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Abstract. In this paper, we include two time delays in a mathematical model
for the CD8+ cytotoxic T lymphocytes (CTLs) response to the Human T-cell

leukaemia virus type I (HTLV-I) infection, where one is the intracellular infec-

tion delay and the other is the immune delay to account for a series of immuno-
logical events leading to the CTL response. We show that the global dynamics

of the model system are determined by two threshold values R0, the corre-

sponding reproductive number of a viral infection, and R1, the corresponding
reproductive number of a CTL response, respectively. If R0 < 1, the infection-

free equilibrium is globally asymptotically stable, and the HTLV-I viruses are

cleared. If R1 < 1 < R0, the immune-free equilibrium is globally asymptoti-
cally stable, and the HTLV-I infection is chronic but with no persistent CTL

response. If 1 < R1, a unique HAM/TSP equilibrium exists, and the HTLV-I

infection becomes chronic with a persistent CTL response. Moreover, we show
that the immune delay can destabilize the HAM/TSP equilibrium, leading to

Hopf bifurcations. Our numerical simulations suggest that if 1 < R1, an in-

crease of the intracellular delay may stabilize the HAM/TSP equilibrium while
the immune delay can destabilize it. If both delays increase, the stability of

the HAM/TSP equilibrium may generate rich dynamics combining the “stabi-
lizing” effects from the intracellular delay with those “destabilizing” influences

from immune delay.

1. Introduction. HTLV-I is a human retrovirus that can cause a slowly progres-
sive neurologic disease, HTLV-I-associated myelopathy spastic paraparesis (HAM/
TSP) [4, 18, 25]. The number of HTLV-I-infected people is estimated between 15
to 25 million worldwide. Unlike HIV viruses, which break free from host cells and
infect other T cells, HTLV-I viruses are not very infectious and seldom found in
plasma [17]. Direct cell-to-cell contact is required to transmit the viruses among
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CD4+ T cells, while HTLV-I preferentially infects in vivo [2, 23, 22]. After an indi-
vidual is infected by HTLV-I viruses, the incubation period is from 15 to 30 years.
Most HTLV-I infected individuals are lifelong carriers, and about 0.25 percent to 3
percent of those develop into HAM/TSP patients [8, 28], in which at least 85 per-
cent of the patients will die in four years. On the other hand, CTL has a protective
part to the host by lowering the proviral load, and HAM/TSP patients’ peripheral
blood cells show very high CTL [1, 6]. The evidence implies that cytotoxicity of the
CTL is ultimately responsible for the demyelination of the central nervous system
resulting in HAM/TSP [5].

Mathematical models have been formulated to describe the in-vivo infection pro-
cess with the humoral immune response to HTLV-I infections [2, 6, 9, 11, 12, 16, 26,
25, 14] as well as to the human immunodeficiency virus (HIV) [13, 15, 19, 21, 24, 27].
In [6], Gómez-Acevedo et al consider the following mathematical model for the
HTLV-I infection of CD4+ T cells that incorporates the CD8+ cytotoxic T-cell
response:

dx

dt
= λ− µ1x(t)− βx(t)y(t),

dy

dt
= σβx(t)y(t)− µ2y(t)− γy(t)z(t),

dz

dt
= v

y(t)z(t)

z(t) +K
− µ3z(t),

(1)

where x(t), y(t) are the population sizes of the uninfected and infected CD4+ T-
cells, and z(t) the number of HTLV-I-specific CD8+ T cells at time t, respectively.
Parameter λ is a constant input rate of CD4+ T-cells, µ1, µ2, and µ3 the removal
rates of uninfected and infected CD4+ T cells, and HTLV-I-specific CD8+ T cells,
respectively, β the transmission coefficient, σ ∈ [0, 1] a fraction of cells newly in-
fected by contacts that survive the antibody immune response, γ the rate of CTL
mediated lysis. The anti-HTLV-I CTLs reduce the proviral load, but this reduction
implies less stimulation for the CTL proliferation. Thus it is assumed in [6] that the
CD8+ T-cell stimulation has a density-dependent form vy(t)z(t)/(z(t) + K). Two
threshold parameters R0 and R1, the basic reproduction numbers for viral per-
sistence and for CTL response, respectively are obtained to determine the global
dynamics of system (1) [6, Theorem 3.1]. If R0 < 1, the so-called infection-clearance
equilibrium is globally asymptotically stable, if R1 < 1 < R0, the the so-called car-
rier equilibrium with no persistent CTL response is globally asymptotically stable,
and if 1 < R1, the HAM/TSP equilibrium is globally asymptotically stable.

Time delays have also been introduced into HTLV-I mathematical models to
study the transmission dynamics [11, 12, 25, 14]. In [11, 12], Li and Shu formulate
HTLV-I virus infection models for the CD4+ T cells with delayed CTL response,
where the time delay is to account for the lag incurred by a sequence of events
such as antigenic activation, selection, and proliferation of the CTLs. It is shown
that the immune delay can destabilize the HAM/TSP equilibrium, leading to Hopf
bifurcations, stable periodic oscillations [12], or the coexistence of multiple stable
periodic solutions [11]. To characterize the time between the initial infected CD4+

T target cells entering a target cell and the subsequent infection, Sun and Wei [25],
and Muroya et al [14] incorporate the intracellular infection delay into the HTLV-
I infection models. It is concluded in [25, 14] that, different from the results in
[11, 12], the infection delay does not change the stability of the system.
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A time delay representing either the immune response delay or the intracellular
delay has been included in HTLV-I models, but to the best of our knowledge, there is
no model that has included both of the two delays together, which are biologically
reasonable during the HTLV-I infection. In this paper, using system (1) as our
baseline model, we incorporate the intracellular delay τ1 and the immune delay τ2
both into it and consider the following system:

dx

dt
= λ− µ1x(t)− βx(t)y(t),

dy

dt
= σβx(t− τ1)y(t− τ1)− µ2y(t)− γy(t)z(t),

dz

dt
= v

y(t− τ2)z(t− τ2)

z(t− τ2) +K
− µ3z(t).

