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Abstract. This study presents a metapopulation model for the sylvatic trans-
mission of Trypanosoma cruzi, the etiological agent of Chagas’ disease, across

multiple geographical regions and multiple overlapping host-vector transmis-

sion cycles. Classical qualitative analysis of the model and several submodels
focuses on the parasite’s basic reproductive number, illustrating how vector

migration across patches and multiple transmission routes to hosts (including

vertical transmission) determine the infection’s persistence in each cycle. Nu-
merical results focus on trends in endemic [equilibrium] persistence levels as

functions of vector migration rates, and highlight the significance of the differ-
ent epidemiological characteristics of transmission in each of the three regions.

1. Introduction. A vector-borne disease of major concern in the Americas, trans-
mitted via insect vectors from the subfamily Triatominae, is Chagas’ disease. Cha-
gas’ disease, discovered in 1909, is widespread in Mexico, Central America, and
throughout Latin America. An estimated 8 to 11 million people are currently in-
fected, with many unaware of their infection [57]. However, in the United States,
fewer than 10 cases of autochthonous transmission have been reported [6]. Although
more attention is being given to Chagas’, incidence of the disease remains under-
reported, and Chagas’ is classified as a neglected parasitic infection in the United
States [11].

Although there have been few human cases in the U.S., the disease remains en-
demic in sylvatic cycles throughout Mexico and the United States. Sylvatic trans-
mission cycles are vector-host cycles that occur naturally in the wild. In the United
States, triatomine vectors are found in 26 states [30], involving approximately 11 tri-
atomine vector species (with 8 of the 11 in Texas) and over 100 mammalian species.
In the United States, some of the most common sylvatic hosts include opossums
(Didelphis virginiana) and raccoons (Procyon lotor) in the southeastern parts of the
country and woodrats (Neotoma micropus) in Texas (extending also into northern
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parts of Mexico). Other species, such as dogs, armadillos, and skunks, and chick-
ens have also been noted as relevant species in sylvatic settings (with canines part
of some domestic and peridomestic cycles [10, 59]). Of the 11 vector species and
mammalian species listed here, we identify two primary vector species associated
with these hosts in the southeastern U.S., Triatoma sanguisuga, found all along
the southeastern Atlantic coast from Florida into central Texas, and Triatoma ger-
staeckeri, found mostly from central Texas south into states in northern Mexico [26].
In addition to the complex vector-host cycles, there are also multiple strains of T.
cruzi circulating in these populations. There are 6 known strain types of T. cruzi,
types I-VI, of which types I and IV are circulating in the United States. There are
distinct differences between the strains, from host specificity to virulence. T. cruzi
I, associated with Chagas’ disease, is the primary strain circulating in Mexico (also
found in hosts in the U.S.), while type IV is almost exclusively found in the United
States [45].

Recent work by Crawford and Kribs-Zaleta [15] provides an understanding of how
local vector dispersal can be described in terms of global effects, so that we may now
consider a model that describes sylvatic cycles of T. cruzi over a large geographic
area. Because T. cruzi is maintained in sylvatic cycles, we recognize the need to
study the spatial spread of the disease, especially in North America, where risk of
Chagas has only recently been studied [26, 23]. Here we investigate several models
of T. cruzi, incorporating multiple modes of transmission and multiple patches.
More specifically, we wish to focus our efforts on the effects of vector migration
on sylvatic T. cruzi strain type IV transmission in two different North American
host-vector cycles.

To date, the majority of mathematical models for Chagas disease have been stud-
ied in humans and vectors, rather than the animal hosts. Velasco-Hernández [54]
modeled Chagas in humans using a model structure similar to the Ross-Macdonald
malaria model [46, 33], but included another infectious compartment for chronically
ill humans. Since infection with T. cruzi is maintained in reservoir (sylvatic) hosts
and human transmission cycles cannot be sustained without them [21], recently
more attention has been given to the spread of the T. cruzi parasite in Triatoma
vectors and associated animal hosts [29, 27]. In each model, Kribs-Zaleta uses a
deterministic SI model with one host and one vector to study the effects of alterna-
tive transmission modes for T. cruzi, namely vector consumption by animal hosts
and vertical transmission in hosts. Results show that vertical transmission is not
enough to maintain the infection cycle alone, but vertical transmission along with
even an inefficient host-vector transmission cycle can sustain the T. cruzi infection
cycle. Due to the nature of transmission of vector-borne disease, in which vec-
tors and hosts (especially in sylvatic settings) may be easily affected by weather
(mainly temperature and humidity) and landscape, spatial spread is a key element
in studying a vector-borne disease.

Spatial spread of a disease can be modeled using continuous or discrete space.
The majority of mathematical models involving the spatial spread of infectious dis-
eases in continuous time and space are modeled using reaction-diffusion systems
taking the form of a system of partial differential equations. Some studies incor-
porating spatial spread are the spread of rabies in the fox population [39], and the
vector borne diseases dengue [34] and West Nile virus [32]. The results of such
systems are generally described using traveling waves which describe the process of
the spread of the disease, most often over a homogeneous landscape. In each model,
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movement of either hosts or vectors (or both) is considered, with the underlying
assumption that the movement is random.

Other types of models incorporating spatial spread include multi-patch metapop-
ulation models in which movement occurs between n patches. Several models have
been studied, including a multi-species model by Arino et al. [4], in which analyt-
ical results are given for several multi-species, multi-patch models. In the study, a
formula is derived for the basic reproductive number R0 for multiple species and
multiple patches and global stability for the disease-free equilibrium is established
for R0 < 1. Allen et al. [3] gives a 3-patch model of hantavirus spread in reservoir
and spillover species in which the outer patches represent the preferred habitat of
the reservoir and spillover species and the middle patch represents the boundary
region in which the species overlap. We note here that the overlap region was
temporally- and spatially-dependent. The movement here is described in terms of
number of visits per year to the boundary region and length of time spent there.
Reproductive numbers for each patch were calculated, and it was determined that
the greater number of interactions among species caused the reproductive number
of the overlap patch to exceed the reproductive numbers of the patches representing
preferred habitat, thereby causing a greater possibility of disease persistence.

In this study we consider three different geographical areas we refer to as patches.
Each patch is described by a distinct transmission cycle between the hosts and
vectors in the model. Patch 1 is defined by the T. gerstaeckeri-woodrat infection
cycle in northern Mexico and southern Texas. Patch 3 is the south-eastern United
States, including parts of Texas, Louisiana, Mississippi, Alabama, Georgia, and
portions of the Carolinas and Florida panhandle and is defined by the T. sanguisuga-
raccoon infection cycle, while patch 2 includes the south to southwest parts of Texas
and a part of Coahuila, Mexico where we consider both species of vector and host
to overlap. We assume the communication between patches and between cycles in
patch 2 occurs through the movement of Triatoma vectors. T. sanguisuga migrates
between patches 2 and 3, and between raccoons and woodrats in patch 2, while
T. gerstaeckeri migrates between patches 1 and 2. We wish to investigate how
increased vector migration affects prevalence in the overlap patch compared to the
single-cycle patches.

In this study we develop and analyze an S-I metapopulation model with the
aforementioned hosts and vectors, in which hosts may exhibit vertical transmission
and vectors migrate between patches. We carry out standard analysis techniques,
such as calculating R0 for various sub-models of the larger metapopulation model
as well as determining existence of endemic equilibria analytically (when tractable)
in order to see effects of vector migration on R0. Finally, we perform numerical
analysis on the full model to determine effects of migration on prevalence of T.
cruzi.

2. Problem formulation and model.

2.1. Problem statement and assumptions. To establish stable large-scale de-
mographics for hosts and vectors, we assume that the growth for each species will
be logistic, and neither the hosts nor vectors identified in the model exhibit disease-
induced mortality. Studies have shown that the T. cruzi infecting raccoons and
opossums in areas in the south-southeastern U.S. are not pathogenic, and do not
appear to cause any symptoms of Chagas to the usual host [40, 58].
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Although triatomine bugs feed on many hosts in the wild, we consider woodrats
and raccoons based on data that correlates their geographic location very closely
with the vectors [41, 10, 42, 25]. In literature reviewed here, we have found the
only host associated with T. gerstaeckeri is the southern plains woodrat [26, 18].
Therefore, we consider that the southern plains woodrat is the preferred host for
the vector T. gerstaeckeri.

In this model there are several infection rates to be considered. We first dis-
tinguish between types of transmission routes. In this study, we consider both
horizontal and vertical transmission routes, and we mention here that we group
both stercorarian transmission and oral (host predation on infected vectors) trans-
mission into a single horizontal transmission parameter. The infection rates may
differ from vector to host and host to vector as well as by patch (geographical re-
gion). Biologically, the rate of infection between the hosts and vectors in each patch
should be different. However, as seen in section 4 when calculating numerical esti-
mates for the infection rate parameters (using a procedure called back-calculation),
it is mathematically necessary to keep some of the rates the same. Thus, we assume
that the rate of infection from raccoons to T. sanguisuga is the same in patches
2 and 3 and the rate of infection from T. gerstaeckeri to woodrats is the same in
patches 1 and 2.

