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Abstract. We propose and study a model for sexually transmitted infections
on uncorrelated networks, where both differential susceptibility and infectivity
are considered. We first establish the spreading threshold, which exists even
in the infinite networks. Moreover, it is possible to have backward bifurcation.
Then for bounded hard-cutoff networks, the stability of the disease-free equi-
librium and the permanence of infection are analyzed. Finally, the effects of
two immunization strategies are compared. It turns out that, generally, the
targeted immunization is better than the proportional immunization.

1. Introduction. The term STI (sexually transmitted infection) is now commonly
used in place of STD (sexually transmitted disease) as it is more encompassing. STIs
are infections that are spread primarily through person-to-person sexual contacts.
Despite concerted efforts to control STIs worldwide, they still remain a major pub-
lic health problem in all population groups and social strata. Over the past two
decades, agents such as Chlamydia trachomatis and hepatitis B have been newly
recognized as important sexually transmitted pathogens, whereas others such as the
genital herpesvirus and Neisseria gonorrhoeae have increased in prevalence.

In order to better understand the epidemiology of STIs, researchers have devel-
oped a number of deterministic models. For example, models on complex networks
have been extensively studied in recent years (see the review paper by Dorogovtsev
et al. [4]). In network models, the population is represented as a graph, where
individuals are nodes and partnerships are the edges connecting the nodes. These
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models can describe the fact that different individuals have different sexual behav-
ior.

For simplicity, the networks involved in most study are uncorrelated. Let P (k)
be the probability of a randomly chosen node having a degree k. A network is
uncorrelated if the conditional probability for a node with degree k to connect a
node with degree h, P (h|k), satisfies P (h|k) = hP (h)/〈k〉, where 〈k〉 =

∑

k kP (k)
is the average number of edges that a node has or is the first moment of degree k.
It is always assumed that 〈k〉 <∞.

Moreover, the network of sexual partners in humans is claimed to be a scale-free
network. In a scale-free network, P (k) follows a power-law distribution, P (k) ∼
k−2−γ , with 0 < γ ≤ 1. Data from national sex surveys [12, 22] provide quantitative
information on the number of sexual partners, that is, the degree k, of an individual.
The respondents are asked to provide information on sexual attitudes such as the
number of sex partners they have had in the last 12 months or in their entire
life. It turns out that the number of heterosexual partners reported from different
populations is well described by power-law scale-free distributions [12, 17]. As a
result, a lot of attention has been paid to epidemic models on uncorrelated scale-
free networks (see, for example, [5, 13, 18, 21, 27, 28, 29, 30] and the references
therein).

As we know, generic variation of susceptible individuals may lead to their differ-
entiation of susceptibility on infection [23]. The efficacy of available vaccinations
for infectious diseases is not perfect. Vaccinated individuals may still contract the
disease and the susceptibility varies from individuals to individuals. Moreover, ex-
isting studies support that there is variability also in the infectivity among infected
individuals (see, for example, [1, 3, 8] and the references therein). Though much
has been done to describe such phenomena with multigroup SIR models (to name
a few, see [3, 7, 8, 9, 14]), little has been done in the context of complex networks.

Only recently, Lou and Ruggeri [13] studied the dynamics of STIs with differential
infectivity by a multiple SIRS model on scale-free networks. They showed that, for
an infinite scale-free network, the epidemic processes do not possess an epidemic
threshold like the results in SIS and SIR models [16, 18]. A threshold phenomenon
means that there is a threshold such that above it there is an epidemic outbreak
while below it there is not [15, pp. 321]. In [16, 18], only the existence of equilibria
is studied. However, realistic systems are just made up by a finite number of
individuals. When a bounded hard-cutoff network is considered, the models can
be regarded as multigroup models [10, 24]. Consequently, Lou and Ruggeri also
discussed the stability of equilibria and the permanence of infection on a bounded
hard-cutoff scale-free network, which does not possess any node with degree larger
than kc [18].

The purpose of this paper is to further study the spreading of STIs on uncor-
related networks. We propose an SIRS model with differential susceptibility and
infectivity on uncorrelated networks. Roughly speaking, we shall divide the individ-
uals into individuals with lower susceptibility, higher susceptibility, lower infectivity,
higher infectivity, and recovered. Thus we shall get an S1S2I1I2RS model for STIs.

