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ABSTRACT. In this paper, we include two time delays in a mathematical model
for the CD8% cytotoxic T lymphocytes (CTLs) response to the Human T-cell
leukaemia virus type I (HTLV-I) infection, where one is the intracellular infec-
tion delay and the other is the immune delay to account for a series of immuno-
logical events leading to the CTL response. We show that the global dynamics
of the model system are determined by two threshold values Rg, the corre-
sponding reproductive number of a viral infection, and R, the corresponding
reproductive number of a CTL response, respectively. If Ry < 1, the infection-
free equilibrium is globally asymptotically stable, and the HTLV-I viruses are
cleared. If Ry < 1 < Rp, the immune-free equilibrium is globally asymptoti-
cally stable, and the HTLV-I infection is chronic but with no persistent CTL
response. If 1 < Ry, a unique HAM/TSP equilibrium exists, and the HTLV-I
infection becomes chronic with a persistent CTL response. Moreover, we show
that the immune delay can destabilize the HAM /TSP equilibrium, leading to
Hopf bifurcations. Our numerical simulations suggest that if 1 < Rj, an in-
crease of the intracellular delay may stabilize the HAM /TSP equilibrium while
the immune delay can destabilize it. If both delays increase, the stability of
the HAM/TSP equilibrium may generate rich dynamics combining the “stabi-
lizing” effects from the intracellular delay with those “destabilizing” influences
from immune delay.

1. Introduction. HTLV-I is a human retrovirus that can cause a slowly progres-
sive neurologic disease, HTLV-I-associated myelopathy spastic paraparesis (HAM/
TSP) [4, 18, 25]. The number of HTLV-I-infected people is estimated between 15
to 25 million worldwide. Unlike HIV viruses, which break free from host cells and
infect other T cells, HTLV-I viruses are not very infectious and seldom found in
plasma [17]. Direct cell-to-cell contact is required to transmit the viruses among
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CD4™ T cells, while HTLV-I preferentially infects in vivo [2, 23, 22]. After an indi-
vidual is infected by HTLV-I viruses, the incubation period is from 15 to 30 years.
Most HTLV-I infected individuals are lifelong carriers, and about 0.25 percent to 3
percent of those develop into HAM /TSP patients [8, 28], in which at least 85 per-
cent of the patients will die in four years. On the other hand, CTL has a protective
part to the host by lowering the proviral load, and HAM /TSP patients’ peripheral
blood cells show very high CTL [1, 6]. The evidence implies that cytotoxicity of the
CTL is ultimately responsible for the demyelination of the central nervous system
resulting in HAM /TSP [5].

Mathematical models have been formulated to describe the in-vivo infection pro-
cess with the humoral immune response to HTLV-I infections [2, 6, 9, 11, 12, 16, 26,
25, 14] as well as to the human immunodeficiency virus (HIV) [13, 15, 19, 21, 24, 27].
In [6], Gémez-Acevedo et al consider the following mathematical model for the
HTLV-I infection of CD4% T cells that incorporates the CD8* cytotoxic T-cell
response:

(C% =\ — Ml:ﬂ(t) — 5x(t)y(t),
% = oBx(t)y(t) — pay(t) — yy(t)z(t), 1)

= yB:)

where z(t), y(t) are the population sizes of the uninfected and infected CD4" T-
cells, and z(t) the number of HTLV-I-specific CD8% T cells at time ¢, respectively.
Parameter ) is a constant input rate of CD4™ T-cells, p1, po, and p3 the removal
rates of uninfected and infected CD4% T cells, and HTLV-I-specific CD8" T cells,
respectively, 8 the transmission coefficient, o € [0,1] a fraction of cells newly in-
fected by contacts that survive the antibody immune response, 7y the rate of CTL
mediated lysis. The anti-HTLV-I CTLs reduce the proviral load, but this reduction
implies less stimulation for the CTL proliferation. Thus it is assumed in [6] that the
CD8™ T-cell stimulation has a density-dependent form vy(t)z(t)/(2(t) + K). Two
threshold parameters Ry and R, the basic reproduction numbers for viral per-
sistence and for CTL response, respectively are obtained to determine the global
dynamics of system (1) [6, Theorem 3.1]. If Ry < 1, the so-called infection-clearance
equilibrium is globally asymptotically stable, if R; < 1 < Ry, the the so-called car-
rier equilibrium with no persistent CTL response is globally asymptotically stable,
and if 1 < Ry, the HAM/TSP equilibrium is globally asymptotically stable.

