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Abstract. A compartmental deterministic model is proposed to evaluate the

effectiveness of transmission-blocking vaccines of malaria, which targets at the
parasite stage in the mosquito. The model is rigorously analyzed and numerical

simulations are performed. The results and implications are discussed.

1. Introduction. Malaria is a life-threatening disease caused by Plasmodium para-
sites that are transmitted to people through the bites of infected mosquitoes. There
are four types of human malaria: P. falciparum, P. vivax, P. malariae, and P. ovale,
among which P. falciparum and P. vivax are the most common and P. falciparum is
the most deadly. According to the World malaria report 2011, there are 3.3 billion
people in 106 countries and territories living in areas at risk of malaria transmission;
and there were about 216 million cases of malaria infection and 655,000 deaths due
to malaria in 2010. Malaria is the most prevalent tropical and subtropical parasitic
disease and the leading cause of mortality and morbidity in some Africa countries.
For a mosquito to feed on a human, it must actively seek the human host. This
mosquito can systematically target and identify human beings [10, 22] and once at-
tracted, it may seek and bite humans as many times as possible until it takes a blood
meal. Transmission is more intense in places where the mosquito lifespan is longer
(so that the parasite has time to complete its development inside the mosquito). For
example, the long lifespan and strong human-biting habit of the African mosquito
species is the main reason why more than 85% of the world’s malaria deaths are in
Africa. Transmission also depends on climatic conditions that may affect the num-
ber and survival of mosquitoes, such as rainfall patterns, temperature and humidity.
In many places, transmission is seasonal, with the peak during and just after the
rainy season.
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Uncomplicated malaria may be treated with oral medications such as artemisinins
in combination with other antimalarials (known as artemisinin-combination ther-
apy, or ACT.) The success of treatment varies, depending on what strain of malaria
the patient has, whether or not the parasites are drug-resistant [15, 21, 34], and
whether or not the patient is able to complete the course of drugs needed. Malaria
has been successfully eliminated from many countries of the world. However, the
elimination process slowed down after the effort to eradicate malaria worldwide was
abandoned some 40 years ago. Since Australia and Singapore were certificated as
malaria-free by WHO in the 1980s, the United Arab Emirates was the first to be
certificated until 2007 [26]. During the process of the elimination, vector control
using chemicals such as dichlorodiphenyltrichloroethane (DDT) played an essen-
tial role. However, this strategy has been gradually abandoned because it caused
ecological impact of chemical use [36]. Currently, an “integrated vector manage-
ment” (IVM) [36] is employed, which reinforces between health and environment,
optimizing benefits to both. These interventions include vector control (such as
indoor residual sprays (IRS), space spraying, and chemical larvicides and adulti-
cides) and personal protection/prevention (such as insecticide-treated nets (ITNs)
and antimalaria drugs.)

Recent international commitments to malaria elimination and eradication have
drawn attention of the development of new tools. One important piece is vacci-
nation development. There are mainly two types of vaccines of malaria including
those targeting the parasite stage that are exposed only in the mosquito, referred
to as transmission-blocking vaccines (TBVs) and those targeting at the parasite
stage that are exposed only in the human. The first effective human-stage vac-
cine against malaria, known as RTS, S has been developed by GlaxoSmithKline
and PATH Malaria Vaccine Initiative, which receives fundings from the Bill and
Melinda Gates Foundation. A study in a recent phase 3 clinical trial of the vac-
cine in Africa showed roughly 50% reduction in malaria cases in a 12 month period
following vaccination [24, 29, 35]. In addition, several mosquito-stage antigens, in-
cluding Pfs 48/45, Pfs 230, Pfs 25, and Pfs 28 of P. falciparum, (and some of their
P. vivax analogs) have undergone pre-clinical development, some proving highly
immunogenic [30]. However, none have yet passed early stages of clinical testing.
In the rest of the paper, TBVs are referred to the vaccine targeting the parasites at
the mosquito stage.

Mathematical models and simulations have been used to provide an explicit
framework for understanding the malaria transmission and make predictions by an-
alyzing the modeling results whence giving recommendations to policy makers for
over 100 years. Grassi and Ross discovered the mosquito’s role in the parasite life
cycle and transmission in 1897, and Ross was one among the first to use mathemat-
ical models to study transmission of malaria in early 1900. Malaria transmission
models originated with Ronald Ross during a trip to organize malaria control in
Mauritius (1907-1908) [28], but the models of George Macdonald [19] were applied
more systematically during the Global Malaria Eradication Program (GMEP) from
1955 to 1969. Over the past 100 years, many mathematical models were proposed to
address different issues from different perspectives, among which the most popular
is epidemiological compartment models which are predominantly deterministic and
differential equations based [20]. In particular, several mathematical models have
been developed to study the impacts of drug resistance and insecticide resistance on
the disease [2, 11, 14, 15]; impact of immunity [3, 12, 15, 16]; impact of transmission
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intensity [13, 15]; impact of human interventions such as ITNs [1], combination of
IRS and ITNs [6]; impact of environmental and climate changes [2, 4]; and impact of
intermittent prophylactic treatment (IPT) [4, 25, 27]. However, there are few math-
ematical models studying the impact of vaccination on the disease control [7, 31],
in particular rare for TBVs. Smith et al proposed a simple mathematical model
to study the impact of TBVs and their simulation indicates that TBVs will re-
duce risks of reestablishment of transmission when vector control is withdrawn [32].
Their model showed that efficacy and coverage are equally important, implying that
a vaccine that requires a small number of doses is preferable to one that is difficult to
deliver, even if this entails accepting a lower efficacy. The results demonstrate that
transmission-blocking vaccine has merits that make it worth further investigation.