The remaining of this paper is organized as follows. We first propose the model
in Section 2. Section 3 is devoted to the existence of equilibria, followed by the
stability of the disease-free equilibrium and the permanence of infection in the
context of bounded hard-cutoff networks. Since a finite network has the effect
of restoring a boundary in the connectivity fluctuations, in this way it produces
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an effective non-zero threshold [13]. Then in Section 4, we discuss and compare
the effect of two immunization strategies. Numerical simulations are provided to
support the obtained results in Section 5, where the sensitivity analysis of the basic
reproduction number on model parameters is also carried out. The paper concludes
with a brief discussion.

We should mention that the presentation of this paper is parallel to that of Lou
and Ruggeri [13]. However, in [13], only scale-free networks are considered and the
infectivity of a node is proportional to its degree. As we will see, for the general case,
some different results can be obtained. Such results include the threshold dynamics
even in the infinite uncorrelated networks and back forward bifurcation. Moreover,
some approaches like those for the permanence of infection are quite different from
those of Lou and Ruggeri [13]

2. The model. The purpose of this section is to describe our model on STIs with
differential susceptibility and infectivity on uncorrelated networks.

We consider a population with two types of susceptible individuals (one with
higher susceptibility while the other with lower susceptibility) and two types of
infected individuals (one with smaller infection rate β1 while the other with larger
infection rate β2). Let S1k, S2k, I1k, I2k, and Rk represent the relative densities of
nodes of degree k with higher susceptibility, lower susceptibility, smaller infectivity,
higher infectivity, and recovered, respectively. We then have the normalization
condition,

S1k + S2k + I1k + I2k +Rk = 1.

The mean-field theory can be used to derive the following deterministic model


























dS1k(t)
dt

= qδRk(t)− kS1k(t)Θ(t)− ξS1k(t),
dS2k(t)
dt

= (1− q)δRk(t) + ξS1k(t)− kεS2k(t)Θ(t),
dI1k(t)
dt

= pk[S1k(t) + εS2k(t)]Θ(t)− ηI1k(t),
dI2k(t)
dt

= (1− p)k[S1k(t) + εS2k(t)]Θ(t)− ηI2k(t),
dRk(t)
dt

= η[I1k(t) + I2k(t)]− δRk,

(1)

where

Θ(t) =
1

〈k〉

∞
∑

k=1

ψ(k)P (k)[β1I1k(t) + β2I2k(t)]. (2)

System (1), combined with (2) and the initial conditions S1k(0) = S0
1k, S2k(0) = S0

2k,
I1k(0) = I01k, I2k(0) = I02k, and Rk(0) = 1−S0

1k−S
0
2k−I

0
1k−I

0
2k, completely defines

the S1S2I1I2RS model on an uncorrelated network with degree distribution P (k).
We only consider the situation that k ≥ 1 since the probability that a node of
connectivity k is connected to an isolated node is zero.

The meanings for the parameters and terms of (1) are as follows.

1. The parameter δ represents the rate of immunization-lost for recovered indi-
viduals. Recovered individuals become susceptible after time span 1/δ. For
those recovered individuals who lose immunization, a portion q of them enters
S1k and the other portion enters S2k.

2. The severeness of the infection is represented by Θ(t). Here the function ψ(k)
in Θ(t) denotes the infectivity of a node with degree k. Two commonly used
forms are ψ(k) = αk [18] and ψ(k) = A [26]. Parameters β1 and β2 are the
STI transmission rates for groups I1k and I2k, respectively. The parameter ε
represents the chance of S2k being infected compared with S1k.
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3. The parameter ξ represents the transfer rate from the group of higher sus-
ceptibility to the group of lower susceptibility. This is possible, for example,
individuals without self-protection awareness may have strong self-protection
awareness due to the information they get about the spreading of STIs.

4. The parameter p is the portion of the individuals, who lose susceptibility
because of infection, enters I1k.

5. The parameter η is the recovery rate of infected individuals, i.e., infected
individuals recover from STIs after time span 1/η.