(2)

This study seems to be the first with the model system including the both delays.
The main purpose of this study is to explore the global dynamics of system (2)

and investigate the impact of the intracellular delay τ1 and the immune delay τ2
on the dynamical behavior of the system. In general, including more than one time
delay increases the model complexity and bring challenges in mathematical analy-
sis. By developing different Lyapunov functionals, we establish conditions ensuring
global stability of the infection-free equilibrium, the immune-free equilibrium with
the chronic HTLV-I infection, and the HAM/TSP equilibrium. Using the uniform
persistence theory, we obtain criteria that determine if the HTLV-I infection be-
comes chronic with a persistent CTL response. We also investigate the impact of
the combined effects from the two delays together on the global dynamics of model
system (2) analytically as well as numerically.

The paper is organized as follows. In Section 2, the threshold parameters R0 and
R1 are derived and the existence conditions for all equilibria are established in terms
of the values of R0 and R1. In Section 3, main analytical results on the stability of
the equilibria, uniform persistence of the system, and the Hopf bifurcations due to
immune delay are obtained. Numerical simulations are presented in Section 4, and
brief discussions finally complete the paper in Section 5.

2. Preliminaries. To investigate the dynamics of system (2), we need to consider
a suitable phase space and a feasible region.

For τ1, τ2 ≥ 0, define the following Banach space C = C ([−τ, 0], R), τ =
max{τ1, τ2}, and we assume

x(t) = φ1(θ), y(t) = φ2(θ), z(t) = φ3(θ), for − τ ≤ θ ≤ 0.

In addition, throughout this paper, we set φ = (φ1, φ2, φ3) and φi ∈ C(i = 1, 2, 3)
for −τ ≤ θ ≤ 0, with norm ||φ|| = sup−τ≤θ≤0{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|} for φi ∈ C,
i = 1, 2, 3. The nonnegative cone of C is defined as C+ = C([−τ, 0], R3

+). Initial
conditions for system (2) are chosen at t = 0 as

φ = (φ1, φ2, φ3) ∈ C+, φi(0) > 0, i = 1, 2, 3. (3)

Lemma 2.1. Under initial conditions in (3), all solutions of system (2) are positive
and ultimately bounded in R× C × C.

Proof. First, we prove x(t) is positive for t ≥ 0.
Assume the contrary and let t1 > 0 be the first time reached by x such that

x(t) > 0, 0 ≤ t < t1 and x(t1) = 0. It then follows from the first equation in (2)
that x′(t1) = λ > 0, and hence x(t) < 0 for t ∈ (t1−ε, t1) where ε > 0 is sufficiently
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small. This contradicts x(t) > 0 for t ∈ [0, t1), and thus it follows that x(t) > 0 for
t > 0 so long as x(t) exists.

Second, it follows from the second equation in system (2), for τ1, τ2 > 0, that

y(t) = y(0)e−
∫ t
0
µ2+γz(τ)dτ +

∫ t

0

σβx(s− τ1)y(s− τ1)e
∫ s
t
µ2+γz(τ)dτds.

Suppose there exists t0 > 0, such that y(t0) = 0, and y(t) > 0 for 0 < t < t0.
Then

y(t0) = y(0)e−
∫ t0
0 µ2+γz(τ)dτ +

∫ t0

0

σβx(s− τ1)y(s− τ1)e
∫ s
t0
µ2+γz(τ)dτ

ds > 0,

a contraction. Thus y(t) is positive.
Similarly, if there exists t0 > 0, such that z(t0) = 0, and z(t) > 0 for 0 < t < t0,

it follows from the third equation in (2) that

z(t) = z(0)e−µ3t + v

∫ t

0

eµ3(s−t) y(s− τ2)z(s− τ2)

z(s− τ2) +K
ds,

and then it leads to a contradiction as before. Hence we have z(t) > 0, for all t > 0.
Next we prove that positive solutions of (2) are ultimately uniformly bounded

for t > 0. From the first equation in (2), it follows that x
′
(t) ≤ λ−µ1x(t), and thus

lim supt→∞ x(t) ≤ λ/µ1. Adding the first two equations in (2) together, we have

(x(t) + y(t+ τ1))
′

= λ− µ1x(t)− β(1− σ)x(t)y(t)− µ2y(t+ τ1)

− γy(t+ τ1)z(t+ τ1)

≤ λ− µ̄(x(t) + y(t+ τ1))

where µ̄ = min{µ1, µ2}. Thus lim supt→∞(x(t) + y(t+ τ1)) ≤ λ/µ̄. It then follows,
in addition from (2), that, for any ε > 0 and for a solution y(t) of system (2) with
y(t) < λ

µ̄+ε, there exists T = T (ε) > 0 such that for t > T , the following differential

inequality holds:

z(t+ τ2)
′
≤ vy(t)− µ3z(t+ τ2) ≤ v

(
λ

µ̄
+ ε

)
− µ3z(t+ τ2).

Let ε→ 0. Then lim supt→∞ z(t) ≤ vλ
µ3µ̄

. Hence, x(t), y(t) and z(t) are all ultimately

uniformly bounded in R× C × C.

As a consequence of the proof of Lemma 2.1, we know that the dynamics of
system (2) can be analyzed in the following feasible region:

F =

{
(x, y, z) ∈ R+ × C+ × C+, |x| ≤ λ

µ1
, ‖x+ y‖ ≤ λ

µ̄
, |z| ≤ vλ

µ3µ̄

}
.