Time delays have also been introduced into HTLV-I mathematical models to
study the transmission dynamics [11, 12, 25, 14]. In [11, 12], Li and Shu formulate
HTLV-I virus infection models for the CD4" T cells with delayed CTL response,
where the time delay is to account for the lag incurred by a sequence of events
such as antigenic activation, selection, and proliferation of the CTLs. It is shown
that the immune delay can destabilize the HAM /TSP equilibrium, leading to Hopf
bifurcations, stable periodic oscillations [12], or the coexistence of multiple stable
periodic solutions [11]. To characterize the time between the initial infected CD4™
T target cells entering a target cell and the subsequent infection, Sun and Wei [25],
and Muroya et al [14] incorporate the intracellular infection delay into the HTLV-
I infection models. It is concluded in [25, 14] that, different from the results in
[11, 12], the infection delay does not change the stability of the system.
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A time delay representing either the immune response delay or the intracellular
delay has been included in HTLV-I models, but to the best of our knowledge, there is
no model that has included both of the two delays together, which are biologically
reasonable during the HTLV-I infection. In this paper, using system (1) as our
baseline model, we incorporate the intracellular delay 7 and the immune delay 7
both into it and consider the following system:

CC%’ =X — pa(t) — Bz(t)y(t),
% = oBx(t — 1)yt — 1) — poy(t) — yy(t)z(t), 2)

This study seems to be the first with the model system including the both delays.

The main purpose of this study is to explore the global dynamics of system (2)
and investigate the impact of the intracellular delay 7 and the immune delay 7
on the dynamical behavior of the system. In general, including more than one time
delay increases the model complexity and bring challenges in mathematical analy-
sis. By developing different Lyapunov functionals, we establish conditions ensuring
global stability of the infection-free equilibrium, the immune-free equilibrium with
the chronic HTLV-I infection, and the HAM/TSP equilibrium. Using the uniform
persistence theory, we obtain criteria that determine if the HTLV-I infection be-
comes chronic with a persistent CTL response. We also investigate the impact of
the combined effects from the two delays together on the global dynamics of model
system (2) analytically as well as numerically.

The paper is organized as follows. In Section 2, the threshold parameters Ry and
R are derived and the existence conditions for all equilibria are established in terms
of the values of Ry and R;. In Section 3, main analytical results on the stability of
the equilibria, uniform persistence of the system, and the Hopf bifurcations due to
immune delay are obtained. Numerical simulations are presented in Section 4, and
brief discussions finally complete the paper in Section 5.

2. Preliminaries. To investigate the dynamics of system (2), we need to consider
a suitable phase space and a feasible region.

For 71,7 > 0, define the following Banach space C = C([-7,0],R), 7 =
max{m, T2}, and we assume

2(t) = 61(0), y(t) = 62(6), (1) = d(6), for —7 <0 <0.
In addition, throughout this paper, we set ¢ = (1, P2, ¢3) and ¢; € C(i = 1,2,3)
for —7 < 0 < 0, with norm [[¢]| = sup_-<g<o{|¢1(0)], |02(0)], |¢3(0)]} for ¢; € C,
i = 1,2,3. The nonnegative cone of C is defined as C* = C([—7,0], R}). Initial
conditions for system (2) are chosen at ¢ = 0 as

¢ = (¢1, ¢23 ¢3) € C+7 (rbz(()) > 07 1= 17273' (3)

Lemma 2.1. Under initial conditions in (3), all solutions of system (2) are positive
and ultimately bounded in R x C x C.

Proof. First, we prove x(t) is positive for ¢ > 0.

Assume the contrary and let ¢; > 0 be the first time reached by x such that
x(t) > 0,0 <t <t and z(t;) = 0. It then follows from the first equation in (2)
that 2/(t1) = A > 0, and hence z(t) < 0 for ¢ € (t; —e,t1) where € > 0 is sufficiently
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small. This contradicts x(t) > 0 for ¢t € [0,1), and thus it follows that z(t) > 0 for
t > 0 so long as x(t) exists.
Second, it follows from the second equation in system (2), for 71,7 > 0, that

t
y(t) =y(0)e” Jo patyz(ydr / oBx(s —11)y(s — Tl)ejtb patyz(T)dr g o
0

Suppose there exists tg > 0, such that y(tp) = 0, and y(¢) > 0 for 0 < ¢ < to.
Then

t to s
y(to) = y(0)e o #etr=(dr 4 / aBa(s — m)y(s — m)elo 2T s > 0,
0

a contraction. Thus y(t) is positive.
Similarly, if there exists to > 0, such that z(tp) = 0, and z(t) > 0 for 0 < ¢ < to,
it follows from the third equation in (2) that

t
I ey Y5 = 72)2(s — )
z(t) = z(0)e + U/O e py P——— ds

)

and then it leads to a contradiction as before. Hence we have z(t) > 0, for all ¢ > 0.
Next we prove that positive solutions of (2) are ultimately uniformly bounded

for t > 0. From the first equation in (2), it follows that 2 (t) < A — py2(t), and thus

limsup,_, . () < A/p1. Adding the first two equations in (2) together, we have

(z(t) +y(t +71)) =X — ma(t) — B — o)z(t)y(t) — poy(t +71)
—yy(t+71)z(t + 11)
<A = Alz(t) +y(t+1))

where i = min{yuy, po}. Thus limsup,_, o (z(t) +y(t +71)) < A/f. It then follows,
in addition from (2), that, for any € > 0 and for a solution y(t) of system (2) with
y(t) < %—1—67 there exists T' = T'(¢) > 0 such that for ¢ > T', the following differential
inequality holds:

! A
Z(t+7_2) Svy(t) 7N3Z(t+7'2) S’U <M+€> *,Ll,gz(t+7'2),
Let ¢ — 0. Then limsup, , z(t) < &

< 2. Hence, z(t), y(t) and z(t) are all ultimately
uniformly bounded in R x C x C. O

As a consequence of the proof of Lemma 2.1, we know that the dynamics of
system (2) can be analyzed in the following feasible region:

A A A
F={@wna e Rix Ot xChlal < o tall < 2.0 <
H1 w Hs
Moreover, the region F is positively invariant and hence the model system is well
posed.

