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Abstract. Vulnerable plaques are a subset of atherosclerotic plaques that are

prone to rupture when high stresses occur in the cap. The roles of resid-

ual stress, plaque morphology, and cap stiffness on the cap stress are not
completely understood. Here, arteries are modeled within the framework of

nonlinear elasticity as incompressible cylindrical structures that are residually

stressed through differential growth. These structures are assumed to have
a nonlinear, anisotropic, hyperelastic response to stresses in the media and

adventitia layers and an isotropic response in the intima and necrotic layers.
The effect of differential growth on the peak stress is explored in a simple,

concentric geometry and it is shown that axial differential growth decreases

the peak stress in the inner layer. Furthermore, morphological risk factors are
explored. The peak stress in residually stressed cylinders is not greatly affected

by changing the thickness of the intima. The thickness of the necrotic layer is

shown to be the most important morphological feature that affects the peak
stress in a residually stressed vessel.

1. Introduction. Over time, coronary arteries can develop atherosclerosis, char-
acterized by local thickening of the vessel wall. A subset of atherosclerotic plaques,
called vulnerable plaques, are particularly unstable and prone to rupture. When
rupture occurs, platelets collect at the site of the injury and these can form clots
large enough to block the artery. Vulnerable plaques are characterized by a thin
fibrous cap and a large lipid-rich necrotic core. The wall shear stress (< 10−2 kPa)
due to blood flow ([16]), is extremely low compared to the critical stress within the
plaque (300 kPa) ([34], [17]). Therefore, the structural stress in plaques plays an
important role in plaque rupture ([34], [32].

Computational studies have been done to study stress in vulnerable plaques
and to understand morphological risk factors for rupture. Studies have shown that
stresses in the cap increase with decreasing cap thickness ([6], [33], [19]). [24] showed
that the size of the necrotic core has a significant influence on cap stresses. Finite
element analyses performed by [2] showed that cap thickness was the most impor-
tant morphological risk factor for stiff intima models but the necrotic core thickness
and necrotic core angle have a larger impact in soft intima models. However, resid-
ual stresses were not included in these models. [23] showed that residual stresses
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have been shown to be non-negligible in vulnerable plaques and that residual stress
dramatically affects the physiological peak stress amplitude in the thin fibrous cap.
This study also showed that residual stress does not shift the peak stress within
the cap. However, a full three-dimensional morphoelastic model that includes axial
residual stress is needed in order to understand the full effects of residual stress.

Residual stresses in arteries, and many other biological materials, are known to
be the result of differential growth, that is different parts of the tissue grow at
different rates. The existence of residual stress in arteries ([18], [35], [35], [30])
has been demonstrated by performing radial cuts on unloaded rings. Thin rings of
each of these tissues will open up into sectors, indicating the presence of internal
stresses in the intact structures. Furthermore, axial strips of the different layers of
the arteries will compress or extend when separated.

For a healthy, young artery, [9] showed that the intima contributes negligible
mechanical strength to the arterial wall. Therefore, morphoelastic models have
focused on two-layer models incorporating the media/intima and the adventitia
([30], [7], [29]). However, for aged human arteries the intima exhibits considerable
thickness and strength. Previous morphoelastic models have not taken into account
the intima or necrotic components.

The purpose of this article is to study theoretically the mechanical effect of resid-
ual stresses in an artery with intimal thickening that includes a low stiffness layer
representing the necrotic layer. Previous studies have used two-dimensional models
( [23]) and neglected to include residual stresses ([6], [2], [33], [19]) in their compu-
tations. Therefore this work is novel in that a residually stressed three-dimensional
morphoelastic model is used to understand the full effects of residual stress. While
vulnerable plaques tend to be asymmetric ([21]), here we focus on concentric le-
sions to first understand the effects of residual stress in a simpler geometry. The
media and adventitia are assumed to be anisotropic hyperelastic materials proposed
by [10] while the intima and necrotic layers are modeled as isotropic neo-Hookean
materials due to the fact that little is known regarding the mechanical effects of
the atherosclerotic intima. Residual stress is introduced through a multiplicative
decomposition of the growth tensor as proposed by [28]. These tools are used to
answer the following questions:

1. What is the effect of residual stress on the peak stress in an artery?
2. What is the influence of morphological features such as the thicknesses of the

intima and necrotic layers in a residually stressed artery?
3. How does the stiffness of the intima affect the peak stress in a residually

stressed artery?