All the parameters in (1) are non-negative. According to their biological mean-
ings, we have β2 > β1 > 0, δ > 0, ξ > 0, η > 0, p ∈ (0, 1), q ∈ [0, 1/2], and ε ∈ (0, 1).
If p = 1 is allowed then eventually there is only the infected group I1k while if p = 0
is allowed then eventually there is only the infected group I2k. Moreover, if ε = 1
is allowed then there is no susceptibility difference among susceptible individuals
and (1) reduces to the model studied by Lou and Ruggeri [13].

3. Some results.

3.1. The threshold R0. In this subsection, we discuss the existence of equilibria
of (1).

Theorem 3.1. (i) System (1) always has a disease-free equilibrium E0 = (0, 1, 0,
0, 0).

(ii) Suppose that (δ + η)ξε ≥ qδη(1 − ε). Then (1) has an endemic equilibrium

if and only if R0 > 1 and in this case there is only one endemic equilibrium,

where

R0 =
ε[pβ1 + (1− p)β2]

η

〈kψ(k)〉

〈k〉
. (3)

(iii) Suppose that (δ+η)ξε < qδη(1−ε). Then (1) has a unique endemic equilibrium

if R0 ≥ 1.

Proof. Statement (i) is obvious.
Now, assume that Ek = (S1k, S2k, I1k, I2k, Rk) is an endemic equilibrium of (1),

that is, there exists a k0 ≥ 1 such that at least one of I1k0 and I2k0 is not zero.
Setting the right hand sides of the equations in (1) to be zero yields

qδRk − kS1kΘ− ξS1k = 0, (4)

(1− q)δRk + ξS1k − kεS2kΘ = 0, (5)

pk[S1k + εS2k]Θ− ηI1k = 0, (6)

(1− p)k[S1k + εS2k]Θ− ηI2k = 0, (7)

η(I1k + I2k)− δRk = 0, (8)

where

Θ =
1

〈k〉

∞
∑

k=1

ψ(k)P (k)[β1I1k + β2I2k]. (9)

It follows that Θ 6= 0 otherwise we can easily obtain that I1k = I2k = Rk = S1k = 0
and this is a contradiction to the assumption that the equilibrium is endemic. It is
easy to see from (6) and (7) that

I1k =
p

1− p
I2k. (10)
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Substituting this into (8) gives us

Rk =
η(I1k + I2k)

δ
=

η

δ(1 − p)
I2k. (11)

This, combined with (4), produces

S1k =
qδRk
ξ + kΘ

=
qη

(1− p)(ξ + kΘ)
I2k. (12)

Adding (4) and (5) gives us δRk − kS1kΘ− kεS2kΘ = 0. This, combined with (11)
and (12), yields

S2k =
δRk − kS1kΘ

kεΘ
=

η(ξ + kΘ− kqΘ)

(1− p)kεΘ(ξ + kΘ)
I2k. (13)

Recall that 1 = S1k+S2k+I1k+I2k+Rk. Substituting (10)–(13) into this identity,
we obtain

I2k =
δ(1− p)kεΘ(ξ + kΘ)

(δ + η)ε(kΘ)2 + [δη + (δ + η)ξε− qδη(1 − ε)](kΘ) + δηξ
. (14)

Substituting (10) and (14) into (9) gives us

Θ =
δεΘ[pβ1 + (1 − p)β2]

〈k〉

∞
∑

k=1

kψ(k)P (k)∆(k,Θ),

where ∆(k,Θ) = ξ+kΘ
(δ+η)ε(kΘ)2+[δη+(δ+η)ξε−qδη(1−ε)](kΘ)+δηξ . Since Θ 6= 0, it follows

that Θ satisfies

g(Θ) := 1−
δε[pβ1 + (1− p)β2]

〈k〉

∞
∑

k=1

kψ(k)P (k)∆(k,Θ) = 0. (15)

Note that

∂∆(k,Θ)

∂Θ
= −

k[(δ + η)ε(kΘ)2 + 2(δ + η)ξεkΘ+ ξ[(δ + η)ξε− qηδ(1− ε)]

{(δ + η)ε(kΘ)2 + [δη + (δ + η)ξε− qδη(1− ε)](kΘ) + δηξ}2
.