In this paper, we will propose a deterministic compartmental model of malaria
focusing on the impact of TBVs on the disease transmission. For TBVs, mosquitoes
will be indirectly vaccinated through biting vaccinated humans. However, the vac-
cine does not protect humans from infection. We will assume that the vaccine is
perfect in preventing the disease transmission from mosquitoes and the vaccine will
be effective lifetime long as long as human is vaccinated. This condition can be
easily released allowing the vaccinated class moving back into susceptible class due
to loss of efficacy of the vaccine. A mosquito can live up to 30 days but the average
life span of mosquitoes is about 2 to 3 weeks. Thus, as long as mosquitoes become
infectious, they will remain infected throughout their life time no matter whether
they bite people who are vaccinated or not. However, we assume that the vaccine
takes effect immediately after mosquitoes in exposed class bite humans who are
vaccinated no matter whether the human is infected or not. This assumption is
reasonable given the mechanism of vaccination targeting at mosquito stage. The
model shows that the additional death due to infection causes the backward bifur-
cation, which agrees with findings in other disease models, such as for syphilis [23],
dengue fever [9] and AIDS/HIV [8]. The results of the model suggest that intro-
ducing TBVs helps reduce the basic reproduction number, i.e., reduce the disease
burden.

The structure of the paper is as follows: In section 2, a mathematical model
incorporating TBVs is formulated; In section 3, mathematical analysis of the model
is carried out; In section 4, the transmission-blocking vaccines are accessed and
numerical simulations are performed; In section 5, sensitivity analysis is performed
to identity the critical control parameters; Finally in section 6, we make discussions
and draw conclusions.

2. Formulation of model. A TBVs program is aimed to either prevent or merely
reduce transmission. The vaccine works in the way that humans who receive vac-
cines serve only as a media to pass the vaccines to mosquitoes where the disease
transmission can be stopped. The total population of humans at time t (Nh(t))
are divided into susceptible but not vaccinated (Sh(t)), susceptible and vaccinated
(Vh(t)), exposed but not vaccinated (Eh(t)), exposed and vaccinated (Fh(t)), in-
fected but not vaccinated (Ih(t)), infected and vaccinated (Jh(t)), temporarily-
immune but not vaccinated Rh(t), and temporarily-immune and vaccinated class
(Mh(t)). Thus,

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t) + Vh(t) + Fh(t) + Jh(t) +Mh(t). (1)

The total population of mosquitoes are divided into susceptible (Sv(t)), exposed
(Ev(t)), infectious (Iv(t)), and vaccinated class (Vv(t)). Mosquitoes which are not
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in infectious stage will not transmit the disease after they bite vaccinated human in-
dividuals, but the vaccine does not prevent infectious mosquitoes from transmitting
the disease. A descriptive diagram of disease transmission is illustrated in Figure 4.
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Figure 1. The schematic diagram of a mathematical model with TBVs.

The infection of human hosts is acquired following effective contact with an
infectious female mosquito at a rate of λv, where

λv =
CvhIv
Nh

. (2)

The parameter Cvh is the effective contact rate of vectors, and is defined as the
product of the biting rate of mosquitoes and the probability of transmission per
bite (from an infectious mosquito to susceptible human) [31].

The infection of mosquitoes is acquired when susceptible mosquitoes take a blood
meal from infectious humans at a rate of λh1, where

λh1 =
ChvIh
Nh

. (3)

The parameter Chv is the effective contact rate of humans, and is defined as the
product of the average number of mosquito bites received by humans and the prob-
ability of transmission (from an infectious human to a susceptible mosquito).
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Both hosts are assumed to grow logistically with constant recruitment rate Λh
and Λv for humans and mosquitoes respectively and those newly recruited indi-
viduals are susceptible. The transmission-blocking vaccines are given to humans
at rate ξh. Human hosts die with death rate µh and additional death rate δ due
to infection by malaria. The individuals in exposed class progress to the infection
stage at rate σh; infected individuals recovered with partial immunity at rate τh;
and the temporary immunity will lose at rate rh. Due to the short life span of
mosquitoes, we assume that mosquitoes die at their natural death rate µv only;
exposed mosquitoes progress to the infectious class at rate σv. The description of
parameters and its values are listed in Table 1, and the detailed reference for each
value can be found in [31].