2. A mechanical model of growing arteries.

2.1. Kinematics. Consider a continuous body whose reference configuration is
defined by B0 (see Figure 1). Let X denote the position vectors in B0. The body
is deformed to the new current configuration, Bf where the position of a material
point X is x = χ(X, t). The deformation gradient, F(X, t) =Gradχ relates a
material segment in the reference configuration to the same segment in the current
configuration. Here, we use the fundamental assumption of morphoelasticity that
follows from early work in elastoplasticity ([13], [25]) and was first described in [26].
It states that the deformation gradient F(X, t) can be decomposed into a product
of a growth tensor G(X, t) and an elastic tensor A(X, t), so that
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F(X, t) = A(X, t) ·G(X, t). (1)

As shown in Figure 1, the growth tensor G(X,t) maps B0 to the virtual configuration
V which is locally stress-free. The growth deformation tensor may not result in a
continuous change from point to point and may not be compatible. If we require
continuity of the body, the elastic deformation is introduced which in turn causes
residual stress in the grown body Bf .
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Figure 1. Decomposition of a growing, pressurized body.

2.2. Mechanical equilibrium. We now consider the balance of forces acting on
Bf . Balancing linear momentum and using Cauchy’s theorem, the equation for
mechanical equilibrium is given by

div(TT) = 0, TT = T, (2)

where the divergence is taken with respect to x in the current configuration. The
solutions to the equilibrium equations must also satisfy the dead-loading conditions
imposed on the boundary. The artery is assumed to have zero pressure on the
outer wall and a constant internal pressure mimicking the systolic blood pressure
experienced by the arterial wall in vivo.

We assume that the body is hyperelastic. That is, the material can be described
by a strain energy function W = W (A). Assuming the material is incompressible,
the Cauchy stress is related to the elastic deformation, A, by

T = A · ∂W
∂A
− pI, (3)

where p is a Lagrange multiplier associated with the internal constraint of incom-
pressibility.



1202 REBECCA VANDIVER

2.3. Elastic response. The model we consider is a five-layered model with an
inner intima layer, necrotic layer (low stiffness layer), outer intima layer, media,
and adventitia. In a healthy artery, [9] showed that the intima is known to have
negligible (solid) mechanical contributions. However, in an artery with intimal
thickening, the intima is a relevant layer with significant load-bearing capacity ([11],
[27]). The composition of plaques can vary greatly and therefore the mechanical
properties can be highly variable. The intima and necrotic layers are assumed to
be neo-Hookean ([8]) with the strain energy density function given by

W = C(I1 − 3) (4)

where I1 = α2
r+α2

θ+α2
z is an invariant of the right Cauchy-Green tensor C = FT ·F

and C is a material constant in units [N/m2]. For small deformations, C can be
derived form the Young’s modulus, E, by C = E/6. The necrotic core is assumed
to be a very soft tissue (E = 1 kPa) ([20]). Experimental studies on atherosclerotic
plaque material properties have reported E values from 33 kPa to 1000 kPa ([4],
[15], [3], [14]). An intermediate stiffness (E = 500) will be used for the intima but
we will also show results for low (E = 100) and high (E = 1000) values to test how
sensitive the results are to this parameter.

Numerous constitutive models have been proposed for the media and adventitia
layers of arteries (see review in [12]). Here, we use a structural model introduced
by [11] for coronary arteries with intimal thickening. The media and adventitia
tissue are known to be anisotropic due to the fact that each layer is reinforced with
collagen fibers with preferred directions. The model accounts for the orientations of
the collagen fibers in each layer. The contribution of collagen fibers in the arterial
wall is considered to be negligible at low pressures and therefore, the mechanical
response is assumed to be isotropic. However, at higher pressures, the collagen
fibers are stretched and the resulting mechanical response is anisotropic. For the
media and adventitia, the strain energy density function is given by