We first prove (ii). It follows from (δ + η)ξε ≥ qδη(1 − ε) that ∂∆(k,Θ)
∂Θ < 0 for

all k ≥ 1 and Θ > 0. Then

dg(Θ)

dΘ
> 0 for Θ > 0.

Note g(0) = 1 − R0 and limΘ→∞ g(Θ) = 1. Equation (15) has a positive solution
if and only if R0 > 1 and in this case the solution is unique, which will produce a
unique endemic equilibrium of (1).

We now come to prove (iii). We rewrite ∂∆(k,Θ)
∂Θ as

∂∆(k,Θ)
∂Θ = −k − k{[(δ+η)ξε+qδη(1−ε)−δη]kΘ+ξ[(δ+η)ξε−qδη(1−ε)−δη]}

{(δ+η)ε(kΘ)2+[δη+(δ+η)ξε−qδη(1−ε)](kΘ)+δηξ}2 .

Notice that

(δ + η)ξε− qδη(1 − ε)− δη < (δ + η)ξε+ qδη(1− ε)− δη

< 2qδη(1− ε)− δη

≤ δη(1 − ε)− δη (as q ≤ 1/2)

= −δηε < 0
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and

[(δ + η)ξε+ qδη(1− ε)− δη]δηξ

−2ξ[(δ + η)ξε− qδη(1 − ε)− δη][δη + (δ + η)ξε− qδη(1− ε)]

> [(δ + η)ξε+ qδη(1− ε)− δη]δηξ

−ξ[(δ + η)ξε− qδη(1 − ε)− δη][δη + (δ + η)ξε− qδη(1 − ε)]

= ξ[q(δη)2(1 − ε)− q2(δη)2(1 − ε)2 + 2(δ + η)qδηξε(1 − ε)

+(δ + η)δηξε − (δ + η)2(ξε)2]

> ξ[q(δη)2(1 − ε)− q2(δη)2(1 − ε)2 + 2(δ + η)2(ξε)2

+(δ + η)δηξε − (δ + η)2(ξε)2] (as (δ + η)ξε < qδη(1− ε))

> 0.

We can easily check that ∂2∆(k,Θ)
∂Θ2 < 0 for all k ≥ 1 and Θ > 0. It follows that

d2g(Θ)
dΘ2 > 0 for all k ≥ 1 and Θ > 0. Recall that g(0) = 1 − R0, limΘ→∞ g(Θ) = 1,

and dg(0)
dΘ < 0. Therefore, if R0 ≥ 1 then (15) has a unique positive solution. This

finishes the proof.

Let us end this subsection with some remarks.

Remark 1. (i) In Theorem 3.1, we derived the reproduction number R0 for
general complex networks and general infectivity functions. From the expres-
sion of R0 in (3), it is possible to have epidemic threshold in some networks.
For example if ψ(k) = A is a constant, then we have an epidemic thresh-

old R0 = Aε[pβ1+(1−p)β2]
η

. However, in a scale-free network with ψ(k) = αk,

R0 = ∞ and hence the epidemic processes of our model do not possess an
epidemic threshold as in the model of Lou and Ruggeri [13].

(ii) The condition (δ + η)ξε ≥ qδη(1− ε) is not very restrictive. For example if q
is very small, that is, most of the recovered with immunization loss enter the
class of susceptible with lower susceptibility, then this condition may easily
hold.

(iii) Suppose that there is an epidemic threshold. When (δ + η)ξε < qδη(1 − ε)
and R0 < 1, system (1) can have at most two endemic equilibria since g(Θ)
is convex. As shown below, each situation can occur. For this purpose, let us
fix all parameters except η. For convenience, we denote g(Θ) as g(Θ, η). If

η = η0 := ε[pβ1+(1−p)β2]〈kψ(k)〉
〈k〉 then R0 = 1. From the proof of Theorem 3.1 we

know that there exists Θ0 > 0 such that g(Θ0, η0) = minΘ∈[0,∞) g(Θ, η0) < 0.
By the continuity of g(Θ, η) in (Θ, η), there exists a ζ ∈ (0, η0) such that
g(Θ0, η) < g(Θ0, η0)/2 < 0 if η ∈ (η0 − ζ, η0 + ζ). On the other hand, note
that