Table 1. Description of parameters of the basic malaria model

Param. Description Baseline values
Λh Recruitment rate of humans [105-106] /year
Λv Recruitment rate of vectors 104 × 365 /year
µh Natural death rate of host 1/55 ∈ [1/45, 1/60] /year
µv Natural death rate of vector [365/28, 365/21] /year
Chv Contact rate from host to vector Variable
Cvh Contact rate from vector to host Variable
ξh Vaccination rate of humans Variable
rh Rate of loss of immunity 365/68.5
τh Rate of development of temporal immunity Variable
δ Disease-induced death rate [0-4.1× 10−4]× 365 /year
σh Progression rate to symptoms development 365/14 /year

for the host
σv Progression rate to symptoms development 365/12 /year

for the vector

A susceptible mosquito becomes vaccinated hence stops transmitting the disease
when it takes a blood meal from a vaccinated person, no matter whether the person
is infected or not. Therefore, the rate of change of the susceptible mosquitoes are
described by

S′v = Λv − λh1Sv − λh2Sv − µvSv
where

λh2 =
Chv(Vh + Fh + Jh +Mh)

Nh
. (4)

The vaccine does not take effect if a mosquito takes a blood meal from a vaccinated
person if the mosquito has already become infectious. Moreover, the person who
received the transmission-blocking vaccine can be infected. The rate of change of
the exposed and infected mosquitoes are described by

E′v = λh1Sv − λh2Ev − σvEv − µvEv,
I ′v = σvEv − µvIv.

The rate of change of the vaccinated mosquitoes are described by

V ′v = λh2Sv + λh2Ev − µvVv.
The mosquitoes in vaccinated class do not directly involve in disease transmission.
However, they still make contribution to the spread of disease because they keep
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producing their offsprings. An ideal recipe should be that the vaccine not only
prevents the development of malaria in the mosquito body but also restrains the
reproduction of mosquitoes.

The complete model for the transmission dynamics of malaria with TBVs is given
by the following system of differential equations:

S′h = Λh + rhRh − ξhSh − λvSh − µhSh,

E′h = λvSh − σhEh − µhEh,

I ′h = σhEh − τhIh − µhIh − δIh,

R′h = τhIh − rhRh − µhRh,

V ′h = ξhSh + rhMh − λvVh − µhVh,

F ′h = λvVh − σhFh − µhFh,

J ′h = σhFh − τhJh − µhJh − δJh,

M ′h = τhJh − rhMh − µhMh,

S′v = Λv − λh1Sv − λh2Sv − µvSv,

E′v = λh1Sv − λh2Ev − σvEv − µvEv,

I ′v = σvEv − µvIv,

V ′v = λh2Sv + λh2Ev − µvVv.

(5)

3. Analysis. The model (5) monitors human and female mosquito populations,
and consequently, all its associated parameters are non-negative. It is easy to show
that the following positivity results hold.

Theorem 3.1. Solutions of the model system (5) with positive initial data are
positive for all time t > 0. In addition, the solution enters the boundary in finite
time if and only if Eh(0) = Ih(0) = Fh(0) = Jh(0) = Ev(0) = Iv(0) = 0.

Following the van den Driessche and Watmough’s paper in 2002 [33], denote

x = (Eh, Fh, Ev, Ih, Jh, Iv, Sh, Vh, Sv, Rh,Mh, Vv)
T.

For simplicity, let us also denote

K1 = σh+µh, K2 = τh+µh+ δ, K3 = rh+µh, K4 = σv +µv, K5 = ξh+µh. (6)

It is easy to compute the disease free equilibrium (DFE) of the model (5):

ETBV = (0, 0, 0, 0, 0, 0, S∗h, V
∗
h , S

∗
v , 0, 0, V

∗
v )T (7)

where

S∗h =
Λh
K5

, V ∗h =
ξhΛh
µhK5

, S∗v =
ΛvK5

µvK5 + Chvξh
, V ∗v =

ChvξhΛv
µv[K5µv + Chvξh]

.
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Moreover, the basic reproduction number of the model can be computed as the
spectral radius of the second generation matrix:

RTBV = µh

√
σhσvChvCvhΛvK5

K1K2µvΛh(µvK5 + Chvξh)(Chvξh +K4K5)
. (8)

3.1. Stability of disease free equilibrium. Let’s first introduce the following
lemma and we will use the lemma, in Theorem 3.3, to prove the stability of DFE.
The lemma can be easily proved with elementary Calculus argument.

Lemma 3.2. Consider a fourth order polynomial of the form

p(x) = (x+ a1)(x+ a2)(x+ a3)(x+ a4)− c.
Suppose c > 0 and ai > 0 for all i = 1, 2, 3, 4. Denote a = a1a2a3a4 − c.

(i) If a > 0, then either all roots are negative or two are negative and the real
part of the complex roots is negative;

(ii) If a < 0, then at least one root is positive.