W = µ(I1 − 3) +
k2
k1

(
exp{k2

[
(1− ρ)(I1 − 3)2 + ρ(I4 − 1)2

]
} − 1

)
(5)

where µ > 0 and k1 > 0 are stress like parameters, k2 > 0 and ρ ∈ [0, 1] are
dimensionless parameters, and I4 > 1 is an invariant of the right Cauchy-Green
tensor. The invariant I4 = λ2θ cos2 φj + λ2z sin2 φj is the square of the stretch in the
direction of the two families of collagen fibers. The two families of (collagen) fibers
are arranged in symmetrical spirals, here assumed to be mechanically equivalent.
The fibers are assumed to be embedded in the tangential surface of the tissue where
φj represents the angle between the fibers. The subscript j = m, a refers to the
media and adventitia. Parameter values are taken from [11] for a coronary artery:
k1m = 21.60, k2m = 8.21, k1a = 38.57, k2a = 85.03, φm = 20.61◦, φa = 67◦, ρm =
0.25, ρa = 0.55.

2.4. Growth formulation. For the particular case of an artery with intimal thick-
ening and a necrotic layer within the intima, we consider a five-layered cylinder with
an inner intima layer of initial radii A and A1, necrotic layer of initial radii A1 and
A2, outer intima layer of initial radii A2 and B, media of initial radii B and C,
and adventitia of initial radii C and D (shown in Figure 2). We consider a finite
deformation in which the cylinder is allowed to grow and deform while remaining
cylindrical. Unlike eccentric plaques, bending generally does not occur in concentric
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Figure 2. Geometry in the initial configuration. The intima has
initial and outer radii of A and B with a low stiffness layer (necrotic
layer) between A1 and A2. The media has initial inner and outer
radii B and C and the adventitia is between C and D.

plaques [5]. The finite deformation of each cylindrical shell is given by

x = χ(X, t), (6)

and

X = (R,Θ, Z), x = (r, θ, z), (7)

r = r(R), θ = Θ, z = λZ (8)

The geometric deformation in cylindrical coordinates is

F = Grad(χ) (9)

= diag(r′, r/R, λ), (10)

where the gradient is take in the reference configuration, the prime denotes differ-
entiation with respect to R, and λ is the axial stretch of the cylinder. The growth
tensor is given by

G = diag(γr, γθ, γz). (11)

where γr, γθ and γz are the dimensionless geometric stretch factors associated with
growth in the radial, circumferential and axial directions, respectively. The values
of these growth stretch factors will be determined from known values of the residual
strain in Section 2.6. The elastic tensor is given by

A = diag

(
γz
αλ

, α,
λ

γz

)
(12)
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where we have used the incompressibility condition detA = 1 and α = r/(Rγθ).
The decomposition F = A ·G together with the incompressibility condition implies
detF = detG. Therefore the function r(R) in Equation 8 satisfies

dr

dR
=
γrγθγzR

rλ
(13)

At the interfaces separating different layers, the displacements must be continuous,
that is

r(a+1 ) = r(a−1 ), r(a+2 ) = r(a−2 ), r(b+) = r(b−), r(c+) = r(c−). (14)

2.5. Finite deformation. Assuming that in the deformation the cylinder retains
its cylindrical symmetry, the only non-vanishing equation in the mechanical equi-
librium Equation (2) is

∂Trr
∂r

+
Trr − Tθθ

r
= 0. (15)

where the Cauchy stress tensor is given by T= diag(Trr, Tθθ, Tzz). Using the auxil-

iary function Ŵ (α) = W (γz/(αλ), α, λ/γz), the stress-strain relationship in (3) can
be used in the mechanical equilibrium Equation (2) to obtain

∂Trr(r)

∂r
=



α∂αŴ
(i1)

r a ≤ r ≤ a1,
α∂αŴ

(n)

r a1 ≤ r ≤ a2,
α∂αŴ

(i2)

r a2 ≤ r ≤ b,
α∂αŴ

(m)

r b ≤ r ≤ c,
α∂αŴ

(a)

r c ≤ r ≤ d,

(16)

where the superscripts i1, n, i2,m, a refer to the inner intima, necrotic layer, outer
intima, media, and adventitia layers, respectively. Assuming the boundary condi-
tions of zero normal traction on the outer boundary and an internal pressure, P , at
the inner boundary (Trr(a) = −P and Trr(d) = 0), we integrate Equation (16) to
obtain an equation for the radial stress