Lemma 2.2. Given system (2) with ¢;(0) > 0, ¢ = 1,2,3, we have all solutions
x(t) >0, y(t) >0, z(t) >0, vVt > 0.

Proof. By similar arguments as in the proof of Lemma 2.1, the positivity of z(t) for
all t > 0 follows directly.

Next, we show that y(t) and z(¢) must be non-negative for all ¢ > 0. Otherwise,
there must exist ¢y > 0 such that min{y(¢o), z(to)} < 0.
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Let
fo = i?f{to > O| min{y(to), Z(to)} < 0}
0

Then we have £y > 0 and there exists a sufficiently small constant ¢ > 0, ¢ <
2 min{ry, 72}, such that min{y(y +¢), 2(fo + )} < 0. Hence we have the following
three cases:

(i) y(fg +¢) <0.

(11) Z(to —|—€) < 0.

(iii) y(fo + &) < 0 and z(fy +¢) < 0.

We first assume (i), and put £y + € into (5). Then we have

to+e {0+6 s
y(to +¢) = y(0)e™ Jo* " matyz(r)dr + / oBx(s — 11 )y(s — Tl)ef’70+5 patyz(r)dr g
0

(4)
This contradicts y(fo + ) > 0 for ¢ > 0. Similarly, we can prove (ii) and (iii). O
: . e A .
System (1) has the infection-free equilibrium P; = u 0,0 ). Using the next
1

generation matrix method [3], we have the transmission and transition matrices as
A
F:O(’BE,V: 0 H2
0 0 po B

_ 1 —oBA 0
FVl=— < ) .
papz \ 00

Then it follows that

Then the reproductive number of a viral infection is defined as Ry := p(FV 1) =
oA

pip2

B2 oBA— o
o’ paf

as Ry > 1, that we call the immune-free equilibrium. The corresponding transmis-
sion and transition matrices are

There exists an equilibrium P, = ( ,0> with no CTL response,

VOB — Vi o 9 no 0 0 13
00 ———— 0" BN — aBua e VOB — Y2
P Kb | y_| - o 17PA il
I O 0 V= paf3 o3
oB%X — Buipe  po
0 0 0 PP Nl s 0,
p2f o
Hence it follows from
VOB — v 2 0 0
11 Kuspz
PV = 0 0 0
12
0 0 0

oBAv

p2(p1v + BusK)’
if Ry < 1, and unstable if Ry > 1. We call R; the basic reproductive number of a

CTL response.

that if we define Ry := then P, is locally asymptotically stable
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A chronic infection equilibrium P; = (z*, y*, 2*) with CLT response (z* > 0) is
called a HAM/TSP equilibrium. The coordinates x*, y*, z* satisfy

A= mat = fa'y" =0,

* % * B

opz’y pay” =1y =0, (5)
v 0
VT e =0,

and P; exists as Ry > 1.

3. Main results. In this section, we investigate the stability of the equilibria P,
P,, Ps, respectively. In order to avoid an excessive use of parentheses in some of
later calculations, we write x = x(t), y = y(t), z = 2(¢), and let g(x) :=x —Ilnx —1,
such that g(x) > 0 for z > 0, and g(z) = 0 if and only if z = 1.

3.1. Global stability of the infection-free equilibrium P, as Ry < 1.

Theorem 3.1. For system (2), if Ry < 1, the infection-free equilibrium Py is
globally asymptotically stable in F.

Proof. For 11,75 > 0, the characteristic equation of system (2) in P; = (z*,0,0),

¥ = —is

M1
G(s) =det (sSE — A— Aje ™) = (s + 1) (s + p3) (s + p2 — 051)\6)‘“> , (6)

where
wl—@ 0 0 0 0
A
A= 0 H1 0 , A1:=10 i 0
— 1o "
0 0 —ps 0O 0 o0
Set G(s) =0 1in (6). We have
§1 = —M1, S22 = —U3,
and \
5+ o — ie*’”1 =0. (7)
231
. .. OBA . .
Asin [21], if —— < pa, all roots of equation (7) have negative real parts. Thus the

1
infection-free equilibrium P; is locally asymptotically stable.
We define the following Lyapunov functional