Theorem 3.3. The disease free equilibrium ETBV is asymptotically stable if RTBV
< 1 and unstable if RTBV > 1.

Proof. The linearized system of the model (5) at ETBV can be written as

x′ = Ax, A =

(
A11 0
A21 A22

)
where

A11 =



−K1 0 0 0 0
CvhS

∗
h

N∗
h

0 −K1 0 0 0
CvhS

∗
h

N∗
h

0 0 −(
ChvV

∗
h

N∗
h

+K4)
ChvS

∗
v

N∗
h

0 0

σh 0 0 −K2 0 0
0 σh 0 0 −K2 0
0 0 σv 0 0 −µv


and

A22 =



−(µh + ξh) 0 0 rh 0 0
ξh −µh 0 0 rh 0

ChvV
∗
h S∗

v
(N∗

h
)2

−ChvS
∗
vS∗

h
(N∗

h
)2

−(µv +
ChvV

∗
h

N∗
h

)
ChvV

∗
h S∗

v
(N∗

h
)2

−ChvS
∗
vS∗

h
(N∗

h
)2

0

0 0 0 −K3 0 0
0 0 0 0 −K3 0

−ChvV
∗
h S∗

v
(N∗

h
)2

ChvS
∗
vS∗

h
(N∗

h
)2

ChvV
∗
h

N∗
h

−ChvV
∗
h S∗

v
(N∗

h
)2

ChvS
∗
vS∗

h
(N∗

h
)2

−µv


.

The characteristic equation of A22 is

det(λI −A22) = (λ+K3)2(λ+K5)(λ+ µh)(λ+ µv +
ChvV

∗
h

N∗h
)(λ+ µv).

Thus, the eigenvalues of A22 are all negative.
The characteristic equation of A11 is

det(λI −A11) = (λ+K1)(λ+K2)

[
(λ+

ChvV
∗
h

N∗
h

+K4)(λ+K1)(λ+K2)(λ+ µv)

−σh
CvhS

∗
h

N∗
h

σv
ChvS

∗
v

N∗
h

]
.
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The eigenvalues of the matrix A11 are λ1 = −K1, λ2 = −K2 and the roots of the
forth order polynomial

pA(λ) = (λ+
ChvV

∗
h

N∗h
+K4)(λ+K1)(λ+K2)(λ+ µv)− σh

CvhS
∗
h

N∗h
σv
ChvS

∗
v

N∗h

By Lemma 3.2 , one root of the polynomial pA(λ) is positive if

(
ChvV

∗
h

N∗h
+K4)K1K2µv < σh

CvhS
∗
h

N∗h
σv
ChvS

∗
v

N∗h
(i.e. RTBV > 1)

and all real parts of the polynomial of pA(λ) are negative if RTBV < 1.

3.2. Endemic equilibrium and backward bifurcation. If Eh = 0, Ih = 0,
Rh = 0, Fh = 0, Jh = 0, Mh = 0, Ev = 0, or Iv = 0, then (Eh, Ih, Rh, Fh, Jh, Mh,
Ev, Iv) = (0, 0, 0, 0, 0, 0, 0, 0). Thus, if (S∗h, E∗h, I∗h, R∗h, V ∗h , F ∗h , J∗h , M∗h , S∗v , E∗v ,
I∗v , V ∗v ) is an endemic equilibrium then all the components must be positive.

Let us further introduce notations

A = σh/(K1K2), B = τhA/K3, α =
1

K1
+A+B, β =

1− rhB
µh

, γ =
ChvA

µv
+ α.

It is worth to note that 1− rhB > 0. Solving the equations at equilibrium gives (in
terms of S∗h and S∗v )

S∗h =
Λh

K5 + λ∗v(1− rhB)
, E∗h =

λ∗vS
∗
h

K1
, I∗h = λ∗vS

∗
hA, R

∗
h = λ∗vS

∗
hB, (9)

V ∗h =
ξhS

∗
h

µh + λ∗v(1− rhB)
, F ∗h =

λ∗vVh
K1

, J∗h = λ∗vV
∗
hA, M

∗
h = λ∗vV

∗
hB, (10)

S∗v =
Λv

λ∗h1 + λ∗h2 + µv
, E∗v =

λ∗h1S
∗
v

λ∗h2 +K4
, I∗v =

σvλ
∗
h1S
∗
v

µv(λ∗h2 +K4)
,

V ∗v =
λ∗h2(λ∗h2 + λ∗h1 +K4)

µv(λ∗h2 +K4)
(11)

where λ∗v = CvhI
∗
v/N

∗
h , λ∗h1 = ChvI

∗
h/N

∗
h , λ∗h2 = C∗hv(V

∗
h + F ∗h + J∗h +M∗h)/N∗h .

Then, we have

N∗h = S∗h + E∗h + I∗h +R∗h + V ∗h + F ∗h + J∗h +M∗h =
Λh(1 + αλ∗v)
µh + βλ∗v

.

Also,

λ∗h2 =
Chv(V

∗
h + F ∗h + J∗h +M∗h)

N∗h
=

Chvξh
K5 + βλ∗v

.