∆(k,Θ) =
ξ

(δ + η)ε(kΘ)2 + [δη + (δ + η)ξε− qδη(1 − ε)](kΘ) + δηξ

+
kΘ

(δ + η)ε(kΘ)2 + [δη + (δ + η)ξε− qδη(1− ε)](kΘ) + δηξ

≤
ξ

δηξ
+

kΘ

[δη + (δ + η)ξε− qδη(1 − ε)](kΘ)

<
1

δη
+

1

(1− q)δη
=

2− q

(1− q)δη
.
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It follows that g(Θ, η) > 1− 2−q
1−qR0. This implies that g(Θ, η) > 0 if R0 <

1−q
2−q

or equivalently if η > η2 := ε(2−q)[pβ1+(1−p)β2]〈kψ(k)〉
(1−q)〈k〉 (> η0). Notice that

g(Θ, η) is increasing in η and convex in Θ. From the above discussion, we can
easily see that there exists an η1 ∈ (η0, η2) such that

min
Θ∈[0,∞)

g(Θ, η)







> 0, if η > η1,
= 0, if η = η1,
< 0, if η ∈ (η0, η1).

Define R1 = ε[pβ1+(1−p)β2]〈kψ(k)〉
η1〈k〉

. Then we have a backward bifurcation.

Precisely, suppose that (δ+η)ξε < qδη(1−ε). Then there exists an R1 ∈ (0, 1)
such that

(a) System (1) always has a disease-free equilibrium.

(b) If R0 ≥ 1 then (1) has a unique endemic equilibrium.

(c) If R0 < R1 then (1) has no endemic equilibrium; if R0 = R1 it has a

unique equilibrium; if R1 < R0 < 1 then it has two endemic equilibria.

We mention that with a slight modification similar result of backward bi-
furcation can be shown if we fix all parameters except one. We conjecture
that this is true in the general case. However, it is not easy to prove this so
far.

3.2. Stability of the disease-free equilibrium and permanence of STIs on

a bounded hard-cutoff network. Real systems are actually made up by a finite
number of individuals. This finite population introduces a maximum connectivity
kc. Consequently, we restrict our attention to a bounded hard-cutoff network [19].
In this case, the involved summation is from 1 to kc and we also know that there is
a threshold defined by (3).

Theorem 3.2. (i) The disease-free equilibrium E0 is locally asymptotically stable

when R0 < 1 and unstable when R0 > 1.
(ii) Suppose R0 > 1. Then (1) is permanent of infection, that is, there exists a

γ > 0 such that

lim inf
t→∞

Iij(t) > γ, i = 1, 2, j = 1, 2, . . . , kc,

for any solution of (1) with S1k(0) > 0, S2k(0) > 0, at least I1k(0) > 0 or

I2k(0) > 0, and Rk(0) ≥ 0.

Proof. Since S1k + S2k + I1k + I2k +Rk = 1, we only need to study the stability of
the trivial equilibrium of


















dS1k(t)
dt

= qδRk(t)− kS1k(t)Θ(t)− ξS1k(t),
dI1k(t)

dt
= pk[S1k(t) + ε(1− S1k(t)− I1k(t)− I2k(t)−Rk(t))]Θ(t)− ηI1k(t),

dI2k(t)
dt

= (1− p)k[S1k(t) + ε(1− S1k(t)− I1k(t)− I2k(t)−Rk(t))]Θ(t)− ηI2k(t),
dRk(t)

dt
= η[I1k(t) + I2k(t)]− δRk(t),

(16)

k = 1, 2, . . ., kc. Denote qj =
ψ(j)P (j)

〈k〉 for 1 ≤ j ≤ kc. The Jacobian matrix of the

trivial equilibrium of (16), which is a 4kc × 4kc matrix, is

J = (Aij)kc×kc ,
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where

Aij =









0 −iS1iqjαβ1 −iS1iqjαβ2 0
0 ip(S1i + εS2i)qjαβ1 ip(S1i + εS2i)qjαβ2 0
0 i(1− p)(S1i + εS2i)qjαβ1 i(1− p)(S1i + εS2i)qjαβ2 0
0 0 0 0









+δij









−ξ 0 0 qδ
0 −η 0 0
0 0 −η 0
0 η η −δ









with δij =

{

1 if i = j,
0 if i 6= j.