Moreover, the region F is positively invariant and hence the model system is well
posed.

Lemma 2.2. Given system (2) with φi(0) ≥ 0, i = 1, 2, 3, we have all solutions
x(t) > 0, y(t) ≥ 0, z(t) ≥ 0, ∀t > 0.

Proof. By similar arguments as in the proof of Lemma 2.1, the positivity of x(t) for
all t > 0 follows directly.

Next, we show that y(t) and z(t) must be non-negative for all t > 0. Otherwise,
there must exist t0 > 0 such that min{y(t0), z(t0)} < 0.
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Let

ť0 = inf
t0
{t0 > 0|min{y(t0), z(t0)} < 0}.

Then we have ť0 > 0 and there exists a sufficiently small constant ε > 0, ε <
1
2 min{τ1, τ2}, such that min{y(ť0 + ε), z(ť0 + ε)} < 0. Hence we have the following
three cases:

(i) y(ť0 + ε) < 0.
(ii) z(ť0 + ε) < 0.
(iii) y(ť0 + ε) < 0 and z(ť0 + ε) < 0.
We first assume (i), and put ť0 + ε into (5). Then we have

y(ť0 + ε) = y(0)e−
∫ ť0+ε
0 µ2+γz(τ)dτ +

∫ ť0+ε

0

σβx(s− τ1)y(s− τ1)e
∫ s
ť0+ε

µ2+γz(τ)dτ
ds.

(4)
This contradicts y(ť0 + ε) ≥ 0 for t > 0. Similarly, we can prove (ii) and (iii).

System (1) has the infection-free equilibrium P1 =

(
λ

µ1
, 0, 0

)
. Using the next

generation matrix method [3], we have the transmission and transition matrices as

F =

(
0 σβ λ

µ1

0 0

)
, V =

(
0 µ2

µ1 β λ
µ1
.

)
Then it follows that

FV −1 =
1

µ1µ2

(
−σβλ 0

0 0

)
.

Then the reproductive number of a viral infection is defined as R0 := ρ(FV −1) =
σβλ
µ1µ2

.

There exists an equilibrium P2 =

(
µ2

σβ
,
σβλ− µ1µ2

µ2β
, 0

)
with no CTL response,

as R0 > 1, that we call the immune-free equilibrium. The corresponding transmis-
sion and transition matrices are

F =

0 0
vσβλ− vµ1µ2

Kµ2β
0 0 0
0 0 0

 , V =


0 0 µ3

−σ
2β2λ− σβµ1µ2

µ2β
0

γσβλ− γµ1µ2

µ2β

µ1 +
σβ2λ− βµ1µ2

µ2β

µ2

σ
0,


Hence it follows from

FV −1 =
1

µ1µ2


vσβλ− vµ1µ2

Kµ3µ2β
0 0

0 0 0
0 0 0


that if we define R1 :=

σβλv

µ2(µ1v + βµ3K)
, then P2 is locally asymptotically stable

if R1 < 1, and unstable if R1 > 1. We call R1 the basic reproductive number of a
CTL response.
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A chronic infection equilibrium P3 = (x∗, y∗, z∗) with CLT response (z∗ > 0) is
called a HAM/TSP equilibrium. The coordinates x∗, y∗, z∗ satisfy

λ− µ1x
∗ − βx∗y∗ = 0,

σβx∗y∗ − µ2y
∗ − γy∗z∗ = 0,

v
y∗z∗

z∗ +K
− µ3z

∗ = 0,

(5)

and P3 exists as R1 > 1.

3. Main results. In this section, we investigate the stability of the equilibria P1,
P2, P3, respectively. In order to avoid an excessive use of parentheses in some of
later calculations, we write x = x(t), y = y(t), z = z(t), and let g(x) := x− lnx−1,
such that g(x) ≥ 0 for x > 0, and g(x) = 0 if and only if x = 1.

3.1. Global stability of the infection-free equilibrium P1 as R0 < 1.

Theorem 3.1. For system (2), if R0 < 1, the infection-free equilibrium P1 is
globally asymptotically stable in F .

Proof. For τ1, τ2 > 0, the characteristic equation of system (2) in P1 = (x∗, 0, 0),

x∗ =
λ

µ1
is

G(s) = det
(
sE −A−A1e

−λτ1
)

= (s+ µ1)(s+ µ3)

(
s+ µ2 −

σβλ

µ1
e−λτ1

)
, (6)

where

A :=

−µ1 −βλ
µ1

0

0 −µ2 0
0 0 −µ3

 , A1 :=

0 0 0

0
σβλ

µ1
0

0 0 0

 .

Set G(s) = 0 in (6). We have

s1 = −µ1, s2 = −µ3,

and

s+ µ2 −
σβλ

µ1
e−λτ1 = 0. (7)

As in [21], if
σβλ

µ1
< µ2, all roots of equation (7) have negative real parts. Thus the

infection-free equilibrium P1 is locally asymptotically stable.
We define the following Lyapunov functional

V (φ) = U1(φ) + U2(φ) + U3(φ),

where

U1(φ) := x∗g

(
φ1(0)

x∗

)
, (8)

U2(φ) :=
1

σ

(
φ2(0) + σβ

∫ 0

−τ1
φ1(s)φ2(s)ds

)
, (9)

and

U3(φ) :=
Kγ

vσ

(
φ3(0) + v

∫ 0

−τ2

φ2(s)φ3(s)

φ3(s) +K
ds

)
. (10)
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Calculating the time derivatives of (8), (9), and (10) along solutions of system
(2), we have

dU1(φ)

dt
= x∗

(
1

x∗
− 1

x

)
(λ− µ1x− βxy)

= −µ1(x− x∗)2

x
− x− x∗

x
βxy,

(11)

dU2(φ)

dt
=

1

σ
(σβxy − µ2y − γyz), (12)

and
dU3(φ)

dt
=
Kγ

vσ

(
v

yz

z +K
− µ3z

)
. (13)

Combining (11), (12), and (13), we have

dV

dt

∣∣∣∣
(2)

= −µ1(x− x∗)2

x
+ βx∗y − µ2

σ
y − γ

σ
yz

(
1− K

z +K

)
− Kγµ3

vσ
z

= −µ1(x− x∗)2

x
+ βx∗y − µ2

σ
y − γyz2

σ(z +K)
− Kγµ3

vσ
z

= −µ1(x− x∗)2

x
+
µ2

σ
y(R0 − 1)− γyz2

σ(z +K)
− Kγµ3

vσ
z.