Similarly,

λ∗h1 =
CvhI

∗
h

N∗h
=

Chvλ
∗
vA(µh + βλ∗v)

(K5 + βλ∗v)(1 + αλ∗v)

and

λ∗v =
CvhI

∗
v

N∗h
=

Cvhσvλ
∗
h1Λv(µh + βλ∗v)

µv(λ∗h2 + λ∗h1 + µv)(λ∗h2 +K4)Λh(1 + αλ∗v)
.

Substituting λ∗h1 and λ∗h2 into λ∗v and simplifying it gives the following polynomial
equation of degree 4 in λ∗v:

a0(λ∗v)
4 + b0(λ∗v)

3 + c0(λ∗v)
2 + d0λ

∗
v + e0 = 0
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where

a0 = µvΛh (ChvAβ + αµvβ)αβK4,

b0 = µvΛh [(ChvAµh + µvβ + αx)αβK4 + (ChvAβ + αµvβ)(αy +K4β)]

−CvhChvσvAΛvβ
3,

c0 = µvΛh [αβK4x+ (ChvAµh + µvβ + αx)(αy +K4β) + (ChvAβ + αβµv)y]

−CvhChvσvAΛvβ
2(3µh + ξh),

d0 = µvΛh [(αy +K4β)x+ (ChvAµh + µvβ + αx)y]

−CvhChvσvAΛvµhβ(3µh + 2ξh),

e0 = µvΛhxy
(
1−R2

BTV

)
,

x = Chvξh + µvK5,

y = Chvξh +K4K5.

Remark. If RBTV > 1, then e0 < 0. Thus, the forth-order polynomial must have
a positive root, which implies that there is at least one endemic equilibrium.

3.2.1. Special case: ξh = 0. For convenience, we also introduce the basic reproduc-
tion number for the case where there is no vaccination and denote it by R0

R0 =
1

µv

√
CvhChvσvσhΛvµh

ΛhK1K2K4
. (12)

In the case of ξh = 0, i.e., there is no vaccination employed, we have λ∗h2 = 0 and
hence V ∗h = F ∗h = J∗h = M∗h = V ∗v = 0. It is clear that λ∗h1/λ

∗
v = (ChvI

∗
h)/(CvhI

∗
v ),

so
I∗h
I∗v

=
Cvh
Chv

· λ
∗
h1

λ∗v
. (13)

From Eq. 9 and noticing that N∗h = (1 + αλ∗v)S
∗
h, we have

λ∗h1 =
ChvI

∗
h

N∗h
=

Chvλ
∗
vS
∗
hA

S∗h(1 + αλ∗v)
=
Chvλ

∗
vA

1 + αλ∗v
(14)

and
λ∗h1
λ∗v

=
ChvA

1 + αλ∗v
. (15)

From Eq. 9 and Eq. 11, we have

I∗h
I∗v

=
λ∗vS

∗
hAK4µv

σvS∗vλ
∗
h1

. (16)

Thus, from Eq. 13, Eq. 15, and Eq. 16, we have

S∗h
S∗v

=
σv

µvAK4
· λ
∗
h1

λ∗v
· I
∗
h

I∗v
=

(
λ∗h1
λ∗v

)2
Cvhσv

ChvµvAK4
=

C2
hvA

2

(1 + αλ∗v)2
· Cvhσv
ChvµvAK4

=
ChvCvhσhσv

K1K2K4µv(1 + αλ∗v)2
=

Λhµv
Λvµh(1 + αλ∗v)2

R2
0.

From Eq. 9, Eq. 11, and Eq. 14, we also have

S∗h
S∗v

=
Λh(µv + λ∗h1)

Λv(µh + λ∗v(1− rhB))
=

Λh {µv(1 + αλ∗v) + ChvAλ
∗
v}

Λv [µh + λ∗v(1− rhB)] (1 + αλ∗v)
.

Equating the above two equalities and simplifying it, we have

1 + γλ∗v
1 + βλ∗v

=
R2

0

1 + αλ∗v
.
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The endemic equilibria of the model satisfy the following quadratic (in terms of λ∗v)

a0 (λ∗v)
2

+ b0λ
∗
v + c0 = 0

where a0 = γα, b0 = γ + α− βR2
0, and c0 = 1−R2

0.
Thus, the positive endemic equilibria of the model without vaccination are ob-

tained by solving for λ∗v from the quadratic and substituting the results (positive
values of λ∗v) into the expressions for E∗h, E

∗
v , I
∗
h, I
∗
v , S

∗
h, S

∗
v , and R∗h. The solution

for λ∗v is:

λ∗v =
−b0 ±

√
b20 − 4a0c0

2a0
.

Thus, the following result can be easily established.