Trr(r) =



−P +
∫ r
a
α∂αŴ

(i1)

r′ dr′ a ≤ r ≤ a1,
Trr(a2)−

∫ a2
r

α∂αŴ
(n)

r′ dr′ a1 ≤ r ≤ a2,
Trr(b)−

∫ b
r
α∂αŴ

(i2)

r′ dr′ a2 ≤ r ≤ b,
Trr(c)−

∫ c
r
α∂αŴ

(m)

r′ dr′ b ≤ r ≤ c,
−
∫ d
r
α∂αŴ

(a)

r′ dr′ c ≤ r ≤ d.

(17)

The hoop stress and axial stress are given by

Tθθ(r) = Trr + αW2 −
γz
λα

W1, Tzz(r) = Trr +
λ

γz
W3 −

γz
λα

W1 (18)

where W1, W2, and W3 are the derivatives of W with respect to its first, second,
and third variables. At the surface of stress discontinuities r = a1, a2, b, c, the
associated tractions need to be equal but opposite, which requires the radial stress
to be continuous across r, that is

Trr(a
+
1 ) = Trr(a

−
1 ), Trr(a

+
2 ) = Trr(a

−
2 ),

Trr(b
+) = Trr(b

−), Trr(c
+) = Trr(c

−). (19)
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For an internal pressure P , the two free parameters a and λ are obtained by solving
simultaneously the axial equilibrium and boundary condition

Trr(d) = 0,

∫ d

a

rTzz(r)dr = πa2P. (20)

The stress in a system will depend on the geometry. Therefore, when studying the
effect of residual stress, it will be important to compare two structures with the same
dimensions where one has residual stress and one does not. In this case, the grown
dimensions of the load-free cylinder are pre-determined and the free parameter is
the initial inner radii, A, instead of the grown inner radii, a. Based on experimental
data by [1], the dimensions in the current (grown) configuration are set to a = 1.0
mm, a1 = 1.15 mm, a2 = 1.69 mm, b = 1.89 mm, c = 1.97 mm, and d = 2.02 mm.

��a��

��d��

��

�0�

Figure 3. Schematic of a radial cut in an artery and the corre-
sponding opening angle φ.

2.6. Residual stress. The form of the growth tensor can be determined by en-
suring compatibility with a given residual stress field. [10] separated the layers of
an artery and measured the change in length. Using this data, the axial growth is
assumed to be γz = 1.14 in both the intima and necrotic layers, γz = 1.05 in the
media, and γz = 1 in the adventitia. To determine the radial growth, we use data
on the opening angle from a radial cut on a thin ring of artery, as done by [31]. The
basic idea is to consider an additional decomposition from configuration V to Bf .
The material elements in the configuration V are reassembled into the configuration
B1, which represents a single opened ring due to a radial cut (Figure 1). The defor-
mation Aa to configuration B1 will contain residual stress if the elements of V are
geometrically incompatible. Lastly, the deformation Ab bends the ring closed and
the ring is subjected to an internal pressure P to produce the final configuration
Bf .

The cylindrical polar coordinates in B1 are given by (ρ, ϑ, ζ). The elastic tensor
A can be decomposed into the product of two tensors, A = Aa ·Ab, where

Aa = diag(αaρ, αaϑ, αaζ), Ab = diag(αbρ, αbϑ, αbζ). (21)

The solution for configuration Bf is calculated as described in Section 2.5. Once this
solution is known, the geometry and corresponding stresses in the cut ring can be
determined as follows. The total deformation in terms of the material coordinates
in B1 is given by

r = r(ρ), θ = πϑ/ϕ0, z = Λζ, (22)
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where Λ is the axial stretch and ϕ0 is the angle related to the opening angle ϕ =
2(π − ϕ0) defined in Figure 3. The kinematic relationships are given by