Literature suggests that T. sanguisuga will feed on other hosts besides raccoons,
namely woodrats [18]. Thus, in patch 2, T. sanguisuga feeds on raccoons and
woodrats. Some proportion of vector-woodrat contacts are made with T. san-
guisuga, thus we define qW as the proportion of vector-woodrat contacts made with
T. sanguisuga, while 1− qW is the proportion made with T. gerstaeckeri. Further-
more, since T. sanguisuga feeds on both hosts, we define qS as the proportion of T.
sanguisuga contacts made with raccoons, while 1− qS is the proportion made with
woodrats. We denote the per vector infection rate from T. sanguisuga to woodrats
as βSW and the per vector infection rate from woodrats to T. sanguisuga to be
βWS .

T. cruzi has been confirmed to be transmitted vertically among mice in labora-
tory conditions [38]. However, there is limited data on vertical transmission of T.
cruzi in sylvatic hosts. We will assume that T. cruzi can be transmitted vertically
in raccoons and woodrats.

Infection contact rates could be limited by the host or vector population. For
our model, we assume that the limiting factor for infection from host to vector
will be the vector population. The hosts are plentiful enough for vectors to feed
as much as desired. Therefore, the vector population density will be the driving
force in determining the infection rate, and the contact process saturates more
quickly in the vector population than in the hosts. Thus, we consider the infection
term from host to vector in the model to be based on several factors. Using similar
derivation as in [28], we define the per-vector biting rate as z (in units of contacts per
vector per time), and thus the total vector-feeding contact rate as z ·Nv (with units
of bites/time). Thus, to calculate the rate of new vector infections, we multiply
the total vector-feeding contact rate by the proportion of contacts that involve
uninfected vectors and infected hosts, multiplied by the proportion of contacts that
result in an infection (πv) (units of infected vectors/bite) obtaining

zNv ·
Sv
Nv
· Ih
Nh
· πv = (πvz)

Ih
Nh

Sv.

To simplify, we write βh = πvz (in units of 1/time).
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Figure 1. Model (1). The migration rates represent outgoing
rates which must be adjusted by the patch area ratios for incoming
rates (see system (1))

We also need to describe the rate at which vectors infect hosts. Again, assuming
that the vector to host infection will be limited by the vector population (vectors
feeding as frequently as desired), we multiply the total vector-feeding contact rate
by the proportion of contacts involving uninfected hosts and infected vectors, mul-
tiplied by the proportion of contacts resulting in an infection (with units infected
hosts/bite),

zNv ·
Sh
Nh
· Iv
Nv
· πh = (πhz)

Iv
Nh

Sh.

In a similar manner, we define βv = πhz. But, we note here that βv is not in
units of 1/time, but rather infected hosts per vector per time. We will apply this
assumption to the infection terms in the model using the appropriate vector and
host subscripts.

2.2. The model. The model presented here is an S-I model incorporating migra-
tion and vertical transmission.

For each species we will use the general logistic birth rate b(N) = rN
(
1− N

K

)
,

where r represents the intrinsic population growth rate, N represents the total
population density, andK is the carrying capacity of the population density. We will
use this term for each vector and host population using the appropriate subscripts.
The logistic birth rate gives a reasonable description of the drop-off in births as
population density increases. With respect to the vector population, as intraspecific
competition for hosts intensifies, females lay fewer eggs, and the eggs’ hatch rate
also decreases. We further mention that the hosts in the model exhibit vertical
transmission. Therefore, we incorporate this into the model by defining the following
functions: f(N, I) and g(N, I) represent the birth rates for the hosts exhibiting
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vertical transmission. If only a proportion p (0 < p < 1) of infected hosts transmit
vertically, then g(N, I) = pI ·r

(
1− N

K

)
, where p is the proportion of the offspring of

infected hosts born infected with T. cruzi. Thus f(N, I) = (S+(1−p)I) ·r
(
1− N

K

)
.

We will apply this assumption to both hosts in the model, applying the appropriate
subscripts. The natural per host and per vector mortality rates are denoted by
µR, µW , µS , and µG. We distinguish clearly between the logistic birth and linear
mortality rate because mortality is assumed to be spread evenly among infected
and uninfected vectors and hosts, while births are assumed to contribute only to
the susceptible class, except for vertical transmission described previously.

In this model we will assume linear migration based on the idea of local dispersion.
We note that there are several different migration rates considered. We assume
that hosts and vectors move at different rates, and those rates differ by species,
by infection status, and by direction of migration. The migration parameters in
the model are denoted by bi or b̄i for vectors and ai or āi for hosts, designating
difference in direction of migration. Each subscript, i, is used to designate the
migrating species, R, S, G, or, W. For example, b̄G represents the migration rate of
T. gerstaeckeri from patch 1 to 2, while bG is the rate of T. gerstaeckeri from patch
2 to 1.

Furthermore, we note here that each patch has a different area, and the migra-
tion rates derived in [15] are affected by the size of the patch from which migration
originates. In the metapopulation model described here, each differential equation
represents the change in population density over time, thus the size of patch must
also affect the population density of the vectors and hosts in each patch. Since we
are considering migration of vectors between patches, the differences in population
densities must be accounted for. For example, in order to account for the differing
patch sizes, we consider the equation for the absolute number of infected T. san-
guisuga vectors in patch 3, where A3 denotes the area (in m2) of patch 3 and the
state variables have units of density. Then, the absolute number of vectors in patch
3 is given by

(IS3A3)′ = βR
IR3

NR3
SS3A3 − (µS + bS)IS3A3 + b̄SIS2A2.

It follows that

I ′S3 = βR
IR3

NR3
SS3 − (µS + bS)IS3 + b̄S

A2

A3
IS2.

In the model, we write b̄S
A2

A3
= b̃S and bS

A3

A2
= b̂S . This notation will be used

more generally for northward and southward migration rates, respectively.
Finally, we make the following assumptions about the demographic and migration

rates. First, for a given species (whether host or vector), in order for the population
not to go extinct in a given patch, we must have r > µ+ b (where b is the total per
capita migration rate out of the patch)—that is, combined mortality and emigration
cannot exceed the maximum growth rate. This seems biologically reasonable since
no local vector or host extinction has been reported. Second, we further assume
that µ > b; this assumption can be justified by rewriting it as 1/b > 1/µ—that
is, the average time before migrating exceeds the average lifetime, which means
most individuals will not leave their patch of origin during their lifetimes. Since
the patches in this study are large and individual dispersal occurs on a small scale,
this is reasonable. Third and last, we make the assumption that the migration
rates are low enough not to cause equilibrium population densities in any patch
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to exceed the region’s carrying capacity. If this assumption is violated, and the
carrying capacities are exceeded, the model equations would need to be adjusted
to distribute the resulting negative logistic term (as a result of additional density-
dependent deaths) proportionally between the susceptibles and infectives, since as
discussed earlier the equations are written taking logistic terms to measure births
only (generally supposed into the susceptible class). All of these assumptions can
be viewed as upper bounds on the migration rates, but in practice these bounds
do not interfere with the explorations at the heart of this investigation, since (as
will be seen in Section 4) estimated migration rates are orders of magnitude smaller
than the demographic rates.

We therefore derive the model given below and seen in Figure 1.

S′S3 =rS

(
1− NS3

KS3

)
NS3 − βR

IR3

NR3
SS3 − (µS + aS)SS3 + ãSSS2

I ′S3 =βR
IR3

NR3
SS3 − (µS + bS)IS3 + b̃SIS2

S′R3 =rR (SR3 + (1− pR)IR3)

(
1− NR3

KR3

)
− βS

IS3

NR3
SR3

− (µR + aR)SR3 + ãRSR2

I ′R3 =pRrRIR3

(
1− NR3

KR3

)
+ βS

IS3

NR3
SR3 − (µR + bR)IR3 + b̃RIR2

S′S2 =rS

(
1− NS2

KS2

)
NS2 −

(
qSβR

IR2

NR2
+ (1− qS)βWS

IW2

NW2

)
SS2

− (µS + āS)SS2 + âSSS3

I ′S2 =

(
qSβR

IR2

NR2
+ (1− qS)βWS

IW2

NW2

)
SS2 − (µS + b̄S)IS2 + b̂SIS3

S′R2 =rR (SR2 + (1− pR)IR2)

(
1− NR2

KR2

)
− βS2

IS2

NR2
SR2

− (µR + āR)SR2 + âRSR3

I ′R2 =pRrRIR2

(
1− NR2

KR2

)
+ βS2

IS2

NR2
SR2 − (µR + b̄R)IR2 + b̂RIR3

S′G2 =rG

(
1− NG2

KG2

)
NG2 − βW2

IW2

NW2
SG2 − (µG + aG)SG2 + ãGSG1

I ′G2 =βW2
IW2

NW2
SG2 − (µG + bG)IG2 + b̃GIG1

S′W2 =rW (SW2 + (1− pW )IW2)