Theorem 3.4. Under the assumption that there is no vaccination, i.e., ξh = 0, the
model (5) has

(i) a unique endemic equilibrium if c0 < 0 ⇔R0 > 1,
(ii) a unique endemic equilibrium if b0 < 0, and c0 = 0 or b20 − 4a0c0 = 0,

(iii) two endemic equilibria if b0 < 0, c0 > 0 and b20 − 4a0c0 > 0, or
(iv) no endemic equilibrium otherwise.

Case (iii) indicates the possibility of backward bifurcation (where the locally-
asymptotically stable DFE co-exists with a locally-asymptotically endemic equilib-
rium when R0 < 1) in the model when R0 < 1. To check for this, the discriminant
b20−4a0c0 is set to zero and solved for the critical value of R0, denoted by Rc, given
by:

Rc =

√
1− b20

4a0
=

√
1− µvb20

α(Chv + α)
.

Thus, the following result is established:

Lemma 3.5. Under the assumption that there is no vaccination, i.e., ξh = 0, the
model (5) undergoes backward bifurcation when case (iii) of Theorem 3.4 holds and
Rc < R0 < 1.

The results of the above lemma is illustrated by simulating the model with the
following set of parameter values: µh = 1/55, µv = 365/21, rh = 365/(68.5),
τh = 0.4, δ = 0.1, σh = 365/14, σv = 365/12, Λh = 105, Λv = 365 × (104).
The associated bifurcation diagrams are depicted in Figure 2. Here the parameters
Chv = Cvh are bifurcation parameters. It can be easily shown that there is no
backward bifurcation if δ is small. The additional death rate due to infection triggers
the backward bifurcation, which agrees with the other study [31].

Furthermore, for the special case ξh = 0, we can establish conditions under
which DFE is globally asymptotically stable (GAS), i.e, the disease elimination is
independent of the initial sizes of the sub-population under certain conditions.

Theorem 3.6. Assume Λh ≤ Λv. If 0 < R0 < Rc < 1 and R0 < 1/
√
κ, where

κ = max

{
µvK4

σhµhCvh
,
µvΛhK1K2

σvµhChv

}
.

When there is no vaccination, i.e., ξh = 0, the DFE is the only equilibrium in

D =

{
(Eh, Ev, Ih, Iv, Sh, Sv, Rh) ∈ R7

+ : Sh + Eh + Ih +Rh ≤
Λh
µh

;
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Figure 2. The backward bifurcation diagram for ξh = 0. The
parameters are µh = 1/55, µv = 365/21, rh = 365/68.5, τh = 0.4,
δ = 0.1, σh = 365/14, σv = 365/12, Λh = 105, Λv = 365× (104).

Sv + Ev + Iv ≤
Λv
µv

}
and it is globally asymptotically stable in D.

Proof. Consider the Lyapunov function

F =f1Eh + f2Ih + f3Ev + f4Iv

where, f1 = σh, f2 = K1, f3 = σv/Λh. and f4 = K4/Λv.
Differentiating with respect to t, we have

dF
dt

= f1
dEh
dt

+ f2
dIh
dt

+ f3
dEv
dt

+ f4
dIv
dt
.

Thus,

dF
dt

= σh

(
CvhIv
Nh

Sh −K1Eh

)
+K1 (σhEh −K2Ih)

+
σv
Λh

(
ChvIh
Nh

Sv −K4Ev

)
+
K4

Λv
(σvEv − µvIv)

≤ σh (CvhIv −K1Eh) +K1 (σhEh −K2Ih)

+
σv
Λh

(
ChvΛv
µv

Ih −K4Ev

)
+
K4

Λv
(σvEv − µvIv) (assume Nh ≥ 1)

= (K1σh −K1σh)Eh +

(
σvK4

Λv
− σvK4

Λh

)
Ev

+

(
σvChvΛv
µvΛh

−K1K2

)
Ih +

(
σhCvh −

µvK4

Λv

)
Iv

≤
(
σvChvΛv
µvΛh

−K1K2

)
Ih +

(
σhCvh −

µvK4

Λv

)
Iv (assume Λh ≤ Λv)

= K1K2

(
σvChvΛv
µvΛhK1K2

− 1

)
Ih +

µvK4

Λv

(
ΛvσhCvh
µvK4

− 1

)
Iv

= K1K2

(
K4µv

σhµhCvh
R2

0 − 1

)
Ih +

µvK4

Λv

(
ΛhK1K2µv
σvµhChv

R2
0 − 1

)
Iv
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≤ K1K2

(
κR2

0 − 1
)
Ih +

µvK4

Λv

(
κR2

0 − 1
)
Iv

Thus, dF/dt ≤ 0 if R0 < 1/
√
κ. And dF/dt = 0 if and only if Eh = Ih = Ev =

Iv = 0. Further, the largest compact invariant set in {(Eh, Ev, Ih, Iv, Sh, Sv, Rh) ∈
D|dF/dt = 0} is the singleton {(0, 0, 0, 0,Λh/µh,Λv/µv, 0)}. It follows from LaSalle
Invariance Principle (Chapter 2, Theorem 6.4 of [17]) that every solution in Eq. (5)
with initial conditions in D converges to DFE as t → ∞. That is, (Eh(t), Ev(t),
Ih(t), Iv(t)) → (0, 0, 0, 0) as t → ∞. Substituting Eh = Ih = Ev = Iv = 0
in Eq. (5) gives Sh(t) → Λh/µh, Sv(t) → Λv/µv, and Rh(t) → 0 as t → ∞.
Thus, [Eh(t), Ev(t), Ih(t), Iv(t), Sh(t), Sv(t), Rh(t)]→ (0, 0, 0, 0,Λh/µh,Λv/µv, 0) as
t → ∞ for 0 < R0 < Rc < 1 and R0 < 1/