V(¢) = Ur(¢) + U2(¢) + Us(¢),

where
(o) =g (2. 0
0
0a(6) = - (0000406 [ r(opon(elas). o)
and
0
Us(6) = % (¢3(0) sof mczs) . (10)
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Calculating the time derivatives of (8), (9), and (10) along solutions of system
(2), we have

dUi(¢) _ ., <1 _ 1> (A — e — Bry)

dt x* oz
:_ul(a: z*)?  w xﬁxy,
x x
duU. 1
;i@ = —(ofzy — p2y —1y2), (12)
and
dUs(¢) _ Ky ([ yz
=27 sz ). 1
dt vo \'z + K Haz (13)
Combining (11), (12), and (13), we have
av pu(z — z*)? w M2 Y K Kyus
or Y A 2 1— _
dt | x By EE A 2+ K vo
(e —at)? . k2w Ky
B x + By Ead o(z+ K) vo -
p(x —a*)* vyz? Kyps
= 2R —1) — _
x +O'y( 0o~ 1) o(z+ K) vo
Therefore, it follows from Ry < 1 that 4|y < 0 for all z(t), y(t), z(t) > 0.
Set
Ao = {(z,y,2) € FI[V' =0}.
Then V' = 0 if and only if
r=x% z=0. (14)

Substituting (14) into the first equation in system (2) then yields y = 0. By the
LaSalle-Lyapunov theorem ([10], Theorem 3.4.7), the largest compact invariant set
of Ajg is the singleton point P;. Thus we conclude that P is globally attractive in
F. Since it has been shown above that P; is locally asymptotically stable, P; is
globally asymptotically stable in F as Ry < 1. O

3.2. Global stability of the immune-free equilibrium P, as Ry > 1 > R;.

Theorem 3.2. For system (2), if Ry > 1 > Ry, the immune-free equilibrium Ps is
globally asymptotically stable in F\{z-axis}.

Proof. For 11,79 > 0, the characteristic equation of system (2) in P» is

G(S) = det (SE — A(Pl) — A1<P1)€_ST1 — AQ(Pl)e_STZ) ; (15)
where
oBA — pipe  p2
- - —— 0
fh2 o B —
A(Pl) = 0 — 1o 770— 12 s
M2
0 0 —H3
0 0 0 0 0 0
(0B — p1piz)o 0 0 0
A (P)) = 0 |,Ax(Py) :=
1(P) 11 He 2(P1) (08X — papin)v
0 0 0 00
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Setting G(s) = 0 in (15), we have

O—ﬂ)\ — M2 6572)
p2BK

A
X <52 + (Gf — poe 5T 4 ,ug) s+ ofA— u1u265”> =0.
2

It then follows that

<5+,u3v

0—6)‘ — M2 e 572

S+ s —v =0. 16
K3 1B K (16)
A\ —
Hence, if R; < 1, namely, ULJ(W < us, all the roots of equation (16) have
H2
negative real parts.
We next set
A
F(s) =5+ <U/f — pge T+ u2> s+ 0B\ — prpge T, (17)
2

and we consider the following two cases:

(i) Suppose 71 = 0. Then F(s) = 0 is equivalent to

A
s% + isﬂ%fﬁk—muz =0. (18)
2

If Ro > 1, namely, 08X — pyp2 > 0, then each root of (18) has only a negative real
part.

(ii) Suppose 71 # 0. It is obvious that s = 0 is not a root of (17) when Ry > 1.
Now, let s = iw, w > 0. Then (17) is equivalent to

A ) .
F(S) = F(Zw) = —? + (Uf _ Mze—zwﬁ +M2) iw+ Uﬁ)\ _ NI,UZe_Zle =0,
2

and it follows that
L 023N

w* + 2 w2+ 02BN — pius = 0. (19)
2

If Ry > 1, then 028%)\? — p3u > 0, and each root of (19) has only a negative real
part. Combined (i) with (ii), the roots of zeros of F(s) on 71 > 0 have negative real
parts. Thus, all the roots of G(s) = 0 have negative real parts, and P, is locally
asymptotically stable as R; < 1 < Ryp.

P2 OBA— pape

Write P, = (Z,9,0), with z = -—=,§ = ————— and consider the following
op pef

V(¢) = Vi(9) + Va(o) + Va(9),

Lyapunov functional:

o Vi) = ag (200)), (20
Vo(g) = % (yg (@;O)) +zyof _Oﬁ g (¢1(S;§2(8)) ds) : (21)

nd
a Valg) = 22 (6a(0) 40 Pt as. (22)
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Then calculating the time derivatives of (20), (21), and (22) along solutions of
system (2) yields

dV(lziqb) = Lz — ) + Brg — fay), 28)
dVZEW = LY et — )yt — ) — oy — )
>V —x(t— )yt —m) 2t — )yt —m) =y
Hyﬁ( y jyl yib—m) 1;; 1 )
and dvs(¢) _ K
3 L z v
S8 _ X < s —|—vz+K>. (25)