Therefore, it follows from R0 < 1 that dV
dt |(2) ≤ 0 for all x(t), y(t), z(t) > 0.

Set

A0 = {(x, y, z) ∈ F|V ′ = 0} .
Then V

′
= 0 if and only if

x = x∗, z = 0. (14)

Substituting (14) into the first equation in system (2) then yields y = 0. By the
LaSalle-Lyapunov theorem ([10], Theorem 3.4.7), the largest compact invariant set
of A0 is the singleton point P1. Thus we conclude that P1 is globally attractive in
F . Since it has been shown above that P1 is locally asymptotically stable, P1 is
globally asymptotically stable in F as R0 < 1.

3.2. Global stability of the immune-free equilibrium P2 as R0 > 1 > R1.

Theorem 3.2. For system (2), if R0 > 1 > R1, the immune-free equilibrium P2 is
globally asymptotically stable in F\{x-axis}.

Proof. For τ1, τ2 > 0, the characteristic equation of system (2) in P2 is

G(s) = det
(
sE −A(P1)−A1(P1)e−sτ1 −A2(P1)e−sτ2

)
, (15)

where

A(P1) :=


−µ1 −

σβλ− µ1µ2

µ2
−µ2

σ
0

0 −µ2 −γ σβλ− µ1µ2

µ2

0 0 −µ3

 ,

A1(P1) :=


0 0 0

(σβλ− µ1µ2)σ

µ2
µ2 0

0 0 0

 , A2(P1) :=


0 0 0
0 0 0

0 0
(σβλ− µ1µ2)v

βµ2K





438 XUEJUAN LU, LULU HUI, SHENGQIANG LIU AND JIA LI

Setting G(s) = 0 in (15), we have(
s+ µ3 − v

σβλ− µ1µ2

µ2βK
e−sτ2

)
×
(
s2 +

(
σβλ

µ2
− µ2e

−sτ1 + µ2

)
s+ σβλ− µ1µ2e

−sτ1
)

= 0.

It then follows that

s+ µ3 − v
σβλ− µ1µ2

µ2βK
e−sτ2 = 0. (16)

Hence, if R1 < 1, namely, v
σβλ− µ1µ2

µ2βK
< µ3, all the roots of equation (16) have

negative real parts.
We next set

F (s) = s2 +

(
σβλ

µ2
− µ2e

−sτ1 + µ2

)
s+ σβλ− µ1µ2e

−sτ1 , (17)

and we consider the following two cases:
(i) Suppose τ1 = 0. Then F (s) = 0 is equivalent to

s2 +
σβλ

µ2
s+ σβλ− µ1µ2 = 0. (18)

If R0 > 1, namely, σβλ− µ1µ2 > 0, then each root of (18) has only a negative real
part.

(ii) Suppose τ1 6= 0. It is obvious that s = 0 is not a root of (17) when R0 > 1.
Now, let s = iω, ω ≥ 0. Then (17) is equivalent to

F (s) = F (iω) = −ω2 +

(
σβλ

µ2
− µ2e

−iωτ1 + µ2

)
iω + σβλ− µ1µ2e

−iωτ1 = 0,

and it follows that

ω4 +
σ2β2λ2

µ2
2

ω2 + σ2β2λ2 − µ2
1µ

2
2 = 0. (19)

If R0 > 1, then σ2β2λ2 − µ2
1µ

2
2 > 0, and each root of (19) has only a negative real

part. Combined (i) with (ii), the roots of zeros of F (s) on τ1 ≥ 0 have negative real
parts. Thus, all the roots of G(s) = 0 have negative real parts, and P2 is locally
asymptotically stable as R1 < 1 < R0.

Write P2 = (x̄, ȳ, 0), with x̄ =
µ2

σβ
, ȳ =

σβλ− µ1µ2

µ2β
and consider the following

Lyapunov functional:

V (φ) = V1(φ) + V2(φ) + V3(φ),

where

V1(φ) := x̄g

(
φ1(0)

x̄

)
, (20)

V2(φ) :=
1

σ

(
ȳg

(
φ2(0)

ȳ

)
+ x̄ȳσβ

∫ 0

−τ1
g

(
φ1(s)φ2(s)

x̄ȳ

)
ds

)
, (21)

and

V3(φ) :=
Kγ

vσ

(
φ3(0) + v

∫ 0

−τ2

φ2(s)φ3(s)

φ3(s) +K

)
ds. (22)
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Then calculating the time derivatives of (20), (21), and (22) along solutions of
system (2) yields

dV1(φ)

dt
=
x− x̄
x

(
µ1(x̄− x) + βx̄ȳ − βxy

)
, (23)

dV2(φ)

dt
=

1

σ

y − ȳ
y

(
σβx(t− τ1)y(t− τ1)− µ2y − γyz

)
+x̄ȳβ

(
xy − x(t− τ1)y(t− τ1)

x̄ȳ
+ ln

x(t− τ1)y(t− τ1)

xy

)
,

(24)

and
dV3(φ)

dt
=
Kγ

vσ

(
−µ3z + v

yz

z +K

)
. (25)