√
κ, so that the disease free equilibiurm

is GAS in D if 0 < R0 < Rc < 1 and R0 < 1/
√
κ.

The above result shows that the disease can be eliminated from the community
if 0 < R0 < Rc < 1 and R0 < 1/

√
κ.

4. Assessment of transmission-blocking vaccines. In this section, the poten-
tial impact of the transmission-blocking vaccines is assessed.

The derivative of RTBV with respect to ξh is:

dRTBV
dξh

= −
√
σhσvChvCvhµhΛvµh

K1K2µvΛh

√
1

(µvK5 + Chvξh)3(Chvξh
K5

+K4)3[
(µv + Chv)(

Chvξh
K5

+K4) + (µvK5 + Chvξh)
Chvµh
K2

5

]
.

It is clear that the basic reproduction number for model (5) is a decreasing function
of ξh, and RTBV = R0 for ξh = 0. Thus, introducing the blocking-transmission
vaccine will reduce the burden of the infection.

The quantity RTBV can be expressed as a function of the fraction of vaccinated
individuals at the steady-state, given by p = V ∗h /N

∗
h . Then, S∗h and S∗v are expressed

in terms of p as follows:

S∗h = N∗h (1− p) and S∗v =
ΛvK5

µvK5 + Chvξh
=

N∗hΛv
µvN∗h + Chvp

.

Then,

RTBV =

√√√√ σhσvChvCvhS∗hS
∗
v

K1K2N∗hµvN
∗
h

(
ChvV ∗

h

N∗
h

+K4

) =

√√√√ R2
0 (1− p)(

1 + Chv

µvN∗
h
p
)(

1 + Chv

K4
p
) .

Let a = Chv/(µvN
∗
h) and b = Chv/K4. Then,

RTBV = R0

√
(1− p)

(1 + ap) (1 + bp)
.

Since 0 ≤ p ≤ 1 from the above formula we have RTBV ≤ R0 (RTBV < R0 if
p > 0) which means the basic reproduction number is reduced if some fraction of
susceptible individuals in the population receive the transmission-blocking vaccines.
Also,

dRTBV
dp

=
R0

RTBV

(
− (1 + ap) (1 + bp)− (1− p) [a (1 + bp) + b (1 + ap)]

(1 + ap)
2

(1 + bp)
2

)
.
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It follows from the above formula that dRTBV /dp < 0 whenever 0 < p ≤ 1. That
is, RTBV is a decreasing function of the vaccinated fraction, p, where 0 < p ≤ 1.
Further, based of the fact that a reduction in reproduction number implies reduction
in disease burden, the above analyses show that the transmission-blocking vaccine
will have a positive impact in reducing disease burden.

Numerical simulations are carried out to assess the impact of TBVs. Figure 3
shows the prevalence of infection with the vaccination rate ξh = 0, 0.3, 0.4, 0.5, re-
spectively. It suggests that the disease can be eliminated with the vaccination rate
ξh = 0.4. It is also observed that the reduction of infection in vectors is quicker
than the reduction in humans. This might be a direct implication of the transition-
blocking vaccine targeting at vectors rather than humans. The basic reproduction
numbers are RTBV = 3.3749, 0.251, 0.216, 0.1937 for ξh = 0, 0.3, 0.4, 0.5, respec-
tively. This suggests that the disease might still persist if the vaccination rate is
not high enough.
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Figure 3. Simulation of the model assessing the impact of TBVs.
The parameters are µh = 1/55, µv = 365/21, rh = 365/68.5,
τh = 0.4, δ = 0.1, σh = 365/14, σv = 365/12, Λh = 105, Λv =
365× (104).

5. Sensitivity analysis. Next we carry out sensitivity analysis to assess the effec-
tiveness of the control parameters. Following the approach in [5], the normalized
forward sensitivity index of a variable, x, that depends differentially on a param-
eter, p, is defined as: Γxp = (∂x/∂p) × (p/x). The sensitivity index quantifies the
ratio of relative changes on the variable x in response to corresponding changes in
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the parameter p. The variable x is most sensitive to the parameter with the largest
sensitivity index value (in magnitude) and least sensitive to the parameter with the
smallest sensitivity index value (in magnitude). The sensitivity indices of the basic
reproduction number, RTBV , with respect to the different parameters are listed in
Table 2. The parameter values are the same as in Table 1 while δh = 0.1, τh = 0.4,
Chv = 65, Cvh = 65, and ξh = 0.18.