Combining (23), (24), (25), we have

vl _ dnile) | da(g) | dVs(¢)
dt | dt dt dt
_ o em®? w2y (oBA-mps  Kus
M - o(z+K) o waf v
1y (2 _E_altomylt-m) et -yl - m)
X X
(x — 7)? T ! T ’
= —m——— =g (S - -1
75__ x(tfﬁ)y(t—n) 1 I(t*’l’l)y(tf’rl)il
) Y - . Ty
Yz v (06 fi1fiz u3>
A N S .
r—T _ X _ T\l — T — T
= —m—— — By (;)—Bwyg 1333 1)
w2 vz uaBA = pa(mv + paBK)
o(z+K) o v '
Then, V' = 0 if and only if
r=2, z=0. (26)

Substitute (26) into the first equation in system (2), we have y = 3. By the
LaSalle-Lyapunov theorem ([10],Theorem 3.4.7), the largest compact invariant set
of Ag is the singleton point P,. Thus, we conclude that Ps is globally attractive in
F\{x-axis}. Since we have shown above that P, is locally asymptotically stable in
F\{x-axis} as Ry < 1 < Ry, the proof is complete. O

3.3. Uniform persistence when R; > 1. As Ry > 1, system (2) has a unique
endemic HAM/TSP equilibrium Ps = (z*,y*, 2*). We further have the following
uniform persistence result.

Theorem 3.3. System (2) with 71 > 0, 72 > 0, and initial conditions given in (3)
is uniformly persistent if Ry > 1; that is, there exists a positive constant g > 0
such that all solutions of (2) satisfy

hglolgf(ﬂf(t ¢)a y(ta ¢)7 Z(t7 QS)) Z €0-
Proof. It follows from Lemma 2.1 and the similar arguments in [19, Proposition 1]

that x(t) has positive ultimate lower boundary. Thus it suffices to prove both of
y(t) and z(t) have positive eventual lower boundaries.
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Define
X = {(¢17¢2,¢3) e Ry x Ct x C+},
and
Xo = {(¢1,¢2,03) € X : $2(0) > 0,3(0) > 0}, 9Xo = X\ Xo.

Let U(t) : X — X be the solution semiflow of system (2), that is, ¥(¢) =
(xe(9), yt(¢), 2t (¢)). We proved earlier that the solution semiflow ¥(¢) of (2) has
a global attractor F on X. Clearly, X is relatively closed in X. Moreover, by
Lemma 2.2, system (2) is positively invariant and point dissipative in R;. Thus Xg
is positively invariant for W.

Define

Qg :={p € X :¥(¢p) € 90Xy, Vt > 0}.

We now claim that
Do ={p€dXy:y(t,¢) =0 for Vt >0, or z(t,$) = 0 for V¢ > 0}. (27)

Assume ¢ € Qy. We only need to show that either y(t,¢) = 0 for V¢t > 0 or
2(t,¢) = 0 for all t > 0. For the sake of contradiction, assume that there exist two
nonnegative constants tg > t; such that y(tp,$) > 0,z(t1,¢) > 0. Following the
definition of g, one must have y(t1, ¢) = z(tg, ») = 0.

By the last two equations in (2) and Lemma 2.2, we have

dy(t, ¢)

“at > —(p2 +vz(t,0))y(t, ¢), Vt > to,

and
dz(t, ¢)
dt
Thus using the comparison principle, we have y(t,¢) > 0, for all ¢ > #;, and
z(t,¢) > 0, for all t > t;, which contradicts y(t1,¢) = z(tg,¢) = 0. This proves
(27).
We now let

> —psz(t, ¢),Vt > t1.

0o := () w(¢).
PEZo
Here Zj is the global attractor of W(¢) restricted to 0X,. We claim that ©¢ =
{Pl} U{PQ}' In fact, ©g C 2y = {(I(t, (b)a y(tu ¢)7 0)7 (.’L‘(t, ¢)7 0, z(t7 (b))} Ify(t, d)) =
z(t,¢) =0, for all t > 0, by (2), we obtain lim;_,o 2(t) = A/p1. Thus P, € 6g. For
other cases, using Theorem 3.2, we have lim;_, o (x(t, @), y(¢, ¢),0) = Py if y(¢,¢) > 0
for some t > 0; and we get lim;_, o (2(, ¢), 0, 2(¢, ¢)) = Py given that z(¢,$) > 0 for
some t > 0, proving Oy = {P, } U{ P}

Since {P1}, { P2} are two isolated invariant sets of ¥(t) in Qp, using the similar
arguments for Theorem 3.2 and noting Ry > R; > 1, we can prove that P, is
asymptotically stable in g as defined in (27). Hence ©¢ has an acyclic covering.

Next, we prove that WS(P,) N Xy = 0, ¢ = 1,2. For ¢ = 1, suppose it is
not true; that is, there exists a solution (z(t,¢),y(¢, ¢),2(t,¢)) € X, such that
limy oo (x(, 9), y(t, @), 2(t, $)) = P1. Then for any sufficiently small € > 0, there is
T, = Ti(e) large enough, such that z(t) > ﬁ —e,max{y(t),z(t)} <eforallt > Ty,
and y,z — 0, as t — oo.

