plant-
herbivore model subject to nonzero Dirichlet boundary conditions in which the nu-
merical response is not necessarily proportional to the functional response. For the
spatially homogeneous steady state E∗, we have derived conditions under which
E∗ is locally stable. We have also obtained conditions under which E∗ becomes
unstable through a positive real root or a pair of conjugate complex roots of the
characteristic equation. When E∗ becomes unstable, we have shown that either (i)
both Hopf bifurcations and steady state bifurcations can occur, or (ii) only Hopf
bifurcations occur or (iii) only steady state bifurcations occur. For case (i), besides
solutions that evolve quickly to a stable periodic solution (Figure 6), some interest-
ing transient dynamics is also observed: there are solutions that follow a spatially
nonhomogeneous steady state solution for a short time period before emerging to
a stable periodic solution (Figure 7). For case (ii), transient dynamics is observed
in a different manner: there are solutions that follow unstable spatially nonhomo-
geneous periodic solutions with small amplitudes for a short time period before
emerging to a stable periodic solution with larger amplitude (Figure 11). For case
(iii), as the bifurcation parameter β crosses the steady state bifurcation value, we
have observed a supercritical pitch-fork bifurcation of steady states: two spatially
nonhomogeneous steady states emerge and initial condition dependent bistability
occurs.

Keep all other parameters and vary β. As seen from our simulations, as β
increases, the steady state E∗ may change from being stable to becoming unstable,
and spatially nonhomogeneous steady states or spatially nonhomogeneous periodic
solutions may appear. In this sense, β has a destabilizing effect. This suggests
that the assumption that the numerical response is not proportional to functional
response does bring in different dynamics for the plant-herbivore interactions.

Certainly diffusion in the diffusive model can stabilize the spatially homogeneous
steady state, which is rather unstable in the local system without diffusion. In
addition, varying the ratio of d1/d2 and the magnitude of d1 and d2 can induce
the above mentioned three possible scenarios. This indicates that the diffusion also
has impact on the dynamics of the plant-herbivore interactions. We point out that
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transient oscillatory patterns were recently explored in [11] for the diffusive non-
local blowfly equation with delay under the zero-flux boundary condition, in which
the transient dynamics are mainly driven by the time delay, it is very interesting to
incorporate time delay into our model and study the joint effects of time delay and
the diffusion on the transient dynamics. We leave this for our future project.
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