(
1− NW2

KW2

)
− (µW + aW )SW2 + ãWSW1

−
(

(1− qW )βG
IG2

NW2
+ qWβSW

IS2

NW2

)
SW2

I ′W2 =pW rW IW2

(
1− NW2

KW2

)
+

(
(1− qW )βG

IG2

NW2
+ qWβSW

IS2

NW2

)
SW2

− (µW + bW )IW2 + b̃W IW1

S′G1 =rG

(
1− NG1

KG1

)
NG1 − βW

IW1

NW1
SG1 − (µG + āG)SG1 + âGSG2

(1)
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I ′G1 =βW
IW1

NW1
SG1 − (µG + b̄G)IG1 + b̂GIG2

S′W1 =rW (SW1 + (1− pW )IW1)

(
1− NW1

KW1

)
− βG

IG1

NW1
SW1

− (µW + āW )SW1 + âWSW2

I ′W1 =pW rW IW1

(
1− NW1

KW1

)
+ βG

IG1

NW1
SW1 − (µW + b̄W )IW1 + b̂W IW2

3. Analysis. Little information is known about the migration of the vectors. Thus,
we will explore several hypotheses. We will first consider that infected vectors are
the only species to migrate. In a study done by Añez and East [2] in 1984 on the
effect of parasites on the behavior of the vector Rhodnius prolixus, it was shown
that that the parasite Trypanosoma rangeli hindered the vector’s ability to draw
blood, thus causing the bug to bite 25 more times than an uninfected vector. Thus,
differential behavior of vectors infected with T. cruzi may affect the transmission
of the parasite as well as vector mobility as mentioned in [29]. In this context,
we will consider the possibility that infected vectors move in only one direction
(towards more preferred climates) and the possibility that infected vectors move
between patches at different rates for different directions. Furthermore, we consider
that uninfected vectors also migrate, but at a rate proportional to that of infected
vectors. We will not consider host migration to play a significant role. The hosts in
the model are bound by habitat constraints, and thus by definition of the patches,
we assume the hosts are not likely to cross patch boundaries.

In order to get a better understanding of the full model, several special cases
will be considered. The main identifying characteristics of the model are vertical
transmission, migration, and multiple hosts and vectors.

3.1. One patch, one host, one vector, no vertical transmission. We begin
the analysis of (1) by studying the simple system with one host and one vector. By
observing system (1), we see that when the migration terms ai = āi = bj = b̄j = 0,
for i = R,W , j = S,G, the three patches decouple. In this scenario, patch 1 and
patch 3 are identical in structure. Thus, analyzing patch 1 and 3 with migration
terms set to 0 and pW = pR = 0, we are analyzing the simple one host-one vector
system.

S′h = rhNh

(
1− Nh

Kh

)
− βv

Iv
Nh

Sh − µhSh

I ′h = βv
Iv
Nh

Sh − µhIh

S′v = rvNv

(
1− Nv

Kv

)
− βh

Ih
Nh

Sv − µvSv

I ′v = βh
Ih
Nh

Sv − µvIv

(2)

Because the vector and host populations always approach an equilibrium, we
can consider the limiting system in which Nh and Nv have reached their positive
equilibria, N∗h and N∗v , where

N∗h = Kh

(
1− µh

rh

)
, N∗v = Kv

(
1− µv

rv

)
.
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As mentioned previously, for each species, we assume r > µ, which guarantees
that all disease-free extinction equilibria are unstable. This assumption will be
carried out in this and all of the models hereafter. In system (2), we define β̃v =

βv
N∗

v

N∗
h

. Results by Thieme [49, 50] guarantee that the behavior of the full system is

asymptotic to the limiting system which is given by

I ′h = β̃v
Iv
N∗v

(N∗h − Ih)− µhIh

I ′v = βh
Ih
N∗h

(N∗v − Iv)− µvIv
(3)

This model has been well studied [46, 8] and we give results here. The basic
reproductive number, calculated using the next-generation matrix [53], is given by

R0 =

√
βhβ̃v
µhµv

,

which represents the average number of secondary infections caused by an infected
individual introduced into a susceptible population. Because of the vector-host dy-
namics, R0 represents the geometric mean between the average number of secondary
host infections caused by one vector, and the average number of vector infections
caused by one host.

In the case when R0 < 1, the disease will die out and the population will approach
the disease free equilibrium. When R0 > 1, the population will approach a unique
endemic state,

I∗v
N∗v

=
βhβ̃v − µhµv
β̃vβh + β̃vµv

=
R2

0 − 1

R2
0 + β̃v

µh

,

I∗h
N∗h

=
βhβ̃v − µhµv
β̃vβh + βhµh

=
R2

0 − 1

R2
0 + βh

µv

.

3.2. Patch 2, no migration, no vertical transmission. We will further analyze
the decoupled system (1) by considering the equations representing patch 2 alone
with no vertical transmission or migration. Thus, we analyze system (1) with
ai = āi = 0, for i = R,W , bj = b̄j = 0, for j = S,G, and pR = pW = 0. The
quantities NR2, NS2, NW2, and NG2 are asymptotically constant to N∗R2, N

∗
S2, N

∗
W2,

and N∗G2, respectively, where

N∗S2 = KS2

(
1− µS

rS

)
, N∗R2 = KR2

(
1− µR

rR

)
,

N∗G2 = KG2

(
1− µG

rG

)
, N∗W2 = KW2

(
1− µW

rW

)
.
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Applying the results from Thieme [49, 50], we can study the limiting system

I ′S2 =

(
qSβR

IR2

N∗R2

+ (1− qS)βWS
IW2

N∗W2

)
(N∗S2 − IS2)− µSIS2,

I ′R2 = βS2
IS2

N∗R2

(N∗R2 − IR2)− µRIR2,

I ′G2 = βW2
IW2

N∗W2

(N∗G2 − IG2)− µGIG2,

I ′W2 =

(
(1− qW )βG

IG2

N∗W2

+ qWβSW
IS2

N∗W2

)
(N∗W2 − IW2)− µW IW2.

(4)

System (4) exhibits the disease-free equilibrium (I∗S2, I
∗
R2, I

∗
G2, I

∗
W2) = (0, 0, 0, 0).

We find the basic reproductive number R0 for the system using the next generation
matrix method [53]. The work can be seen in Appendix A. We determine that

R0 =

√
1

2

(
P +

√
P 2 − 4Q

)
,

where

P = f1 + f2 + f3, Q = f1f3, f1 =
(1− qW )βGβW2

µGµW

N∗G2

N∗W2

,

f2 =
qWβSW + (1− qS)βWS

µSµW

N∗S2

N∗W2

, f3 =
qSβRβS2

µRµS

N∗S2

N∗R2

.

(5)

In the terms for R0, we see that f1 represents the T. gerstaeckeri -woodrat trans-
mission cycle, f2 represents the T. sanguisuga-woodrat cycle, and f3 represents the
T. sanguisuga-raccoon cycle. We further observe that

max{
√
f1,
√
f2,
√
f3} < R0 <

√
f1 + f2 + f3.

At this point, we wish to observe the importance of the overlap of the transmission
cycles between T. sanguisuga and T. gerstaeckeri, and how this overlap affects the
ability of the infection to be spread. If there is no overlap, i.e. no T. sanguisuga-
woodrat cycle, then f2 = 0, so then we may define R̄0 =

√
max{f1, f3} < R0. Since

R̄0 is always less than R0, we observe the effect of f2 is to increase the value of R0.
It is possible that f1 < 1 and f3 < 1, yet R0 > 1. Furthermore, it is also possible
that f1 + f3 < 1, yet R0 > 1.

By investigating the equilibrium conditions, it can be shown that either one or
three endemic equilibrium values exist when R0 > 1. The computations can be seen
in Appendix A.

3.3. Patches 1 and 2, 1 host 1 vector with vertical transmission and
unidirectional migration of infected vectors. In dealing with patches 1 and
2, there are several cases to be considered. We will first consider the scenario with
one host and one vector, with vertical transmission, and unidirectional migration
of infected vectors. In this case, NR2 = NS2 = 0, qW = qS = 0, and aW =
āW = bG = 0. Because the woodrat population is asymptotically constant with

N∗W1 = KW1

(
1− µW

rW

)
, N∗W2 = KW2

(
1− µW

rW

)
, we can apply Thieme’s results

[49, 50] and rewrite I ′W1 and I ′W2, passing NW1 and NW2 to their limiting values,
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N∗W1 and N∗W2. The system therefore simplifies to

N ′G2 = rGNG2

(
1− NG2

KG2

)
− µGNG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗W2

(NG2 − IG2)− µGIG2 + b̃GIG1

I ′W2 = pWµW IW2 + βG
IG2

N∗W2

(N∗W2 − IW2)− µW IW2

N ′G1 = rGNG1

(
1− NG1

KG1

)
− µGNG1 − b̄GIG1

I ′G1 = βW
IW1

N∗W1

(NG1 − IG1)− µGIG1 − b̄GIG1

I ′W1 = pWµW IW1 + βG
IG1

N∗W1

(N∗W1 − IW1)− µW IW1

(6)

Cherif et al. [12] studied a similar model for T. cruzi vector transmission dynam-
ics involving two strains (one being more virulent). In their model, a proportion of
vectors infected with the more virulent strain migrate to a region in which the less
virulent strain is native. However, their model did not include vertical transmission
as system (6) does.