Let .

U= [ oBa(ule)dc +.

—T1

Then we have U(t) > 0 and lim;_,, U(t) = 0.
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However, by the assumption Ry > R; > 1, we have the time derivative of U(t)

satisfy

dUu A

— | =2 |0B(——¢€)—p2—ne)y>0,Vt>T,

dt ) 2
which is a contradictions to lim; o, U(t) = 0. This proves the case i = 1. Similarly
we can prove the case i = 2. By [29, Theorem 1.3.2], we conclude that there exists
go > 0 such that liminf; o (y(¢, @), 2(t, ¢)) > g for any ¢ € Xy. This shows the
uniform persistence of solutions of system (2). The proof is completed. O

3.4. Special case with R; > 1, 4 > 0, and 75 = 0.

Theorem 3.4. For system (2), if Ry > 1, the HAM/TSP equilibrium P5 is globally
attractive.

Proof. Consider the following Lyapunov functional

V(g) = Wi(o) + Wa(o) + Ws(s),

where
Wi() =g (1)), (28)
0
Wa(¢) := éy*g <¢2yi0)> + 6$*y*[ g <¢1(;)j2(5)> ds, (29)
and _ 0
Wa() = 1T g (200 (30)
respectively.
The derivatives of (28), (29), and (30) along the solutions of system (2) are
AW
1O (1 2 (g + Bty — ), (31)
T 2 (1= ) (obate = mhyte — ) - pay — 192) -
32
Bty (xy —a(t ;*;1*)11(75 - 7'1>> 4 x(t — Tlgzz(t - 71)’
e AWs(6) _ (=" + K)
3(0) (2" + . z Yz
7 = oo z (1 — ;) ('UZ T K - ,U'3Z> ; (33)
respectively.

Combining (31), (32), (33), we have
dv — z*)? * t— t—
B e (5 (2) g (M)
@ x x T*y

dt
_ Y k)2
70(2’4—[()(2 z2")*.

dV dV
It then follows that yr <0, and s = 0 if and only if

*

z=2z" y=vy*, z=2z"

Similarly as in the proof of Theorem 3.1, by LaSalle-Lyapunov
theorem ([10],Theorem 3.4.7), Ps is globally attractive in F if Ry > 1. O
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3.5. Special case with Ry > 1, 7y = 0, and = > 0. For 7y = 0,» > 0, the
characteristic equation of system (2) in P3 = (z*,y*, 2*) is

G(S) = det (SE — Ay — A1€_ST2) s (34)
where
" . 0 0 0
—p — By* —px 0
. " 0 0 0
Ap = By 0 —y* ], A= va* vKy*

0 0 s 2+ K (2*+K)?

It follows from G(s) = 0 that we have the following characteristic equation
s3 +a1s® + azs + ag + (ags® + ags +as)e ™ =0, (35)

where
Koy*

(Z* + K)Q’

a2 e . _ vyt Ky (u + ByY)
az == 0Bz y" + pz(pm + By, = Rt

a1 =1+ p3+ By, azi=—

vyy*z* vKy*
Z+ K (24 K)?

Since a5 + ag > 0, A = 0 is not a root of (35). If iw, w > 0, is a purely imaginary
root of (35), separating the real and imaginary parts leads to

as = (u1 + By*) oB’rry*,  ag = psofizty*.

2 (36)

w? —azw = (agw? — as) sinwmy + a4w cos Wy,
a1w? —ag = agwsinwry — (aw? — as) cos wy.

Squaring the both sides of the two equations in (36) and adding them up gives

6 2 2y 4 2 2y, 2 2 2
w® + (af — 2a3 — a3)w” + (a3 — 2a1a6 + 2a2a5 — aj)w” + a5 —az = 0. (37)
Write 2 := w?, a := a? — 2a3 — a3, b := a% —2aja6 + 2a2a; — a2, and ¢ = ag — ag.

Then equation (37) becomes
h(z) =23 +az® + bz +c. (38)
By the Routh-Hurwitz criterion, we know that if
ay + a2 > 0, (a1 + az)(as + a4) — (a5 + ag) > 0,a5 + ag > 0, (39)
equation (35) has no positive real roots. Accordingly, we have the following result.

Theorem 3.5. Suppose conditions in (39) hold and a > 0,b >0, ¢ > 0. Then the
HAM/TSP equilibrium P3 of system (2) is asymptotically stable.

Proof. For h defined in (38), we have
dh(z)

=32242 b, 40
7 2%+ 2az + (40)
and the zeros of (40) are
—a++va?—3b
21,0 = —s (41)
If b > 0, then a? — 3b < a2, that is Va2 — 3b < a for ¢ > 0. Hence, neither z; nor 2z,

dh(z)

is positive. Thus = 0 has no positive root. Since h(0) = ¢ > 0, it follows that

z
h(z) = 0 has no positive roots. So, the HAM/TSP equilibrium Pj is asymptotically
stable. O
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Theorem 3.6. Suppose that conditions in (39) are satisfied and that

(i) either ¢ <0,

(ii) orc>0,b<0, and H'(wd) # 0,
where woy satisfies G(iwg) = 0 with G given in (34). Then the HAM /TSP equilibrium
P5 of model system (2) is asymptotically stable is 7o < Tog9, and is unstable if
Ty > Tog, where
1 agwo(wi — azwg) — (a1wd — ag)(azwd — as)

1
T20 — — COS
W (agwo)? + (agw? — as)?

As 19 = 1o, a Hopf bifurcation occurs; that is, a family of periodic solutions are
bifurcated from Ps as 1o passes through the critical value Toq.