Table 2. Sensitivity indices of RTBV for model (5)

Parameter Sensitivity index Parameter Sensitivity index Parameter Sensitivity index

Λh +0.5000 σh +0.0003 Cvh +0.5000

rh +0.0000 τh −0.3860 σv +0.3576

δh −0.0965 ξh −0.5149 Λv +0.5000
µh +0.9970 Chv −0.1626 µv −0.6951

The basic reproduction number is most sensitive to the natural death rate of
humans, µh, the death rate of mosquitoes parameter, µv, and the vaccination rate
parameter, ξh. More specifically, the basic reproduction number (RTBV ) decreases
by 6.95% for an increase in the death rate of mosquito by 10%, and decreases
RTBV by 5.15% for an increase the vaccination coverage by 10%. The public
health implication of these results is that the disease can be controlled effectively by
increasing the living standard of the population in the endemic region (or decreasing
µh), increasing the vaccination coverage (or increasing ξh), and by controlling the
mosquito population (or increasing µv) simultaneously. This further confirms that
the importance of the current vector control strategies such as the use of ITNs and
IRS even in the presence of vaccination.

In the endemic areas, the prevalence of the disease is subject to malaria-related
mortality and other malaria-related epidemiological parameters. Therefore, it is
also important to explore the sensitivity of the infectious human population in
these parameters. We use the Latin Hypercube Sampling (LHS) and Partial Rank
Correlation Coefficient (PRCC) techniques [18] to perform the sensitivity analysis to
identify the parameters that have significant importance to Ih. More specifically, we
sample the twelve parameters of the model system (5) and measure their statistical
impact on Ih. The baseline value for each parameter is set to be the values used
in Table 2, and the respective minimum and maximum values for each parameter
range are set to 67% and 133% of the mean value. For each parameter, 1000 input
values are obtained by sampling a uniform probability distribution. We calculate
the PRCCs, which evaluates the monotonicity of the model output (Ih) in terms
of the model parameters, from the sampling data. Values of PRCC closer to +1 or
−1 , imply stronger correlation between the output, Ih in our case, and the input
parameter. A negative sign means the input parameter is inversely proportional
to the output (Ih). In order to understand the dynamics of PRCCs over time, we
calculated the PRCCs for a five-year period. The result is presented in Fig. 4 for
statistically significant (p-value < 10−5) PRCCs, the non-statistically significant
PRCCs are omitted. It again confirms that the prevalence of the infection is most
sensitive to the mosquito death rate, and the vaccination rate. It is not surprising
to see that the the prevalence of the infection is also very sensitive to the treatment
rate.
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6. Conclusion. The paper presents a mathematical model of the transmission dy-
namics of malaria which incorporates transmission-blocking vaccines. The model al-
lows for the assessment of the role of effective contact rate of humans and mosquitoes,
the role of disease induced mortality rate, and the role of the vaccination rate on
the disease spread. The model was rigorously analyzed to gain insights into their
qualitative dynamics. The following results were obtained.

(i) Without vaccination (or when ξh = 0) the model tells that a backward bi-
furcation occurs when the disease-induced mortality rate is large. Untreated
malaria is a lethal disease with high mortality rate, and generally a backward
bifurcation is expected. Moreover, we show that when there is no vaccination
the disease free equilibrium is globally stable if the basic reproduction num-
ber, R0, is less than Rc, a critical value to avoid the backward bifurcation
(see Theorem 3.6.)

(ii) The main goal of the paper is to study the impact of mosquito-stage transmiss-
ion-blocking vaccines on the disease transmission. The basic reproduction
number of the model, RTBV , is calculated, and it is shown that it decreases
as the vaccination rate increases. Since a reduction in the basic reproduc-
tion number implies reduction in disease burden, the model suggests that
transmission-blocking vaccines will have a positive impact on reducing the
disease burden.

(iii) Numerical simulations are carried out to observe the change in the prevalence
of infection for various vaccination rates. The results suggest that the disease
can be reduced (can even be eliminated) as the vaccination coverage increases.
However, if the vaccination rate is not high enough, the disease might still
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persist. Also, it is observed that the reduction of infection in vectors is quicker
than the reduction in humans. This might be a direct implication of the
transition-blocking vaccine targeting at vectors rather than humans.

(iv) Sensitivity analysis is performed, and the result suggests that both the basic
reproduction number and the prevalence of the infection are highly sensitive
to the vaccination rate (ξh), as well as the death rate of mosquitoes (µv) and
the death rate of humans (µh). The public health implication of these results
is that the vaccination is as important as other disease control strategies, such
as vector control strategies, treatment of infected individuals, and improving
the living standard in the endemic areas.

A future work is to extend the mathematical model to study the impact of the
TBVs in combination with other human-stage vaccines on the disease transmission.
Also, it will be interesting to study how to optimize the control strategies with the
current ITNs and IRS.
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