System (6) exhibits the disease-free equilibrium (N∗G2, 0, 0, N
∗
G1, 0, 0), where

N∗G2 = KG2

(
1− µG

rG

)
, N∗G1 = KG1

(
1− µG

rG

)
.

R0 can be found via the next generation matrix. For system (6),

R0 = max

{
1

2

(
pW +

√
4

βGβW
(µG + b̄G)µW

N∗G1

N∗W1

+ p2
W

)
,

1

2

(
pW +

√
4
βGβW2

µGµW

N∗G2

N∗W2

+ p2
W

)}
.

If
N∗

G1

N∗
W1
≤ N∗

G2

N∗
W2

then the second term of R0 is larger of the two because b̄G > 0. In

this case max(pW ,
βGβW2

µGµW

N∗
G2

N∗
W2

) < R2 < pW + βGβW2

µGµW

N∗
G2

N∗
W2

.

To study possible endemic equilibria of system (6), we determine that

N̄∗G2 = KG2

(
1− µG − b̃Gx∗G1

rG

)
, N̄∗G1 = KG1

(
1− µG + b̄Gx

∗
G1

rG
.

)
After substituting these values into the equilibrium conditions for system (6)

(seen in Appendix B), we determine existence of an endemic equilibrium when
R0 > 1. We further determine that precisely one endemic equilibria exist in patch
2 alone if and only if R1 < 1 < R2, and in both patches if R1 > 1 (the patch 2 only
endemic equilibrium is unstable in this case).

3.4. Patches 1 and 2, 1 host and 1 vector with vertical transmission and
unidirectional migration of uninfected and infected vectors. We may also
consider the case in which uninfected vectors move at a reduced rate proportional
to that of infected vectors. As mentioned previously, if infected vectors exhibit
differential behavior causing them to migrate more than uninfected vectors, we
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would consider the effects of having uninfected vectors migrate as well, but at a
reduced rate. We note that this scenario is as far as vertical transmission can be
treated analytically regarding R0. The vertical transmission terms in the model
do not affect the complexity in computing endemic equilibria since µ is simply
replaced with (1− p)µ in the infected host equations. Thus, in computing R0, the
remaining cases will be done without vertical transmission. We let NR2 = NS2 = 0,
qW = qS = 0, aW = āW = 0, and bG = γb̄G, where 0 < γ < 1. Since NW1 and NW2

are asymptotically constant to N∗W1 = KW1

(
1− µW

rW

)
, N∗W2 = KW2

(
1− µW

rW

)
,

we apply the results of Thieme to this system, passing NW1 and NW2 to their
limiting values, N∗W1 and N∗W2, and obtaining the following system,

S′G2 = rG

(
1− NG2

KG2

)
NG2 − βW2

IW2

NW2
SG2 − µGSG2 + γb̃GSG1

I ′G2 = βW2
IW2

NW2
SG2 − µGIG2 + b̃GIG1

I ′W2 = pWµW IW2 + βG
IG2

N∗W2

(N∗W2 − IW2)− µW IW2

S′G1 = rG

(
1− NG1

KG1

)
NG1 − βW

IW1

NW1
SG1 − µGSG1 − γb̄GSG1

I ′G1 = βW
IW1

NW1
SG1 − µGIG1 − b̄GIG1

I ′W1 = pWµW IW1 + βG
IG1

N∗W1

(N∗W1 − I∗W1)− µW IW1.

(7)

Here, we can determine the disease free equilibrium to be (N∗G2, 0, 0, N
∗
G1, 0, 0),

where

N∗G2

KG2
=

√(
1− µG

rG

)2

+ 4
γb̃G
rG

N∗G1

KG2

(
1− µG + γb̄G

rG

)
,
N∗G1

KG1
=

(
1− µG + γb̄G

rG

)
.

Observing the terms of N∗G2, we can see that the first term, KG2

(
1− µG

rG

)
,

essentially represents the natural demographic renewal for the population of vectors
in patch 2, while the second term represents the population being brought from
vectors in patch 1.
R0 for the system is R0 = max {R1, R2} where

R1 =
1

2

(
pW +

√
4

βGβW
(µG + b̄G)µW

N∗G1

N∗W1

+ p2
W

)
,

R2 =
1

2

(
pW +

√
4
βGβW2

µGµW

N∗G2

N∗W2

+ p2
W

)
.

In general the form of R0 for system (7) is the same as that of system (6), with a
different disease free equilibrium for the vector population due to the unidirectional
migration of all vectors. We see that the first term of R0 represents the patch
1 dynamics, while the second term represents patch 2. Similar to the system in

section 3.3, if
N∗

G1

N∗
W1
≤ N∗

G2

N∗
W2

then the second term of R0 is larger.

Determining endemic equilibria for this system is intractable analytically. After
a numerical investigation using the parameters estimated in section 4, we determine
precisely one unique endemic equilibrium exists when R0 > 1.
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3.5. Patch 1 and 2, 1 host 1 vector, no vertical transmission, bidirec-
tional migration of infected vectors. Another scenario we treat in patches 1
and 2 is one host, one vector and bidirectional migration of infected vectors. We
have previously assumed that vectors may have a preferred direction so that our
migration is unidirectional. However, we know that vectors will move in every
direction (although one direction may be preferred over another); thus we con-
sider bidirectional migration. In this system, pR = pW = 0, qW = qS = 0,
ai = āi = 0 for i = R,W . In this system, NW1 and NW2 are asymptotically

constant to N∗W1 = KW1

(
1− µW

rW

)
, N∗W2 = KW2

(
1− µW

rW

)
. Applying the results

by Thieme, we obtain the following system in which NW1 and NW2 have reached
their limiting values.

The reduced system becomes

N ′G2 = rGNG2

(
1− NG2

KG2

)
− µGNG2 − bGIG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗W2

(NG2 − IG2)− (µG + bG)IG2 + b̃GIG1

I ′W2 = βG
IG2

N∗W2

(N∗W2 − IW2)− µW IW2

N ′G1 = rGNG1

(
1− NG1

KG1

)
− µGNG1 − b̄GIG1 + b̂GIG2

I ′G1 = βW
IW1

N∗W1

(NG1 − IG1)− (µG + b̄G)IG1 + b̂GIG2

I ′W1 = βG
IG1

N∗W1

(N∗W1 − IW1)− µW IW1

(8)

We determine the disease-free equilibrium for this system (8) to be of similar
form to that of (6).
R0 for the system is given as follows:

R0 =

√
1

2

(
(g1 + g2) +

√
(g1 + g2)2 − 4g1g2ε

)
where ε = µG(µG+bG+b̄G)

(µG+bG)(µG+b̄G)
< 1, g1 = βGβW

µGµW

N∗
G1

N∗
W1

(
µG+bG

µG+bG+b̄G

)
and g2 = βGβW2

µGµW

N∗
G2

N∗
W2(

µG+b̄G
µG+bG+b̄G

)
.

We observe that R0 for system (8) is of similar form as the R0 for system (4),
with the exception of the migration terms. It is observed that max(

√
g1,
√
g2) <

R0 <
√
g1 + g2. If either of the migration terms bG or b̄G is 0, then R0 reduces

to max(
√
g1,
√
g2). We interpret g1 as the basic reproductive number for patch 1

scaled by the proportion of infected vectors that stay in patch 1, and g2 is the basic
reproductive number for patch 2 scaled by the proportion of infected vectors staying
in patch 2.

Determining existence of endemic equilibria is intractable analytically, but after
a numerical investigation, we verify the hypothesis that in the case of bidirectional
migration, only one endemic equilibria is possible if R0 > 1.

3.6. Patches 1 and 2, 2 hosts 2 vectors, no vertical transmission, unidi-
rectional migration of infected vectors. We end our exploration of two patches
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by considering the case with 2 patches, 2 hosts, 2 vectors, and unidirectional mi-
gration of infected vectors. Then pR = pW = 0, ai = āi = 0 for i = R,W and
bS = b̄S = bG = 0. In this scenario, the quantities NS2, NR2, NW2, and NW1 are
asymptotically constant to N∗S2, N

∗
R2, N

∗
W2, and N∗W1, respectively, where

N∗S2

KS2
=

(
1− µS

rS

)
,
N∗R2

KR2
=

(
1− µR

rR

)
,
N∗Wj

KWj
=

(
1− µW

rW

)
(j = 1, 2).