Combining (23), (24), (25), we have

dV

dt

∣∣∣∣
(2)

=
dV1(φ)

dt
+
dV2(φ)

dt
+
dV3(φ)

dt

= −µ1
(x− x̄)2

x
− γyz2

σ(z +K)
+
γ

σ
z

(
σβλ− µ1µ2

µ2β
− Kµ3

v

)
+βx̄ȳ

(
2− x̄

x
− x(t− τ1)y(t− τ1)

x̄y
+ ln

x(t− τ1)y(t− τ1)

xy

)
= −µ1

(x− x̄)2

x
− βx̄ȳ

( x̄
x
− ln

x̄

x
− 1
)

−βx̄ȳ
(
x(t− τ1)y(t− τ1)

x̄y
− ln

x(t− τ1)y(t− τ1)

x̄y
− 1

)
− γyz2

σ(z +K)
+
γ

σ
z

(
σβλ− µ1µ2

µ2β
− Kµ3

v

)
= −µ1

(x− x̄)2

x
− βx̄ȳg

( x̄
x

)
− βx̄ȳg

(
x(t− τ1)y(t− τ1)

x̄y

)
− γyz2

σ(z +K)
+
γz

σ

vσβλ− µ2(µ1v + µ3βK)

vµ2β
.

Then, V
′

= 0 if and only if

x = x̄, z = 0. (26)

Substitute (26) into the first equation in system (2), we have y = ȳ. By the
LaSalle-Lyapunov theorem ([10],Theorem 3.4.7), the largest compact invariant set
of A0 is the singleton point P2. Thus, we conclude that P2 is globally attractive in
F\{x-axis}. Since we have shown above that P2 is locally asymptotically stable in
F\{x-axis} as R1 < 1 < R0, the proof is complete.

3.3. Uniform persistence when R1 > 1. As R1 > 1, system (2) has a unique
endemic HAM/TSP equilibrium P3 = (x∗, y∗, z∗). We further have the following
uniform persistence result.

Theorem 3.3. System (2) with τ1 ≥ 0, τ2 ≥ 0, and initial conditions given in (3)
is uniformly persistent if R1 > 1; that is, there exists a positive constant ε0 > 0
such that all solutions of (2) satisfy

lim inf
t→∞

(
x(t, φ), y(t, φ), z(t, φ)

)
≥ ε0.

Proof. It follows from Lemma 2.1 and the similar arguments in [19, Proposition 1]
that x(t) has positive ultimate lower boundary. Thus it suffices to prove both of
y(t) and z(t) have positive eventual lower boundaries.
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Define

X := {(φ1, φ2, φ3) ∈ R+ × C+ × C+},
and

X0 := {(φ1, φ2, φ3) ∈ X : φ2(0) > 0, φ3(0) > 0}, ∂X0 = X\X0.

Let Ψ(t) : X → X be the solution semiflow of system (2), that is, Ψ(φ) =
(xt(φ), yt(φ), zt(φ)). We proved earlier that the solution semiflow Ψ(φ) of (2) has
a global attractor F on X. Clearly, X0 is relatively closed in X. Moreover, by
Lemma 2.2, system (2) is positively invariant and point dissipative in R+

3 . Thus X0

is positively invariant for Ψ.
Define

Ω∂ := {φ ∈ X : Ψ(φ) ∈ ∂X0, ∀t ≥ 0}.
We now claim that

Ω∂ = {φ ∈ ∂X0 : y(t, φ) = 0 for ∀t ≥ 0, or z(t, φ) = 0 for ∀t ≥ 0}. (27)

Assume φ ∈ Ω∂ . We only need to show that either y(t, φ) = 0 for ∀t ≥ 0 or
z(t, φ) = 0 for all t ≥ 0. For the sake of contradiction, assume that there exist two
nonnegative constants t0 ≥ t1 such that y(t0, φ) > 0, z(t1, φ) > 0. Following the
definition of Ω∂ , one must have y(t1, φ) = z(t0, φ) = 0.

By the last two equations in (2) and Lemma 2.2, we have

dy(t, φ)

dt
≥ −(µ2 + γz(t, φ))y(t, φ), ∀t ≥ t0,

and
dz(t, φ)

dt
≥ −µ3z(t, φ),∀t ≥ t1.

Thus using the comparison principle, we have y(t, φ) > 0, for all t ≥ t0, and
z(t, φ) > 0, for all t ≥ t1, which contradicts y(t1, φ) = z(t0, φ) = 0. This proves
(27).

We now let

Θ0 :=
⋂
φ∈Z0

w(φ).

Here Z0 is the global attractor of Ψ(t) restricted to ∂X0. We claim that Θ0 =
{P1}

⋃
{P2}. In fact, Θ0 ⊆ Ω∂ = {(x(t, φ), y(t, φ), 0), (x(t, φ), 0, z(t, φ))}. If y(t, φ) =

z(t, φ) = 0, for all t ≥ 0, by (2), we obtain limt→∞ x(t) = λ/µ1. Thus P1 ∈ Θ0. For
other cases, using Theorem 3.2, we have limt→∞(x(t, φ), y(t, φ), 0) = P2 if y(t, φ) > 0
for some t ≥ 0; and we get limt→∞(x(t, φ), 0, z(t, φ)) = P1 given that z(t, φ) > 0 for
some t ≥ 0, proving Θ0 = {P1}

⋃
{P2}.

Since {P1}, {P2} are two isolated invariant sets of Ψ(t) in Ω∂ , using the similar
arguments for Theorem 3.2 and noting R0 > R1 > 1, we can prove that P2 is
asymptotically stable in Ω∂ as defined in (27). Hence Θ0 has an acyclic covering.