Using mathematical induction, we obtain the character-

istic equation of J , g1 · g2 = 0, where

g1 = (λ+ ξ)kc(λ+ δ)kc(λ+ η)2kc−1

and

g2 = λ+ η − ε[pβ1 + (1− p)β2]
〈kψ(k)〉

〈k〉
.

It follows that the trivial equilibrium of (16) and hence the disease-free equilibrium
E0 of (1) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. This
proves (i).

Next, we show the permanence. The argument is similar to that of Lemma 3.5
of De Leenheer and Smith [11], which is based on Theorem 4.6 of Thieme [25]. For
simplicity, we denote

x = (S11, S21, I11, I21, R1, · · · , S1kc , S2kc , I1kc , I2kc , Rkc)

to be the state variable of (1) and x(t) represents a solution of (1). Define

X = {x ∈ R
5kc
+ : S1k + S2k + I1k + I2k +Rk = 1, k = 1, 2, . . . , kc},

X0 =

{

x ∈ X :
∑

k

ψ(k)P (k)I1k > 0 or
∑

k

ψ(k)P (k)I2k > 0

}

,

and

∂X0 = X\X0.

In the following, we show that (1) is uniformly persistent with respect to (X0, ∂X0).
Obviously, X is positively invariant with respect to (1). We can also see that X0

is positively invariant with respect to (1) since

d

dt
(
∑

k

ψ(k)P (k)Iik(t)) ≥ −η
∑

k

ψ(k)P (k)Iik(t), i = 1, 2.

Furthermore, there exists a compact set B in which all solutions of (1) initiating in
X will enter and remain there.

Denote

M0 = {x(0) ∈ ∂X0 : x(t) ∈ ∂X0, t ≥ 0}

and

Ω =
⋃

{ω(x(t)) : x(0) ∈M0}.
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Restricting (1) on M0 gives



























dS1k(t)
dt

= qδRk(t)− ξS1k(t),
dS2k(t)
dt

= (1− q)δRk(t) + ξS1k(t),
dI1k(t)
dt

= −ηI1k(t),
dI2k(t)
dt

= −ηI2k(t),
dRk(t)
dt

= η[I1k(t) + I2k(t)]− δRk.

(17)

Clearly, system (17) has a unique equilibrium E0. It is easy to see from the first,
third, fourth and fifth equations of (17) that all S1k(t), I1k(t), I2k(t), and Rk(t)
tend to zero as t→ ∞. Then S2k(t) → 1 as t→ ∞ since S1k(t) + S2k(t) + I1k(t) +
I2k(t) +Rk(t) = 1. Therefore, Ω = E0.

Note that E0 is a covering of Ω, which is isolated and is acyclic. To finish the
proof, it suffices to show that E0 is a weak repeller for X0, that is

lim sup
t→∞

dist(x(t), E0) > 0

where x(t) is any arbitrary solution of (1) with x(0) ∈ X0. We only need to
prove W s(E0)

⋂

X0 = ∅, where W s(E0) is the stable manifold of E0. By way of
contradiction, suppose this is not true. Then there exists a solution x(t) ∈ X0 such
that S1k(t) → 0, S2k(t) → 1, I1k(t) → 0, I2k(t) → 0, and Rk(t) → 0 as t → ∞.

Since R0 = ε[pβ1+(1−p)β2]
η

〈kψ(k)〉
〈k〉 > 1, we can choose ν > 0 such that (1− ν)R0 > 1.

For such ν > 0, there exists a T > 0 such that, for t ≥ T , 0 ≤ S1k(t) < ν,
1− ν < S2k(t) ≤ 1, 0 ≤ I1k(t) < ν, 0 ≤ I2k(t) < ν, and 0 ≤ Rk(t) < ν. Let

V (t) =

kc
∑

k=1

ψ(k)P (k)(β1I1k(t) + β2I2k(t)).