The model is

I ′S2 =

(
qSβR

IR2

N∗R2

+ (1− qS)βWS
IW2

N∗W2

)
(N∗S2 − IS2)− µSIS2

I ′R2 = βS2
IS2

N∗R2

(N∗R2 − IR2)− µRIR2

N ′G2 = rGNG2

(
1− NG2

KG2

)
− µGNG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗W2

(N∗G2 − IG2)− µGIG2 + b̃GIG1

I ′W2 =

(
(1− qW )βG

IG2

N∗W2

+ qWβSW
IS2

N∗W2

)
(N∗W2 − IW2)− µW IW2

N ′G1 = rGNG1

(
1− NG1

KG1

)
− µGNG1 − b̄GIG1

I ′G1 = βW
IW1

N∗W1

(N∗G1 − IG1)− (µG + b̄G)IG1

I ′W1 = βG
IG1

N∗W1

(N∗W1 − IW1)− µW IW1

(9)

For this scenario, the disease-free equilibrium is (0, 0, N∗G2, 0, 0, N
∗
G1, 0, 0), where

N∗G2 = N∗G1 = KG

(
1− µG

rG

)
.

After calculating R0, the structure seen is similar to that of R0 for system (4),
and is given by

R0 = max{R1, R2},

where

R1 =

√
βG

(µG + b̄G)

βW
µW

N∗G1

N∗W1

, R2 =

√
1

2

(
P +

√
P 2 − 4Q

)
.

P and Q are the same expressions as those in (5).
We determine existence of endemic equilibria in patch 2 alone if and only if

R1 < 1 and R2 > 1, and in both patches if and only if R1 > 1. The computations
can be seen in Appendix C.

3.7. Patch 1, 2, and 3, 2 hosts 2 vectors, no vertical transmission, unidi-
rectional migration of infected vectors. We finally extend our discussion to all
three patches. We now analyze the system represented by patch 1, 2, and 3, with 2
hosts, 2 vectors and unidirectional migration of infected vectors. Thus, we consider
pi = 0, ai = āi = 0 for i = R,W and bS = bG = 0. In this scenario, the host
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populations, NR3, NR2, NW2, and NW1 are asymptotically constant to the values

N∗R3 = KR3

(
1− µR

rR

)
, N∗R2 = KR2

(
1− µR

rR

)

N∗W2 = KW2

(
1− µW

rW

)
, N∗W1 = KW1

(
1− µW

rW

)
.

The reduced system becomes

N ′S3 = rSNS3

(
1− NS3

KS3

)
− µSNS3 + b̃SIS2

I ′S3 = βR
IR3

N∗R3

(NS3 − IS3)− µSIS3 + b̃SIS2

I ′R3 = βS
IS3

N∗R3

(N∗R3 − IR3)− µRIR3

N ′S2 = rSNS2

(
1− NS2

KS

)
− µSNS2 − b̄SIS2

I ′S2 =

(
qSβR

IR2

N∗R2

+ (1− qS)βWS
IW2

N∗W2

)
(NS2 − IS2)− µSIS2 − b̄SIS2

I ′R2 = βS2
IS2

N∗R2

(N∗R2 − IR2)− µRIR2

N ′G2 = rGNG2

(
1− NG2

KG2

)
− µGNG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗W2

(NG2 − IG2)− µGIG2 + b̃GIG1

I ′W2 =

(
(1− qW )βG

IG2

N∗W2

+ qWβSW
IS2

N∗W2

)
(N∗W2 − IW2)− µW IW2

N ′G1 = rGNG1

(
1− NG1

KG1

)
− µGNG1 − b̄GIG1

I ′G1 = βW
IW1

N∗W1

(NG1 − IG1)− µGIG1 − b̄GIG1

I ′W1 = βG
IG1

N∗W1

(N∗W1 − IW1)− µW IW1

(10)

In analysis of system (10), we determine the disease free equilibrium to be
(N∗S3, 0, 0, N

∗
S2, 0, 0, N

∗
G2, 0, 0, N

∗
G1, 0, 0), where

N∗S3 = KS3

(
1− µS

rS

)
, N∗S2 = KS2

(
1− µS

rS

)
,

N∗G2 = KG2

(
1− µG

rG

)
, N∗G1 = KG1

(
1− µG

rG

)
.

We determine R0 for this system to be R0 = max{R1, R2, R3}, where

R1 =

√
βG

(µG + b̄G)

βW
µW

N∗G1

N∗W1

, R2 =

√
1

2

(
P2 +

√
P 2

2 − 4Q2

)
, R3 =

√
βR
µR

βS
µS

N∗S3

N∗R3
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and P2 = h1 + h2 + h3, Q2 = h1 h3, with h1 =
(1− qW )βG

µG

βW2

µW

N∗G2

N∗W2

,

h2 =
qWβSW

(µS + b̄S)

(1− qS)βWS

µW

N∗S2

N∗W2

, h3 =
qSβR
µR

βS2

(µS + b̄S)

N∗S2

N∗R2

.

Based on the form of R0, we would expect three different scenarios for existence
of endemic equilibria. We expect existence of endemic equilibria in all three patches
if and only if R1 > 1, in patch 2 and 3 only if and only if R2 > 1 and R1 < 1, and
in patch 3 only if and only if R3 > 1, R1 < 1, and R2 < 1. Investigation of these
scenarios can be seen in Appendix D, in which we are able to show existence of at
least one endemic equilibrium for each of the scenarios mentioned above.

3.8. Synthesis. By analyzing many smaller, sub-models of the original system
(1), we may make some generalizations regarding the behavior of the full model.
We expect that the full system will exhibit classical threshold behavior regarding
R0, in which we expect a unique endemic equilibrium for R0 > 1. As stated
previously, the form of R0 in a vector-borne disease is a geometric mean between
infections caused by hosts and infections caused by vectors. If the system considers
multiple hosts and vectors, the form of R0 will include separate terms for each
transmission cycle considered in the model. As described mathematically in section
3.3 and discussed in [29], we see vertical transmission has an “almost additive”
effect on the basic reproductive number. Vertical transmission affects equilibria by
effectively rescaling host mortality by a factor of (1− p), where p is the proportion
of births to infected mothers in which vertical transmission occurs. In the case of
unidirectional migration of infected vectors, we observe that R0 consists of as many
components as there are patches, and each component for R0 contains parameters
for only one patch. Also, as seen in section 3.7, multiple endemic equilibria are
possible depending on the values of the patchwise reproductive numbers, R1, R2, R3.
We further note that by examination of (7), uninfected vectors migrating in one
direction does not complicate the form of R0. With bidirectional migration of
infected vectors, we determine that the expression for R0 involves contributions
from all patches, rather than having a maximum of several components, which
is to be expected since infection is moving in between patches. Based on this
determination, we expect the full model to have one component for R0, due to
bidirectional migration; thus, it will not take on the form of max{R1, R2, R3}. In
this case only one endemic equilibrium is possible; either there is no infection in
any patch, or infection persists in all patches because all patches are connected by
migration of infected vectors.

4. Numerical results.

4.1. General demographic parameters. We wish to investigate numerically the
results of section 3, as well as investigate the behavior of the full model given by
system (1). In order to do this, we will use biological information to estimate the
parameters given in our model. Kribs-Zaleta [28] completed a thorough literature
study to estimate demographic and T. cruzi infection related parameters regarding
hosts and vectors in the United States. We will use the demographic quantities
calculated in [28], given in Table 1.

We mention here that in our model, each host species has a preferred habitat.
That is, the preferred habitat for the raccoons is patch 3; thus we would expect a
higher population density of raccoons in patch 3 compared to patch 2. Similarly,
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Species µ r
Raccoon 0.4/yr 0.90/yr
Woodrat 1/yr 1.8/yr
T. sanguisuga 0.271/yr 33/yr
T. gerstaeckeri 0.562/yr 100/yr

Table 1. Demographic parameters

Species Population density Carrying capacity

Woodrat 2300 rats/km2 5200 rats/km2

T. gerstaeckeri 31600 vectors/km2 31900 vectors/km2

Table 2. Patch 1 density estimates

the woodrat preferred habitat is prickly pear cactus which predominates in patch 1,
with a lower density in patch 2 due to the varying landscapes. Here, we will treat
the parameters that differ for each patch.

4.1.1. Patch 1. Kribs-Zaleta [28] obtains woodrat densities for Texas based on sev-
eral sources [9, 44] which estimate woodrat population densities in counties in south
and west Texas. These regions, especially the counties in west Texas, are similar
to south Texas, dominated by shrub desert, including cactus and honey mesquite.
He estimates the woodrat (equilibrium) population density in patch 1 to be 2300
woodrats/km2. Because each population is governed by logistic growth with linear
per-capita mortality, the populations approach an equilibrium population density,
N∗, so that the carrying capacity can be back-calculated using N∗ = K

(
1− µ

r

)
.