Proof. If ¢ < 0, then it follows from (38) that h(0) < 0 and lim,_, . h(z) = oc.

Thus, equation (37) has at least one positive root. If b < 0, then va? — 3b > a,

—a++va?—3b
3

(41). As a consequence, equation (37) has a unique positive root wg. This implies
that the characteristic equation (35) has a pair of purely imaginary roots.

Let s(m2) = n(12) +iw(72) be the eigenvalue of equation (35) such that n(r9) =0
and w(7e0) = wp. From Theorem 3.5 it follows that if b < 0, there exists wy > 0,
such that G(iw) = 0. Then by the first equation of (36), we have

aswo(w§ — aswo) — (a1wd — ag)(aswg — as)

(aqwo)? + (aow? — as)? ’

and function h(z) in (38) has a unique positive zero z; = >0 as in

cos (woTa;) =

and then

1 3 _ _ 2 2 27
72 = - cos~L aswo(wy — aswo) — (a1wi — ag)(aswg — as) N ﬂ,

=01,
wo (agwp)? + (agwi — as)? wo J

We can also verify the following transversality condition ([12])

—1
d(Res(72)) _Re (352 + 2a;5 + ag)e’™
S s(ass? + aqs + as)

dry T2=T20
2
(e )
s(azs® +ass+as) ) |,,—.,.
H' (w§)
=2 2 7z 7 0,

~ajwg + (a5 — asw?)
such that if 79 = 799, a Hopf bifurcation occurs; that is, a family of periodic solutions
appear as T passes through the critical value 7oq. O

4. Numerical simulations. To verify our analytic results, we provide numerical
examples in this section.

We choose a set of parameters from Tables 1-3 corresponding to the conditions
in Theorem 3.1, Theorem 3.2, and Theorem 3.4, respectively. The corresponding
numerical simulations are shown in Figures 1-3.

The time scale is based on days, a production rate of CD4% T cells is within
the range of (20 — 120) cells/mm/day® [6, 12, 15], the removal rates for uninfected
and infected CD4F T cells are selected in the range of (0.01 — 0.05) day~! [15], the
death rate for HTLV-I-specific CD8% cells is selected in the range of (0.01 — 0.4)
day~! [6, 12], and S is chosen in the range of 10~3mm3 /cell/day [20]. The range
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for ¢ is chosen as (0.01 —0.05) [6], for v as (0.001 —0.03) [6], for y as (0.002 — 0.02)
[6], respectively. We let K be in the range of (1 — 20) [6, 12].

Figure 4 describes the phenomenon stated in Theorem 3.6, where the set of
parameters are selected from Table 4 so that we have 1 < Ry = 8 < Ry ~ 10.667,
wo = 0.086, and 159 ~ 9.577. Correspondingly, by Theorem 3.6, the HAM/TSP
equilibrium Pj is locally asymptotically stable as 7 < 799, and a Hopf bifurcation
occurs as T = Tog such that periodic solutions exist for m > 7.

Figure 5 shows the solutions of model system (2) corresponding to the increase
of 7 from 0 to 20, while 72 = 15. For 71 < 8 approximately, the solutions are all
oscillatory. As 71 increases from 0 to 8, the vertical amplitudes of x(t), y(t), and
2(t) become smaller and smaller, and the HAM/TSP equilibrium P3 changes from
unstable for 7 < 8 to stable for 7 > 8.

On the other hand, it shows, in Figure 6, the stability change for the HAM /TSP
equilibrium Pj as 75 increases from 0 to 20 while 71 = 1. For 75 < 7.5 approximately,
P5 is asymptotically stable. As 75 increases in the interval (7.5,20), the HAM /TSP
equilibrium Pj is unstable, and the vertical amplitudes of z(t), y(t), z(¢t) become
larger and larger.

We then show, in Figure 7, the stability change of the HAM/TSP equilibrium
P; as 7 and 7y simultaneously increase from 0 to 15. It seems clear that P
is stable as (m1,72) € (10,15) x (1,7). For (71,72) € (0,10) x (7,15) and 7 >
%Tg — 3275, the vertical amplitude of each component for the differences between the
solutions and Ps is sufficiently small, suggesting that Ps is asymptotically stable.
For 71 € (0,10),75 € (7,15) and 71 < 275 — 22 approximately, on the other hand,
those vertical amplitudes become larger than zero, suggesting that P5 is unstable.
Furthermore, those vertical amplitudes become larger and larger as 7, increases from
7 to 15 while 71 gradually decreases from 10 to 0, suggesting that the HAM /TSP
equilibrium P3; becomes increasingly unstable with those parameter values.