αaρ = λr(αbργr)
−1, αaϑ = λθ(αbϑγθ)

−1, αaz = λz(αbζγz)
−1, (23)

αbρ = ∂r/∂ρ, αbϑ = πr/ϕ0ρ, αbζ = Λ, (24)

and the incompressibility conditions are given by

αaραaϑαaz = αbραbϑαbz = 1. (25)

The equilibrium equation is

∂Tρρ
∂ρ

+
Tρρ − Tϑϑ

ρ
= 0, (26)

where the Cauchy stress components Tii in B1 are given by

Tii = αai
∂W

∂αai
− p̂. (27)

The subscript i corresponds to the parameters ρ,ϑ,and ζ, p̂ is the Lagrange multiplier
in B1, and the strain-energy density function is W = W (αaρ, αaϑ, αζ). In the
unloaded configuration B1, we assume zero net axial force and bending moment
and zero normal traction on the inner and outer boundaries,∫ ρ(d)

ρ(a)

Tζζρdρ = 0,

∫ ρ(d)

ρ(a)

Tϑϑρdρ = 0, (28)

Tρρ[ρ(a)] = Tρρ[ρ(d)] = 0, (29)

where ρ(a) and ρ(d) are the inner and outer radii in B1.
Substituting the expressions from (24) into the incompressibility condition (25)

yields
πΛr

ϕ0ρ

∂r

∂ρ
= 1, (30)

which can be integrated to obtain

ρ(r) =

(
ρ(a)2 +

πΛ

ϕ0
(r2 − a2)

)1/2

. (31)

Equations (28) can be written in terms of the material cooordinate r by using the
relationship in (30),

πΛ

ϕ0

∫ d

a

rTζζ(r)dr = 0,
πΛ

ϕ0

∫ d

a

rTϑϑ(r)dr = 0. (32)

The equilibrium equation (26) is integrated to obtain an equation for the radial
stress

Tρρ(r) =
πΛ

ϕ0

∫ r

a

r

ρ(r)2
(Tϑϑ(r)− Tρρ(r))dr. (33)

Substituting the boundary condition at the outer boundary (Tρρ(d) = 0) into the
previous equation yields

πΛ

ϕ0

∫ d

a

(
r

ρ(r)2
(Tϑϑ(r)− Tρρ(r)

)
dr = 0. (34)

Equations (32) and (34) are used to solve for the unknown parameters ρ(a), Λ, and
ϕ0 and the solution for B1 is completely determined. The opening angle of human
coronary arteries can vary depending on the degree of arteriosclerosis and distance
from the right coronary artery orifice. Based on data from [36], the opening angle is
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assumed to be 130 ◦. The radial growth corresponding to an opening angle of 130 ◦

is γr = 1.326 where the radial growth is assumed to be the same in each layer.
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Figure 4. Effect of γz on the peak stress in the inner intima layer.

3. Results. High stress can occur in the thin cap of an atherosclerotic artery which
may lead to rupture. Therefore, it is imperative to understand what affects the
stress distribution in the inner intima layer. Using the baseline parameter values
denoted in Table 1, we vary particular values to study the effects of morphological
and mechanical features on the stress in the inner intima layer. Furthermore, we
investigate the importance of including residual stress in the calculation.

3.1. Effect of residual stress. As noted in the introduction, most studies have
neglected residual stress when calculating stress distributions in arteries. Residual
stress is introduced through differential growth. Therefore, we study how axial and
radial growth affect the peak stress. First we consider the effect of differential growth
in the axial direction by varying γz in the intima and necrotic layers. The peak
stresses in the radial, circumferential and axial directions in the inner intima layer
are plotted with respect to γz in Figure 4. Note that the peak stress is defined as
the stress with largest absolute value. The radial stress is compressive, hoop stress
is tensile, and axial stress changes from tensile to compressive as the axial growth
increases. For low growth values, the maximum stress is in the circumferential
direction. Increasing γz between 1 and 1.2740 results in a decrease in peak stress
by 56%. As γz increases past 1.2740, the difference in growth in the layers causes
the peak stress to be in the axial direction. This stress increases as γz increases.
However, physiologically reasonable values of γz are in the region where the peak
stress is in the circumferential direction.
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Symbol Meaning Value Reference