Kribs-Zaleta estimates the total vector population density in patch 1 to be 31600
vectors/km2. Since we are assuming that the only vector in our model in patch 1 is
T. gerstaeckeri, we use this as the density estimate. Using these figures, we obtain
patch 1 population density and carrying capacity estimates found in Table 2.

4.1.2. Patch 2. Estimates for southern plains woodrat density in patch 2 vary by
geographical location and study. The woodrat density is affected by landscape,
climate, and available materials for den construction. Raun [43] determined a pos-
itive correlation for population density of woodrats and density of cactus, although
he concluded that cactus is not absolutely necessary to support woodrats. Cac-
tus is the preferred material for den construction and food, but woodrats will use
other materials to construct dens if cactus is unavailable [51]. In general, density of
woodrat dens is closely associated with overhead cover.

In an 18 month study in Jim Wells Co., part of the Southern Texas Plains,
Merkelz and Kerr [36] record a maximum density of 1.5 wr/ha (during spring 1998)
using a 10 ha subplot of a 220 ha study site. Density was calculated by using the
number of woodrats captured in the area during a single trapping season. Since
they do not give any other density calculations, we use this data as part of our data
collection. We note that they did not limit their density calculation to only areas
with cactus growth so as to include open areas as part of the normal daily range of
woodrats.

Conditt and Ribble [14] estimate a range of 1.6-5.8 wr/ha (average 3.7 wr/ha)
in Bexar Co located in South Texas. The study was done on a 10 ha area of land
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with 4 ha dominated by honey mesquite-brush and prickly pear cactus, while the
remaining 6 ha dominated by riparian lowland forests. The density was calculated
on the 4 ha site due to essentially no woodrats being found on the riparian forested
area (cactus-free) of the study site. They mention that the low density may be
due to lack of cactus in the region of study and lack of appropriate shelter sites.
However, Raymond et al. [44] in 2003 calculate a much higher maximum density
of 19.4 wr/ha (with an average of 15.1 wr/ha) in the same county (but a different
study site). This study site had limited clumps of prickly pear, but was covered
with thick brush and downed trees which served as nest sites. Thus, we see that
cactus is not absolutely necessary to maintain a high population density, but rather
an abundance of shelter sites.

Although we do not include Oklahoma in patch 2, due to the northern range of
T. gerstaeckeri, we refer to a study in Harmon County, Oklahoma in the Mesquite
Grass Plains region, in which the estimated woodrat density was 13 wr/ha [52].
This region is native to the southern plains woodrat, dominated by Mesquite and
prickly-pear cactus. The population density estimate was determined by trapping
at 104 of the known 1,129 woodrat houses in the 226 ha study plot, and the density
of cactus was not taken into account for the woodrat population density estimate.

Raun [43] estimates a range of 14.8-31.4 woodrats/ha (average 23 wr/ha) in San
Patricio Co, part of a transitional region between the Southern Texas Plains and
Western Gulf Coastal Plain. Thus, the vegetation in this region is diverse, with the
major plant communities being Mesquite-Mixedgrass, Chaparral-Mixedgrass, Live
Oak-Chaparral, and Prickly Pear-Short grass, with riparian forests along the rivers
[20, 7]. The study site, 9 acres, was reduced to 7.3 acres to estimate the density
to eliminate areas that did not support cactus growth. A summary of these results
can be found in Table 3.

Although there is a broad range of density estimates, we recall that patch 2 is
a region with a diverse landscape, including mesquite, cactus, and savanna regions
with areas of tree and prairie grassland. Since some estimates were computed in
cactus-free regions, it is important to include each estimate in our computation
of the average woodrat density. Thus, we include all 5 estimates in computing the
average woodrat density in patch 2, obtaining an average population density of 11.3
wr/ha (1130 wr/km2) in patch 2.

There are relatively few papers regarding raccoon distribution in patch 2. In
a 3-year study by Gehrt and Fritzell [20], they estimate an average density of 7.3
raccoons/km2 in San Patricio Co in southeast Texas. Since this region is not domi-
nated by forest (as mentioned above), we would expect a lower raccoon density than
that estimated by Kribs-Zaleta [28] for raccoon density in southeast USA (including
patch 3). Using the equilibrium population densities, N∗ = K

(
1− µ

r

)
, we calculate

the carrying capacities for each species in patch 2, found in Table 4.
In patch 2, the T. cruzi transmission cycles overlap by the association of T.

sanguisuga in association with both woodrats and raccoons, while T. gerstaeckeri
feeds only on woodrats. The T. sanguisuga move between the woodrat and raccoon
populations regularly enough that we will consider the T. sanguisuga a single pop-
ulation. We would like to estimate qW , the proportion of vector-woodrat contacts
in patch 2 that are with T. sanguisuga, while 1 − qW is the proportion of vector-
woodrat contacts that are T. gerstaeckeri. Also, since T. sanguisuga is associated
with both hosts, we must estimate qS , the proportion of T. sanguisuga-host contacts
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Average density Location Ref
1.5 wr/ha Jim Wells Co [36]
3.7 wr/ha Bexar Co [14]
13 wr/ha Southwestern OK [52]
15.1 wr/ha Bexar Co [44]
23 wr/ha San Patricio Co [43]

Table 3. Neotoma micropus population density estimates

Species Population density Carrying capacity

Raccoon 7.3 racc/km2 13.1 racc/km2

Woodrat 1130 rats/km2 2542.5 rats/km2

All vectors 31600 vectors/km2 31900 vectors/km2

Table 4. Patch 2 density estimates

that are raccoons, with 1− qS the proportion of T. sanguisuga-host contacts made
with woodrats.

Eads et al. [18] found 390 vectors from a total of 58 woodrat dens. Of the 390
vectors, 226 were T. sanguisuga, 133 were T. gerstaeckeri, and 31 were T. neotomae.
We note here that the proportion of T. neotomae is negligible; thus we will normalize
so that the proportions of T. sanguisuga and T. gerstaeckeri sum to 1. Thus, 63%
of the vectors found in association with woodrats were T. sanguisuga and 37% were
T. gerstaeckeri. Pippin [41] determined that for 85 woodrat dens, of 229 nymph and
adult vectors, 58% were T. sanguisuga, while 42% were T. gerstaeckeri. If we pool
the data, we determine 61% of the vector-woodrat contacts are with T. sanguisuga,
and if we use the weighted average by number of dens excavated, the percentage is
60%. Thus, we estimate qW to be 0.605.

To estimate qS , we will define qS =
N∗

R2·VR

N∗
R2·VR+N∗

W2·VW
, where N∗R2 is the patch

2 raccoon density and N∗W2 is the patch 2 woodrat density. VR is the number of
vectors per raccoon and VW is the number of vectors per woodrat (scaled by the
proportion that are T. sanguisuga). VR can be estimated from the estimates given in
[28]. We mention here that there are other hosts in patch 3, so not all T. sanguisuga
can be found with raccoons. Ideally, we would calculate VR directly to avoid biasing
the estimates. Although raccoons are the preferred host of T. sanguisuga, the vector
will feed on other hosts including opossums in patch 3. We will estimate the raccoon
density equivalent of the opossum density. Based on literature reviews, we determine
the population density of opossums to be 10.1/km2 [28]. Thus, we determine the
density of opossums is 0.505 times the raccoon density. We will divide the patch 3
T. sanguisuga population density, N∗S3, estimated in [28] by the raccoon equivalent
total host density. Using the estimates for N∗S3 and N∗R3 from [28], we determine

VR =
N∗

S3

1.505N∗
R3

= 1049.83 T. sanguisuga/raccoon. Since both vector species are

associated with woodrats, VW is qW
N∗

G2+N∗
S2

N∗
W2

. Kribs-Zaleta [28] estimates that the

total Triatoma vector population in patch 2 is 31600 vectors/km2. As estimated
previously, N∗W2 = 1130 woodrats/km2. These averages result in an estimate of VW
as 16.9 T. sanguisuga/woodrat. Based on this calculation, we arrive at an estimate
of qS = 0.286.
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4.1.3. Patch 3. We use estimates from [28] for the raccoon and T. sanguisuga den-
sity estimates in patch 3, given in Table 5. We note here that the T. sanguisuga
population density is based on a single study done by Burkholder et al. [10] regard-
ing population density of Triatoma vectors, which estimates Triatoma density in
relation to woodrat nests. Although T. sanguisuga in patch 3 are found with rac-
coons, we use the same estimate as the total vector population density in patches 1
and 2, due to lack of relevant information on vector population density in patch 3.