In fact, V (t) = 〈k〉Θ(t). Then, for t ≥ T , we have

dV (t)

dt
=

kc
∑

k=1

ψ(k)P (k)

[

β1
dI1k(t)

dt
+ β2

dI2k(t)

dt

]

=

kc
∑

k=1

β1ψ(k)P (k)

[

pk(S1k(t) + εS2k(t))
V (t)

〈k〉
− ηI1k(t)

]

+

kc
∑

k=1

β2ψ(k)P (k)

[

(1− p)k(S1k(t) + εS2k(t))
V (t)

〈k〉
− ηI2k(t)

]

≥

[

ε(1− ν)[β1p+ β2(1 − p)]〈kψ(k)〉

〈k〉
− η

]

V (t)

= η[(1 − ν)R0 − 1]V (t).

Since (1 − ν)R0 > 1, it follows immediately that V (t) → ∞ as t → ∞, which
contradicts with the fact that V (t) is bounded. This completes the proof.

4. Immunization strategies. Vaccination is very helpful in controlling vaccine
preventable diseases [20, 29]. In this section we discuss (1) with two immunization
schemes: the proportional immunization and the targeted immunization.
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4.1. Proportional immunization. Let γ be the immunization rate, 0 < γ < 1.
Then (1) becomes



























dS1k(t)
dt

= qδRk(t)− k(1− γ)S1k(t)Θ(t)− ξS1k(t),
dS2k(t)
dt

= (1− q)δRk(t) + ξS1k(t)− kε(1− γ)S2k(t)Θ(t),
dI1k(t)
dt

= pk(1− γ)[S1k(t) + εS2k(t)]Θ(t)− ηI1k(t),
dI2k(t)
dt

= (1− p)k(1− γ)[S1k(t) + εS2k(t)]Θ(t)− ηI2k(t),
dRk(t)
dt

= η[I1k(t) + I2k(t)]− δRk(t).

(18)

Similar arguments as those in Section 3 give us the epidemic threshold

R̂0 = (1− γ)R0. (19)

To further the discussion, we assume that (δ + η)ξε ≥ qηδ(1 − ε). Then similar
arguments as those in the proof of Theorem 3.1 yields the following result.

Theorem 4.1. Assume that (δ+η)ξε ≥ qδη(1−ε). The following statements hold.

(i) System (18) always has a disease-free equilibrium.

(ii) System (18) has no endemic equilibrium if R̂0 < 1; otherwise, it has a unique

endemic equilibrium.

Now, assume that R0 ∈ [1,∞), that is, there is an outbreak of the disease. Define

γc = 1−
1

R0
.

By Theorem 4.1 and (19), we can draw the following conclusions.

(i) If γ ∈ (γc, 1] then R̂0 < 1 and hence the epidemic cannot spread in the
network.

(ii) If γ ∈ (0, γc) then R̂0 ∈ (1, R0). Though the immunization scheme is effective,
it is not effective enough to control the spread of STIs.

4.2. Targeted immunization. While proportional immunization schemes are ef-
fective, there may be more efficient schemes due to the heterogeneous nature of
complex networks: they are robust to random attacks, but fragile to selective at-
tacks. Accordingly, we can devise a targeted immunization scheme [6], that is, the
immunization rate γ depends on the degree k, denoted as γ(k). Modifying (18)
accordingly gives us



























dS1k(t)
dt

= qδRk(t)− k(1− γ(k))S1k(t)Θ(t)− ξS1k(t),
dS2k(t)
dt

= (1− q)δRk(t) + ξS1k(t)− kε(1− γ(k))S2k(t)Θ(t),
dI1k(t)
dt

= pk(1− γ(k))[S1k(t) + εS2k(t)]Θ(t)− ηI1k(t),
dI2k(t)
dt

= (1− p)k(1− γ(k))[S1k(t) + εS2k(t)]Θ(t)− ηI2k(t),
dRk(t)
dt

= η[I1k(t) + I2k(t)]− δRk(t).

(20)

Again, with similar arguments as before, we can obtain the endemic threshold

Ř0 =
ε[pβ1 + (1− p)β2]

η

〈kψ(k)(1 − γ(k))〉

〈k〉
. (21)

It follows from (21) that (20) can possess an epidemic threshold even in the case
where (1) does not. Recall that when (1) does not possess an epidemic threshold
neither does (18). From the view of threshold, targeted immunization is better
than the proportional immunization. Furthermore, let us assume that (1) has an
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epidemic threshold. Obviously, Ř0 < R0, which implies that targeted immunization
can be effective in controlling the spread of STIs. On the other hand, note that

〈kψ(k)(1 − γ(k))〉 = 〈kψ(k)〉 − 〈kψ(k)〉γ + 〈kψ(k)(γ − γ(k))〉,

where γ = 〈γ(k)〉 is the average immunization rate. If 〈kψ(k)(γ − γ(k))〉 < 0 then

Ř0 ≤ (1 − γ)R0

and hence with the same immunization rate, γ = γ, the targeted immunization is
more efficient than the proportional immunization.