γzi, γzn axial growth in intima/necrotic 1.14 [10]
γzm axial growth in media 1.05 [10]
γza axial growth in adventitia 1 [10]

γri, γrn, γrm, γra radial growth in each layer 1.326 Eq. (32), (34),
[36]

µm stress-like parameter 1.27 [11]
µa stress-like parameter 7.56 [11]
k1m stress-like parameter 21.60 [11]
k1a stress-like parameter 38.57 [11]
k2m non-dimensional parameter 8.21 [11]
k2a non-dimensional parameter 85.03 [11]
ρm non-dimensional parameter 0.25 [11]
ρa non-dimensional parameter 0.55 [11]
φm angle between fibers 20.61◦ [11]
φa angle between fibers 67◦ [11]
Ei intima Young’s modulus 100 − 1000 kPa [4],

[15],
[3],
[14]

En necrotic Young’s modulus 1 kPa [19]
P internal pressure 14.6 kPa -
a grown lumen radius 1.0 mm [1]
a1 grown intima-necrotic radius 1.15 mm [1]
a2 grown necrotic-intima radius 1.69 mm [1]
b grown intima-media radius 1.89 mm [1]
c grown media-adventitia radius 1.97 mm [1]
d grown outer wall radius 2.02 mm [1]

Table 1. Parameters and their baseline numerical values.

Very little data exists on estimates of axial stress in arteries. However, an ex-
periment on human aortas with non-atherosclerotic intimal thickening show that
the media and adventitia are in tension in the intact artery and the intima is in
compression [10]. Based on their length measurements after separating the layers of
arteries, axial growth in our model is given by γz = 1.14 in the intima and necrotic
layers, γz = 1.05 in the media, and γz = 1 in the adventitia. Using these values
for axial growth, the effect of radial growth on the peak stress is considered. It is
assumed there is no growth in the circumferential direction and γr is the same for
each layer. Figure 5 shows that the circumferential peak stress initially increases
as γr is increased and then it decreases. Varying γr has a large effect on the peak
stress. Based on our estimate of the radial growth found in Section 2.6 (γr = 1.326),
we see that the peak stress occurs in the circumferential direction. Because we know
that the peak stress occurs in the circumferential direction, wee will denote the peak
cap stress as PCS .

3.2. Effect of low stiffness layer. A study by [24] showed that the size of the
necrotic core has a significant influence on stresses in the inner intima layer. How-
ever, their model does not incorporate residual stress. The effects of the thickness
of the necrotic layer are shown in Figure 6 for an artery with residual stress and
without residual stress. The peak cap stress (PCS) is plotted versus the thickness
of the necrotic layer. The geometry of the artery without residual stress before
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Figure 5. Effect of γrj for j = i, n,m, a on the peak stress in the
inner intima layer.
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Figure 6. Effect of necrotic layer thickness on peak stress.

an internal pressure is applied is identical to the grown artery with residual stress.
Therefore, geometrical effects do not account for the differences in peak stresses that
are observed. The residual stress increases the peak stress in the inner intima layer
except in the case of a very thin necrotic layer. In addition, a residually stressed
artery would produce a larger increase in peak stress when doubling the thickness
of the necrotic layer. For example, suppose the thickness of the necrotic layer is
0.27 mm. Compared to an artery with a necrotic layer of 0.54 mm, the residually
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stressed artery results in a 39% increase in peak stress whereas the peak stress in
the artery without residual stress increases by only 21.6%. The baseline estimate
for the necrotic layer thickness is 0.54 mm. At this value, the residually stressed
artery has a much higher PCS.
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Figure 7. Effect of cap thickness on peak stress.