Species Population density Carrying capacity

Raccoon 20. racc/km2 35.6 racc/km2

T. sanguisuga 31600 vectors/km2 31900 vectors/km2

Table 5. Patch 3 density estimates

4.2. Estimation of infection rate parameters. The model here includes 2
modes of host infection: vertical transmission and direct transmission due to bit-
ing and to oral transmission via vector consumption. The vertical transmission
parameters can be estimated directly via literature. Kribs-Zaleta [28] estimates
the vertical transmission proportion to be 0.01. Then pW = 0.01. We estimate
pR = 0.1 due to the adaptation of T. cruzi strain type IV to vertical transmission
in raccoons. To estimate the direct infection rate parameters, we utilize the tech-
nique outlined in [28] to back-calculate the infection rate parameters, by solving
for βR, βS , βSW , βWS , βG, and βW using the equilibrium conditions for model (1)
under the assumption that observed prevalence indicates endemic equilibrium.

Since migration is small compared to the demographic processes, we will estimate
the infection rate parameters by patch using model (1), assuming no migration. In
order to estimate the infection rate parameters, we combine the observed prevalence
levels and known demographic parameters in the equilibrium conditions to back-
calculate the infection rate parameters, βR, βS , βSW , βWS , βS2, βW2, βG, and βW .

After a thorough literature search, Kribs-Zaleta calculates prevalence levels for
each species in each patch. Prevalence levels for T. gerstaeckeri and the woodrat
are given for Texas and levels for T. sanguisuga and raccoons are given for Texas
and the southeast U.S. To translate these values to this model, we assume that
the patch 1 and 2 prevalence levels for T. gerstaeckeri and southern plains woodrat
are equivalent to the Texas estimates found in [29]. The patch 2 and 3 prevalence
levels for T. sanguisuga and the raccoon are the same as the Texas and southeast
estimates, respectively. A summary of these values is given in Table 6.

Species Patch 1 Patch 2 Patch 3
Raccoon - 0.240 0.387
T. sanguisuga - 0.249 0.565
Woodrat 0.332 0.332 -
T. gerstaeckeri 0.454 0.454 -

Table 6. T. cruzi prevalence estimates from [28]

We note here that x∗G1 =
I∗G1

N∗
G1

is the prevalence value for T. gerstaeckeri in patch

1. We utilize a similar notation for the other 3 species in the model.
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Figure 2. Correspondence of qS and qW with βWS , with units
1/yr, and βSW , with units infected hosts/vector/yr

Using the equilibrium conditions and substituting the population density esti-
mates and prevalence values for patch 1,

βWx
∗
W1(1− x∗G1)− µGx∗G1 = 0

pW rWx
∗
W1

(
1− N∗W1

KW1

)
+ βGx

∗
G1

N∗G1

N∗W1

(1− x∗W1)− µWx∗W1 = 0,

we obtain estimates for βW and βG, given in Table 7.
Substituting the patch 3 population density estimates and prevalence values into

the patch 3 equilibrium conditions,

βRx
∗
R3(1− x∗S3)− µSx∗S3 = 0

pRrRx
∗
R3

(
1− N∗R3

KR3

)
+ βSx

∗
S3

N∗S3

N∗R3

(1− x∗R3)− µRx∗R3 = 0,

we calculate βR and βS , given in Table 7.
Due to the crossover of infection cycles in patch 2, back-calculating the infection

rate parameters is complex. After substituting the patch 2 equilibrium population
densities and prevalence levels, there are 4 equilibrium conditions remaining:

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)− µSx∗S2 = 0

pW rWx
∗
W2

(
1− N∗W2

KW2

)
+

(
(1− qW )βGx

∗
G2

N∗G2

N∗W2

+ qWβSWx
∗
S2

N∗S2

N∗W2

)
×

(1− x∗W2)− µWx∗W2N
∗
W2 = 0

pRrRx
∗
R2

(
1− N∗R2

KR2

)
+ βS2x

∗
S2(1− x∗R2)

N∗S2

N∗R2

− µRx∗R2 = 0

βW2x
∗
W2(1− x∗G2)− µGx∗G2 = 0.

(11)

We note that there are six β values and four equations; thus the system is un-
derdetermined. Consequently, we will assume that βR and βG have the same values
in patch 2 as calculated in patches 3 and 1, respectively. After solving system (11),
we determine values for βSW , βWS , βS2, and βW2, given in Table 7.
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After an investigation of the effects of the proportions qS and qW on the βWS and
βSW with all of the other parameters held fixed as determined above, we determine
that any value of qW greater than 0.3 will produce a value of βSW in between
0.11/yr and 0.15/yr, which mitigates any inaccuracy in our estimate of qW = 0.605.
We also note that, mathematically, qS needs to be smaller than 0.411 for βWS to
be positive, as seen in Figure 2.

Parameter Value Units
βS 0.00025

hosts
vector·yr

βG 0.079
βSW 0.132
βS2 0.00017
βR 0.910

1/yr
βW 1.408
βWS 0.116
βW2 1.408

Table 7. Stercorarian infection rate parameters

Of the vector to host transmission terms, βS and βS2 (vector to raccoon infection
rate) are close in value, while βG and βSW (vector to woodrat infection rate) are
close in value. But, we note here that there is a factor of 1000 by which woodrats
are being infected more rapidly than raccoons are infected by T. sanguisuga. We
note this may be attributed partly to the fact that the population densities for
woodrats are approximately 100 times as great as raccoon population densities. All
of the host to vector transmission parameters are close in value, with the exception
of βWS (woodrat infecting T. sanguisuga) which is an order of magnitude less than
the raccoon to T. sanguisuga infection rates, which is to say that woodrats are
infecting T. sanguisuga at a lower rate than raccoons infecting T. sanguisuga.

4.3. Numerical solutions.

4.3.1. Trends in migration rate effects. To investigate the effects of migration nu-
merically, we examine prevalence of T. cruzi as a function of vector migration. In
order to get a clear picture, we first look at unidirectional migration of infected
vectors. We then investigate unidirectional migration of all vectors as this is the
upper bound of the possible unidirectional migration scenarios for vector migration.
We then consider bidirectional migration of infected and all vectors. In each sce-
nario, we consider the effects on T. cruzi prevalence as migration increases. To see
the effects of the increase, we consider the effects of factor, k, multiplied by each
migration rate. We calculate the prevalence for each patch as k increases from 0 to
10, where k = 0 represents the scenario with no migration and k increasing greater
than 1 represents the migration rate increasing past the calculated rate from [15].
For each graph given, the host infected prevalence is represented by the lighter col-
ored graph and the vector infected prevalence is represented by the darker colored
graph.

In the case of northward migration of infected vectors (Figure 3), we observe a
decrease of prevalence in patch 1 since this patch is losing infected vectors and not
gaining any, and a slight increase of prevalence in patch 3 as the migration rate
increases. The prevalence of T. sanguisuga in patch 2 is much lower than that in



T. CRUZI TRANSMISSION WITH VECTOR MIGRATION 493

patch 3, so although patch 3 is gaining infected vectors, the increase in prevalence
at equilibrium is minimal.
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Figure 3. Equilibrium T. cruzi prevalence vs. vector migration
rate multiplier for infected vectors migrating north only; dark curve
represents vectors, light curve represents hosts
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Figure 4. Equilibrium T. cruzi prevalence vs. vector migration
rate multiplier for infected vectors moving north only (patch 2)

In this scenario, patch 2 is gaining infected vectors from patch 1(T. gerstaeckeri)
and losing infected vectors to patch 3(T. sanguisuga). As seen in Figure 3, the patch
2 prevalence decreases for northward migration. To get a better understanding of
why the prevalence decreases in patch 2, we look at the graphs of the prevalence
for each vector species in patch 2, seen in Figure 4. It can be observed that the
T. sanguisuga infected prevalence decreases by approximately 35% for high migra-
tion rates, while the T. gerstaeckeri prevalence increases by approximately 25%.
Furthermore, we see a constant decrease in the woodrat prevalence (although T.
gerstackeri prevalence increases). We note that in patch 2 NS2 is approximately
50% greater than NG2. Thus, the export of infected T. sanguisuga from patch 2
dominates the import of infected T. gerstaeckeri from patch 1, causing an over-
all prevalence decrease in patch 2 in the case of northward migration of infected
vectors.
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Figure 5. Equilibrium T. cruzi prevalence vs. vector migration
rate multiplier for all vectors moving north only; dark curve repre-
sents vectors, light curve represents hosts

When we consider northward migration of all vectors, the change in prevalence
is undetectable by viewing the graph. Patch 1 prevalence is still reduced since
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Figure 6. Equilibrium T. cruzi prevalence vs. vector migration
rate multiplier for infected vectors moving south only; dark curve
represents vectors, light curve represents hosts
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Figure 7. Equilibrium T. cruzi prevalence vs. vector migration
rate multiplier for infected vectors moving south only (patch 2)

it is losing both infected and uninfected vectors, as seen in Figure 5. One might
expect that the decrease should be less when all vectors are migrating, but after
a numerical investigation of prevalence, we see that the decrease is slightly greater
when all vectors are migrating. Also, we would expect the patch 3 prevalence to
increase since this patch is gaining both infected and uninfected vectors from patch
2 with a lower prevalence; however the prevalence decreases slightly. If only infected
vectors migrate northward, then R1 decreases as b̄G increases, causing prevalence
in patch 1 to decrease. When all vectors are migrating northward, R1 actually
decreases more since the vector-host ratio is also decreasing, as the migration rate
increases. Thus, the decrease in R1 is amplified when all vectors are migrating
northward.