5. Numerical simulations and sensitivity analysis. In this section, we not
only present some numerical simulations to support the above-obtained theoretical
results but also perform some sensitivity analysis of the basic reproduction number
R0 in terms of the model parameters. The simulations are based on a BA network
with ζ = 2, m = 3, and the maximal degree kc = 1000. Hence P (k) = (ζ −
1)mζ−1k−ζ = 3k−2. For details on generating BA networks, see, for instance,
Barabási and Albert [2]. We also assume ψ(k) = k.

First, take β1 = 0.002, β2 = 0.01, ξ = 0.01, ε = 0.9, η = 0.01, δ = 0.1, p = 0.4,
and q = 0.2. Then R0 = 1.9417 > 1. By Theorem 3.2, the disease will persist
without immunization. Fig 1 shows the times series of some representative nodes
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Figure 1. The time series of (1) for the representative nodes
with degrees 5, 40, and 95
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with degrees 5, 40, and 95. Obviously, the prevalence rate of I2k is higher than that
of I1k. Interestingly, the difference between k = 40 and k = 95 is not very big.

Next, we illustrate the effect of ξ on the transmission dynamics. Take the same
parameter values above except that of ξ. Fig 2 shows the time series of the node with
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Figure 2. The time series of (1) of the node with degree k = 40
for ξ = 0.01, 0.1, and 0.9 respectively

degree 40 for ξ = 0.01, 0.1, and 0.9 respectively. We can see that the relative density
of the higher susceptibility decreases with respect to ξ but the relative density of
the lower susceptibility increases with respect to ξ. Moreover, ξ does not affect the
relative densities of both higher infectivity and lower infectivity. This agrees with
our intuition.

The theoretical analysis tells us that the basic reproduction number R0 is an
important quantity to characterize the transmission dynamics. The expression of
R0 clearly indicates that it is an increasing function of the transmission rates β1
and β2 and a decreasing function of the recovery rate η when the other parameters
are fixed. With the same parameter values in the first case except those of (left) β1
and η or (right) β2 and η, Fig.3 indicates the combined impact of the transmission
rates and the recovery rate on R0.

Finally, we consider the effects of immunization with the same parameter val-
ues in the first case. We take γ = 0.2 in the proportional immunization and

γ(k) =

{

1 if k ≥ k∗ = 10,
0 if k 6= 10.

in the targeted immunization. Fig. 4 depicts re-
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Figure 3. Combined impacts of the transmission rates (β1 and
β2) and the recovery rate η on the basic reproduction number R0
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Figure 4. The time series of (1) with different immunization strategies

spectively the total numbers I1 and I2 of the smaller infectivity and the higher
infectivity for the situations of no immunization, proportional immunization, and
targeted immunization. Though both proportional immunization and the targeted
immunization have the ability to control the disease spread, the targeted immuniza-
tion seems to have the better effect.

6. Discussion. In this paper, we propose and study a model on the spread of STIs
on uncorrelated networks. One feature of this model is that both differential suscep-
tibility and infectivity are incorporated into it. The model includes the one studied
by Lou and Ruggeri [13]. As in Lou and Ruggeri [13], we determine the spreading
threshold. The results are more general and richer. For example, threshold may
exist in infinite networks. Moreover, backward bifurcation may occur. Then for the
bounded hard-cutoff networks, we study the stability of the disease free equilibrium
and the permanence of infection. Finally, the effects of two immunization strategies,
proportional immunization and targeted immunization, are compared. Generally,



428 MAOXING LIU AND YUMING CHEN

targeted immunization has better effect than proportional immunization. We be-
lieve that the idea here can also be applied to study other epidemic diseases, such
as HIV etc..
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