Next, we prove that W s(Pi) ∩ X0 = ∅, i = 1, 2. For i = 1, suppose it is
not true; that is, there exists a solution (x(t, φ), y(t, φ), z(t, φ)) ∈ X0, such that
limt→∞(x(t, φ), y(t, φ), z(t, φ)) = P1. Then for any sufficiently small ε > 0, there is
T1 = T1(ε) large enough, such that x(t) > λ

µ1
− ε,max{y(t), z(t)} < ε for all t ≥ T1,

and y, z → 0, as t→∞.
Let

U(t) :=

∫ t

t−τ1
σβx(ξ)y(ξ)dξ + y.

Then we have U(t) > 0 and limt→∞ U(t) = 0.
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However, by the assumption R0 > R1 > 1, we have the time derivative of U(t)
satisfy

dU

dt

∣∣∣∣
(2)

≥
(
σβ(

λ

µ1
− ε)− µ2 − γε

)
y > 0, ∀ t ≥ T1,

which is a contradictions to limt→∞ U(t) = 0. This proves the case i = 1. Similarly
we can prove the case i = 2. By [29, Theorem 1.3.2], we conclude that there exists
ε0 > 0 such that lim inft→∞(y(t, φ), z(t, φ)) ≥ ε0 for any φ ∈ X0. This shows the
uniform persistence of solutions of system (2). The proof is completed.

3.4. Special case with R1 > 1, τ1 > 0, and τ2 = 0.

Theorem 3.4. For system (2), if R1 > 1, the HAM/TSP equilibrium P3 is globally
attractive.

Proof. Consider the following Lyapunov functional

V (φ) = W1(φ) +W2(φ) +W3(φ),

where

W1(φ) := x∗g

(
φ1(0)

x∗

)
, (28)

W2(φ) :=
1

σ
y∗g

(
φ2(0)

y∗

)
+ βx∗y∗

∫ 0

−τ1
g

(
φ1(s)φ2(s)

x∗y∗

)
ds, (29)

and

W3(φ) :=
γ(z∗ +K)

vσ
z∗g

(
φ3(0)

z∗

)
, (30)

respectively.
The derivatives of (28), (29), and (30) along the solutions of system (2) are

dW1(φ)

dt
=
(

1− x

x∗

)
(µ1x

∗ − µ1x+ βx∗y∗ − βxy), (31)

dW2(φ)

dt
=

1

σ

(
1− y

y∗

)(
σβx(t− τ1)y(t− τ1)− µ2y − γyz

)
+βx∗y∗

(
xy − x(t− τ1)y(t− τ1)

x∗y∗

)
+ ln

x(t− τ1)y(t− τ1)

xy
,

(32)

and
dW3(φ)

dt
=
γ(z∗ +K)

vσ
z∗
(

1− z

z∗

)(
v

yz

z +K
− µ3z

)
, (33)

respectively.
Combining (31), (32), (33), we have

dV

dt

∣∣∣∣
(2)

=− µ1(x− x∗)2

x
βx∗y∗

(
g

(
x∗

x

)
+ g

(
x(t− τ1)y(t− τ1)

x∗y

))
− γy

σ(z +K)
(z − z∗)2.

It then follows that
dV

dt
≤ 0, and

dV

dt
= 0 if and only if

z = z∗, y = y∗, z = z∗.

Similarly as in the proof of Theorem 3.1, by LaSalle-Lyapunov
theorem ([10],Theorem 3.4.7), P3 is globally attractive in F if R1 > 1.
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3.5. Special case with R1 > 1, τ1 = 0, and τ2 > 0. For τ1 = 0, τ2 > 0, the
characteristic equation of system (2) in P3 = (x∗, y∗, z∗) is

G(s) = det
(
sE −A0 −A1e

−sτ2
)
, (34)

where

A0 :=

−µ1 − βy∗ −βx∗ 0
σβy∗ 0 −γy∗

0 0 −µ3

 , A1 :=


0 0 0
0 0 0

0
vz∗

z∗ +K

vKy∗

(z∗ +K)2

 .

It follows from G(s) = 0 that we have the following characteristic equation

s3 + a1s
2 + a3s+ a6 + (a2s

2 + a4s+ a5)e−sτ2 = 0, (35)

where

a1 := µ1 + µ3 + βy∗, a2 := − Kvy∗

(z∗ +K)2
,

a3 := σβ2x∗y∗ + µ3(µ1 + βy∗), a4 :=
vγy∗z∗

z∗ +K
− vKy∗(µ1 + βy∗)

(z∗ +K)2
,

a5 := (µ1 + βy∗)
vγy∗z∗

z∗ +K
− vKy∗

(z∗ +K)2
σβ2x∗y∗, a6 := µ3σβ

2x∗y∗.

Since a5 + a6 > 0, λ = 0 is not a root of (35). If iω, ω > 0, is a purely imaginary
root of (35), separating the real and imaginary parts leads to{

ω3 − a3ω = (a2ω
2 − a5) sinωτ2 + a4ω cosωτ2,

a1ω
2 − a6 = a4ω sinωτ2 − (a2ω

2 − a5) cosωτ2.
(36)

Squaring the both sides of the two equations in (36) and adding them up gives

ω6 + (a2
1 − 2a3 − a2

2)ω4 + (a2
3 − 2a1a6 + 2a2a5 − a2

4)ω2 + a2
6 − a2

5 = 0. (37)

Write z := ω2, a := a2
1 − 2a3 − a2

2, b := a2
3 − 2a1a6 + 2a2a5 − a2

4, and c := a2
6 − a2

5.
Then equation (37) becomes

h(z) := z3 + az2 + bz + c. (38)

By the Routh-Hurwitz criterion, we know that if

a1 + a2 > 0, (a1 + a2)(a3 + a4)− (a5 + a6) > 0, a5 + a6 > 0, (39)

equation (35) has no positive real roots. Accordingly, we have the following result.