3.3. Effect of inner intima layer thickness. [6] used a computational structural
analysis based on three typical in-vivo intravascular ultrasound images of fibrous
cap atheroma to study the effect of decreasing the cap thickness (CTh). In three
plaques studied, the mean curve interpolation of the three curves PCS versus CTh
is given by

PCS = 49.72 ∗ CTh−0.644 (35)

where cap thickness is in mm and PCS is in kPa. Residual stress was not included
in their model and the plaques were eccentric. Estimates of PCS from other studies
are seen in Table 2. The estimate in [6] is plotted along with our model results in
Figure 7. The artery without residual stress displays similar behavior as the model
in [6]. The peak stress increases as the cap thickness decreases in an artery with
no residual stress. However, the opposite is true for a residually stressed structure.
Furthermore, for small cap thicknesses, the residually stressed artery has a much
lower peak stress.

Peak Stress Reference
67− 364 kPa [19]
385− 705 kPa [37]

126.4− 238.2 kPa [22]

Table 2. Peak stress computed using finite element analysis in
eccentric plaques.
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3.4. Effect of outer intima layer thickness. Figure 8 shows the effect of the
outer intima layer thickness on the peak stress. The peak stress in an artery without
residual stress will decrease as the thickness of the layer increases. On the other
hand, when residual stress is present the peak stress increases. However, the peak
stress changes very little over a wide range of thicknesses in the residually stressed
artery.
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Figure 8. Effect of thickness of outer intima layer on peak stress.

3.5. Effect of intima stiffness. As discussed in Section 2.3, the stiffness of the
intima can vary greatly. For a residually stressed vessel, Figure 9 shows the peak
stress versus cap layer thickness for various stiffness values. The necrotic layer has
very low stiffness. Therefore, when the intima is very stiff, it will support a higher
stress no matter the cap thickness. For low stiffness, the stresses are more evenly
distributed across the layers and the peak stress in the cap is lower than the other
cases. Also note that the peak stress decreases as a function of cap thickness only
if the intima stiffness is below a particular threshold.

4. Conclusion. Understanding the stress distributions in the wall of an atheroslc-
erotic artery and how morphological and mechanical features affect these stresses is
crucial to understand the risk of plaque rupture ([6], [19], [24]). However, residual
stresses are largely ignored in structural analyses and therefore the effects of residual
stress on atherosclerotic artery walls is not well understood. Therefore, in this study,
a simple geometry was used to better understand the role of residual stress on peak
stress in the inner intima layer. In this paper we have considered a mechanical
model of arteries that includes a stiff intima and a necrotic layer with low stiffness.
The necrotic layer was characterized as a soft, neo-Hookean material and the cap
had identical material properties as the intima layer behind the necrotic layer. The
model of [11] was used for the mechanical part of the media and adventitia, and
the approach of [28] was used for the modeling of residual stress. Residual stress is
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introduced through differential growth of the artery layers. The form of the growth
tensor was found by matching theoretical results to opening angle experiments.

Studies have shown that stresses in the cap increase with decreasing cap thickness
([6], [33], [19]). Our model agrees with this result for an artery without residual
stress. However, decreasing cap thickness can actually decrease the peak cap stress
when residual stress is included and the intima is stiff. [24] showed that the size of
the necrotic core has a significant influence on cap stresses. We also observe this
influence in our model but we also see that as the thickness of the necrotic layer
increases, the peak stress in the residually stress cylinder increases at a greater rate
than the cylinder without residual stress.

Finite element analyses performed by [2] showed that cap thickness was the
most important morphological risk factor for stiff intima models in stiff intima
models. Here, the influence of the inner and outer intima layers was shown to have
a large effect in the case of a vessel without residual stress. However, the peak
stress changed very little as the thickness of the intima layers varied in a residually
stressed vessel. The thickness of the necrotic layer had a large effect on the peak
stress in a vessel with residual stress. Overall, in the residually stressed cylinder,
the thickness of the low stiffness layer played the largest role in affecting the peak
stress.

This study strengthens the importance of residual stress in calculating stress dis-
tributions in atherosclerotic arteries. Furthermore, axial residual stress in particular
clearly plays an important role and therefore a three-dimensional model is impor-
tant in capturing these effects. The complex interactions of growth and stress can
result in counter-intuitive results and it is important to carefully study the effects
of differential growth and residual stress. A model that uses a non-axisymmetric
geometry would be needed to next study how geometry affects the overall stress
distribution. These results could then be compared to experimental data on the
material strength of various layers to describe the risk of rupture in the vessel.
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