TABLE 1.
parameter A pp o B8 142 y v K ps T T2
value 20 0.05 0.01 0.001 0.05 0.02 003 1 001 5 5
TABLE 2.
parameter A o B e Y v K ps m
value 20 0.015 0.05 0.001 0.01 0.02 0.001 1 04 5 5
TABLE 3.
parameter A pu; o Jé; 142 ~ v K p mn1 7

value 20 0.01 0.02 0.001 0.006 0.02 0.03 1 0.01 10 O
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TABLE 4.

parameter A I o B 12 ~ v K pus mn
value 160 0.01 0.02 0.001 0.03 0.02 003 1 01 O
400] 09 09
350 08 08

07 07
300) 06) 08
250 05 05
qu() >U4 04
150 03 03
. . .
0 o ]
0 500 1000 1500 2000 ° 10 500 1000 1500 2000 o 10 500 1000 1500 2000

timet timet timet

FIiGURE 1. The above three graphs are about x,y,z when Ry =

90 80 09
08
800) 2
- 07
60|
06
600)
50 05
500] >
40| 04
400
03
0 Y
02
2
200] 01
100 10|
-01
0 50 1000 1500 2000 0 50 1000 1500 2000 0 500 1000 1500 2000

timet timet timet

F1GURE 2. The above three graphs are about z,y,2z when R; =
0.24< 1 < Ry =~ 6.67.

1800|
1600
1400 12
1200]

* 1000 > N 14

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
timet timet timet

FIGURE 3. The above three graphs are about x,y,z when R; ~
7.74>1.

5. Discussion. In this paper, we include the intracellular delay and the immune
delay in an HTLV-I infection model and investigate their impact on the transmis-
sion dynamics. We derive formulas for the basic reproductive numbers of a viral
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FIGURE 5. The ultimate oscillation interval of the solution to sys-
tem (2) when 7 increases from 0 to 20, here 75 = 15, ¢ € [500, 5000].

FIGURE 6. The ultimate oscillation interval of the solution to sys-
tem (2) as 79 increases from 0 to 20, here 7 = 1,¢ € [500, 5000].

infection, Ry, and of a CTL response, Ry, and show that the infection-free equilib-
rium P; is globally asymptotically stable if Ry < 1 (Theorem 3.1 and Figure 1),
the immune-free equilibrium P, is globally asymptotically stable if Ry < 1 < Ry
(Theorem 3.2 and Fig. 2), and the HAM /TSP equilibrium Pj is globally attractive
if 71 > 0,72 = 0 (Theorem 3.4 and Figure 3). Moreover, if 1 < R;, system (2) is
uniformly persistent with chronic infection and CTL response (Theorem 3.3). We
also show that if 71 = 0 and 79 > 0, P5 is asymptotically stable for small 75 (Theo-
rem 3.5 and Figure 4 (a)) and that an increase of 75 can destabilize P and lead to
a Hopf bifurcation (Theorem 3.6 and Figure 4 (b)). Theorems 3.1, 3.2 and 3.4 in
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ymax_ymm

FIGURE 7. The ultimate vertical amplitude of the solution to sys-
tem (2) according to increase of 71,79, here ¢t € [500, 5000].

this paper improve and extend the results of [6, Theorem 3.1]. Comparing (1) with
[6, Theorem 3.1], our results also suggest that introducing the intracellular delay m;
does not necessarily alter the stability of equilibria.

The more interesting results from this paper are the effects by delays 7, 5. First,
71 may stabilize P53 such that the increase of 7 from zero can reduce the oscillation
amplitudes of solutions, and a sufficiently large 7 may drive Ps into asymptotically
stable (Figures 5 and 7), suggesting that ignoring 71 may miss some stability region
of P5. Second, we show that as 72 increases from zero, P35 may lose its stability and a
Hopf bifurcation may appear. With further increases of 75 P3 becomes increasingly
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unstable by enlarging the amplitude of the oscillation interval (Figures 6 and 7),
implying that time delays in the CTL activation process may be responsible for the
oscillations of the proviral load and the CTL frequency. Moreover, if both delays
71 and 7y increase, the stability of P3 may generate rich dynamics in mixing the
“stabilizing” effects from 7 with those “destabilizing” influences from 72, suggesting
that introducing the two delays does not necessarily lead to increasingly unstable
behaviors (Figure 7).

For the case where both delays 71 and 7 exist, we remark that the stability
switching regions of the HTLV-I model and the stability of the bifurcated periodic
solutions are still analytically unclear. As is shown in [7], the stability crossing set
can be expressed by a few inequality constraints and the crossing curves may be
closed curves, open ended curves, or spiral-like curves oriented horizontally, verti-
cally, or diagonally. Identifying the local stability regions if both the intracellular
delay and the immune delay vary within their biologically reasonable ranges remains
a potential topic for future investigations.
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