Theorem 3.5. Suppose conditions in (39) hold and a > 0, b > 0 , c ≥ 0. Then the
HAM/TSP equilibrium P3 of system (2) is asymptotically stable.

Proof. For h defined in (38), we have

dh(z)

dz
= 3z2 + 2az + b, (40)

and the zeros of (40) are

z1,2 =
−a±

√
a2 − 3b

3
. (41)

If b > 0, then a2−3b < a2, that is
√
a2 − 3b < a for a > 0. Hence, neither z1 nor z2

is positive. Thus
dh(z)

dz
= 0 has no positive root. Since h(0) = c ≥ 0, it follows that

h(z) = 0 has no positive roots. So, the HAM/TSP equilibrium P3 is asymptotically
stable.
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Theorem 3.6. Suppose that conditions in (39) are satisfied and that

(i) either c < 0,
(ii) or c ≥ 0, b < 0 , and H ′(ω2

0) 6= 0,

where ω0 satisfies G(iω0) = 0 with G given in (34). Then the HAM/TSP equilibrium
P3 of model system (2) is asymptotically stable is τ2 < τ20, and is unstable if
τ2 > τ20, where

τ20 =
1

ω0
cos−1 a4ω0(ω3

0 − a3ω0)− (a1ω
2
0 − a6)(a2ω

2
0 − a5)

(a4ω0)2 + (a2ω2
0 − a5)2

.

As τ2 = τ20, a Hopf bifurcation occurs; that is, a family of periodic solutions are
bifurcated from P3 as τ2 passes through the critical value τ20.

Proof. If c < 0, then it follows from (38) that h(0) < 0 and limz→∞ h(z) = ∞.

Thus, equation (37) has at least one positive root. If b < 0, then
√
a2 − 3b > a,

and function h(z) in (38) has a unique positive zero z1 =
−a+

√
a2 − 3b

3
> 0 as in

(41). As a consequence, equation (37) has a unique positive root ω0. This implies
that the characteristic equation (35) has a pair of purely imaginary roots.

Let s(τ2) = η(τ2)+ iω(τ2) be the eigenvalue of equation (35) such that η(τ20) = 0
and ω(τ20) = ω0. From Theorem 3.5 it follows that if b < 0, there exists ω0 > 0,
such that G(iω) = 0. Then by the first equation of (36), we have

cos (ω0τ2j) =
a4ω0(ω3

0 − a3ω0)− (a1ω
2
0 − a6)(a2ω

2
0 − a5)

(a4ω0)2 + (a2ω2
0 − a5)2

,

and then

τ2j =
1

ω0
cos−1 a4ω0(ω3

0 − a3ω0)− (a1ω
2
0 − a6)(a2ω

2
0 − a5)

(a4ω0)2 + (a2ω2
0 − a5)2

+
2πj

ω0
, j = 0, 1, · · · .

We can also verify the following transversality condition ([12])(
d(Res(τ2))

dτ2

∣∣∣∣
τ2=τ20

)−1

=Re

(
(3s2 + 2a1s+ a3)esτ2

s(a2s2 + a4s+ a5)

) ∣∣∣∣
τ2=τ20

+Re

(
2a2s+ a4

s(a2s2 + a4s+ a5)

) ∣∣∣∣
τ2=τ20

=
H ′(ω2

0)

a2
4ω

2
0 + (a5 − a2ω2

0)2
6= 0,

such that if τ2 = τ20, a Hopf bifurcation occurs; that is, a family of periodic solutions
appear as τ2 passes through the critical value τ20.

4. Numerical simulations. To verify our analytic results, we provide numerical
examples in this section.

We choose a set of parameters from Tables 1-3 corresponding to the conditions
in Theorem 3.1, Theorem 3.2, and Theorem 3.4, respectively. The corresponding
numerical simulations are shown in Figures 1-3.

The time scale is based on days, a production rate of CD4+ T cells is within
the range of (20− 120) cells/mm/day3 [6, 12, 15], the removal rates for uninfected
and infected CD4+ T cells are selected in the range of (0.01− 0.05) day−1 [15], the
death rate for HTLV-I-specific CD8+ cells is selected in the range of (0.01 − 0.4)
day−1 [6, 12], and β is chosen in the range of 10−3mm3/cell/day [20]. The range
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for σ is chosen as (0.01− 0.05) [6], for v as (0.001− 0.03) [6], for γ as (0.002− 0.02)
[6], respectively. We let K be in the range of (1− 20) [6, 12].

Figure 4 describes the phenomenon stated in Theorem 3.6, where the set of
parameters are selected from Table 4 so that we have 1 < R1 = 8 < R0 ≈ 10.667,
ω0 ≈ 0.086, and τ20 ≈ 9.577. Correspondingly, by Theorem 3.6, the HAM/TSP
equilibrium P3 is locally asymptotically stable as τ2 < τ20, and a Hopf bifurcation
occurs as τ2 = τ20 such that periodic solutions exist for τ2 > τ20.

Figure 5 shows the solutions of model system (2) corresponding to the increase
of τ1 from 0 to 20, while τ2 = 15. For τ1 < 8 approximately, the solutions are all
oscillatory. As τ1 increases from 0 to 8, the vertical amplitudes of x(t), y(t), and
z(t) become smaller and smaller, and the HAM/TSP equilibrium P3 changes from
unstable for τ1 < 8 to stable for τ1 > 8.

On the other hand, it shows, in Figure 6, the stability change for the HAM/TSP
equilibrium P3 as τ2 increases from 0 to 20 while τ1 = 1. For τ2 < 7.5 approximately,
P3 is asymptotically stable. As τ2 increases in the interval (7.5, 20), the HAM/TSP
equilibrium P3 is unstable, and the vertical amplitudes of x(t), y(t), z(t) become
larger and larger.

We then show, in Figure 7, the stability change of the HAM/TSP equilibrium
P3 as τ1 and τ2 simultaneously increase from 0 to 15. It seems clear that P3

is stable as (τ1, τ2) ∈ (10, 15) × (1, 7). For (τ1, τ2) ∈ (0, 10) × (7, 15) and τ1 >
5
4τ2 −

35
4 , the vertical amplitude of each component for the differences between the

solutions and P3 is sufficiently small, suggesting that P3 is asymptotically stable.
For τ1 ∈ (0, 10), τ2 ∈ (7, 15) and τ1 <

5
4τ2 −

35
4 approximately, on the other hand,

those vertical amplitudes become larger than zero, suggesting that P3 is unstable.
Furthermore, those vertical amplitudes become larger and larger as τ2 increases from
7 to 15 while τ1 gradually decreases from 10 to 0, suggesting that the HAM/TSP
equilibrium P3 becomes increasingly unstable with those parameter values.

Table 1.

parameter λ µ1 σ β µ2 γ v K µ3 τ1 τ2

value 20 0.05 0.01 0.001 0.05 0.02 0.03 1 0.01 5 5

Table 2.

parameter λ µ1 σ β µ2 γ v K µ3 τ1 τ2

value 20 0.015 0.05 0.001 0.01 0.02 0.001 1 0.4 5 5

Table 3.

parameter λ µ1 σ β µ2 γ v K µ3 τ1 τ2

value 20 0.01 0.02 0.001 0.005 0.02 0.03 1 0.01 10 0
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Table 4.

parameter λ µ1 σ β µ2 γ v K µ3 τ1

value 160 0.01 0.02 0.001 0.03 0.02 0.03 1 0.1 0
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Figure 1. The above three graphs are about x, y, z when R0 =
0.08 ≤ 1 .
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Figure 2. The above three graphs are about x, y, z when R1 ≈
0.24< 1 < R0 ≈ 6.67.
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Figure 3. The above three graphs are about x, y, z when R1 ≈
7.74 > 1 .

5. Discussion. In this paper, we include the intracellular delay and the immune
delay in an HTLV-I infection model and investigate their impact on the transmis-
sion dynamics. We derive formulas for the basic reproductive numbers of a viral
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Figure 4. In(a), τ2 = 9.4 < τ20 = 9.5767; In(b), τ2 = 9.8 > τ20 = 9.5767.
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Figure 5. The ultimate oscillation interval of the solution to sys-
tem (2) when τ1 increases from 0 to 20, here τ2 = 15, t ∈ [500, 5000].
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Figure 6. The ultimate oscillation interval of the solution to sys-
tem (2) as τ2 increases from 0 to 20, here τ1 = 1, t ∈ [500, 5000].

infection, R0, and of a CTL response, R1, and show that the infection-free equilib-
rium P1 is globally asymptotically stable if R0 < 1 (Theorem 3.1 and Figure 1),
the immune-free equilibrium P2 is globally asymptotically stable if R1 < 1 < R0

(Theorem 3.2 and Fig. 2), and the HAM/TSP equilibrium P3 is globally attractive
if τ1 > 0, τ2 = 0 (Theorem 3.4 and Figure 3). Moreover, if 1 < R1, system (2) is
uniformly persistent with chronic infection and CTL response (Theorem 3.3). We
also show that if τ1 = 0 and τ2 > 0, P3 is asymptotically stable for small τ2 (Theo-
rem 3.5 and Figure 4 (a)) and that an increase of τ2 can destabilize P3 and lead to
a Hopf bifurcation (Theorem 3.6 and Figure 4 (b)). Theorems 3.1, 3.2 and 3.4 in
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Figure 7. The ultimate vertical amplitude of the solution to sys-
tem (2) according to increase of τ1, τ2, here t ∈ [500, 5000].

this paper improve and extend the results of [6, Theorem 3.1]. Comparing (1) with
[6, Theorem 3.1], our results also suggest that introducing the intracellular delay τ1
does not necessarily alter the stability of equilibria.

The more interesting results from this paper are the effects by delays τ1, τ2. First,
τ1 may stabilize P3 such that the increase of τ1 from zero can reduce the oscillation
amplitudes of solutions, and a sufficiently large τ1 may drive P3 into asymptotically
stable (Figures 5 and 7), suggesting that ignoring τ1 may miss some stability region
of P3. Second, we show that as τ2 increases from zero, P3 may lose its stability and a
Hopf bifurcation may appear. With further increases of τ2 P3 becomes increasingly
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unstable by enlarging the amplitude of the oscillation interval (Figures 6 and 7),
implying that time delays in the CTL activation process may be responsible for the
oscillations of the proviral load and the CTL frequency. Moreover, if both delays
τ1 and τ2 increase, the stability of P3 may generate rich dynamics in mixing the
“stabilizing” effects from τ1 with those “destabilizing” influences from τ2, suggesting
that introducing the two delays does not necessarily lead to increasingly unstable
behaviors (Figure 7).

For the case where both delays τ1 and τ2 exist, we remark that the stability
switching regions of the HTLV-I model and the stability of the bifurcated periodic
solutions are still analytically unclear. As is shown in [7], the stability crossing set
can be expressed by a few inequality constraints and the crossing curves may be
closed curves, open ended curves, or spiral-like curves oriented horizontally, verti-
cally, or diagonally. Identifying the local stability regions if both the intracellular
delay and the immune delay vary within their biologically reasonable ranges remains
a potential topic for future investigations.
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