As we observe southward migration of infected vectors, we again view the preva-
lence levels for each patch, in Figure 6. Patch 1 is gaining infected vectors from
patch 2; thus we see an increase in prevalence. In patch 3, we see a slight decrease
(< 1%) in prevalence due to this patch losing infected vectors. In contrast to north-
ward migration, we see a rise in prevalence for patch 2 in the case of southward
migration. To understand why prevalence increases even though this patch is losing
infected vectors to patch 1, we graph prevalence levels for each species in patch
2 as a function of migration, seen in Figure 7. We observe that prevalence in T.
sanguisuga increases, as expected since this vector population is gaining infected
vectors from patch 3. An interesting observation is that the prevalence in T. ger-
staeckeri rises for small migration rates (0 < k < 1). Then, for higher migration
rates, the prevalence for T. gerstaeckeri in patch 2 decreases. As observed in Figure
7, the woodrat T. cruzi prevalence increases in patch 2 for southward migration.
Thus, for 0 < k < 1, the sharp rise in prevalence in T. sanguisuga (11% increase)
in patch 2 for small migration rates may be enough to increase the prevalence in T.
gerstaeckeri through the woodrats.

In the case of southward migration of all vectors, the patch 3 prevalence decreases
more than when only infected vectors are moving southward. This can be attributed
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Figure 8. Equilibrium T. cruzi prevalence vs. vector migration
rate multiplier for all vectors moving south only; dark curve repre-
sents vectors, light curve represents hosts
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Figure 9. Equilibrium T. cruzi prevalence vs. vector migration
rate multiplier for infected vectors bidirectional migration; dark
curve represents vectors, light curve represents hosts
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Figure 10. Equilibrium T. cruzi prevalence vs. vector migration
rate multiplier for infected vectors bidirectional migration (patch
2)

to the decrease in vector-host ratio as the migration rate increases, thereby causing
R3 to decrease more than if only infected vectors are migrating. Patch 1 prevalence
increases more than if only infected vectors are migrating southward, due to the
slight increase in vector-host ratio. The patch 2 prevalence increases more than if
only infected vectors are migrating southward, which is primarily due to the increase
in vector-host ratio causing R2 to increase more than if only infected vectors are
migrating, as seen in Figure 8.

We also wish to investigate bidirectional migration of vectors. We first consider
bidirectional migration of infected vectors only. As seen in Figure 9, prevalence
decreases in patches 1 and 3, but increases in patch 2. To better understand why
prevalence increases in patch 2, we observe the prevalence graphs for patch 2 only.
We observe that both T. sanguisuga and T. gerstaeckeri prevalence increases in
patch 2 (Figure 10).

The T. sanguisuga population in patch 2 is initially at a lower prevalence than
patch 3, and since the T. sanguisuga population is gaining vectors from a patch with
a higher prevalence, the prevalence increases for this species in patch 2 as seen in
Figure 10. The T. gerstaeckeri prevalence also increases, although this population is
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Figure 11. Equilibrium T. cruzi prevalence vs. vector migration
rate multiplier for all vectors bidirectional migration; dark curve
represents hosts, light curve represents vectors

gaining and losing vectors at the same prevalence. We can most likely attribute the
increase in prevalence for T. gerstaeckeri in patch 2 due to the increase in woodrat
prevalence (seen in Figure 10) through the T. sanguisuga prevalence increase.

In the case of bidirectional migration of all vectors, the behavior is similar. The
patch 1 and 3 prevalence decreases slightly more than in the case of only infected
vectors migration, due to the decrease of the vector-host ratio. A similar reason
can be given for the patch 2 prevalence increasing more than if infected vectors are
moving only.

4.3.2. Calculation of the migration rate. The framework established in [15] describes
vector dispersal in terms of three properties: dispersal distance, preferred direction
of dispersal, and degree of preference for a particular direction. Since we do not have
clear data on a preference for a direction for T. sanguisuga and T. gerstaeckeri, we
will consider the simplest case in which the vectors have no preference for direction
of dispersal. Here we give the vector migration rates calculated in [15] assuming no
preference for direction. We adjust these rates to take into account the area ratios
and note that the rates are equal for all vectors (infected and susceptible) in each
species.

m̄ Species rate
m12 T. gerstaeckeri 0.00427
m21 T. gerstaeckeri 0.00385
m23 T. sanguisuga 0.00101
m32 T. sanguisuga 0.000155

Adjusted rate

b̃G = ãG 0.00385

b̂G = âG 0.00427

b̃S = ãS 0.000155

b̂S = âS 0.00101

Table 8. Migration rates for no preferred direction (units in 1/year)

We may also consider that vectors have a preference for direction of migration.
Although we do not have clear evidence for the vectors in the model migrating
with any clear trend in direction, we consider the possibility of vector migration
in a particular direction. In a study on climate change related to Chagas disease
distribution, Curto de Casas concludes that higher temperatures may extend the
geographical range of the sylvatic vectors of T. cruzi [16]. Thus, we may consider
vector migration with a northward preference for direction. We note here that when
northward is described in section 4.3.1, it is referring to one-directional migration
from patches 1 to 2 and 2 to 3, not the actual geographical direction north. In this
section we are referring to the actual direction north and migration is bidirectional
between patches.
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Species Equilibrium prevalence
Patch 3

T. sanguisuga 0.56384
Raccoon 0.38513

Patch 2
T. sanguisuga 0.24940
Raccoon 0.23628
T. gerstaeckeri 0.46649
Woodrat 0.33459

Patch 1
T. gerstaeckeri 0.44686
Woodrat 0.32858

Table 9. Equilibrium prevalence levels for species based on mi-
gration (northward preference for direction)

The framework for deriving migration rates with a preference for direction is
modeled using a sequence of nested ellipses, in which each ring represents a certain
range of dispersal distances. We also assume that vectors have a degree of preference
for a direction, which represents the eccentricity of each ellipse. Based on results
from [15], we give results for T. cruzi prevalence assuming a northward preference
of direction (with moderate degree of preference, e = 0.5) in Table 9. The decrease
in prevalence in patch 1 and increase in prevalence for T. gerstaeckeri in patch 2 are
consistent with what we expect assuming a northward preference for direction. We
note that there is approximately a 1% decrease in prevalence for T. sanguisuga and
raccoons in patch 2 if preferred direction is northward, when compared to migration
with no preference for direction. There is a more than 3% increase in T. gerstaeckeri
prevalence in patch 2 when compared to no migration. Although T. gerstaeckeri
feeds only on woodrats, the increase in prevalence for T. gerstaeckeri is not enough
to cause a higher increase in woodrat prevalence; thus we only observe only a slight
(<1%) increase in prevalence for woodrats in patch 2 when the preferred direction
of migration is northward.

5. Conclusions. Due to the complexity of system (1), several sub-models were an-
alyzed in order to make conclusions regarding the behavior of the full model. The
entire system appears to exhibit classical threshold behavior regarding R0, and ex-
istence of a unique endemic equilibrium when R0 > 1. In the case of one-directional
migration of vectors, R0 consists of as many components as there are patches with
R0 being the largest value of the patch-specific R0 values, and multiple endemic
equilibria are possible depending on the values of the patch-specific reproductive
numbers values. If migration is bidirectional, R0 will consist of only one compo-
nent for containing parameters from all patches, and only one endemic equilibrium
is possible; thus either the whole system reaches a disease-free state or infection
persists in all patches. These results are similar to the multi-patch model results
in [4], where it is shown that if patch a is at endemic equilibrium, then the disease
is at endemic equilibrium in each patch accessible to patch a. Similar results are
observed in the two-patch model in [3], where it is shown that if R0 < 1, the disease
does not persist in either population (patch), and if R0 > 1, the disease persists in
both populations.
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In section 4, we obtained several different sets of results with respect to the effects
of vector migration on the prevalence of T. cruzi in the geographical region from
which we built our model. We examined the effects of one-directional migration,
bidirectional migration (at symmetric rates), and bidirectional migration using rates
derived from the framework in [15].

In the case of one-directional migration, the prevalence in the outer patches
(patches 1 and 3) varies as expected (e.g. patch 1 prevalence decreases for north-
ward migration only). However, the patch 2 dynamics are different for northward
vs. southward migration. In the case of northward migration only, the patch 2
prevalence decreases while for southward migration, the prevalence increases. After
closer observation of prevalence for each species in patch 2, it is determined that the
T. sanguisuga migration has a greater effect on the patch 2 dynamics than the mi-
gration of T. gerstaeckeri primarily due to the fact that the difference in population
density and prevalence in patches 2 and 3 among T. sanguisuga is greater than the
difference in population density and prevalence in T. gerstaeckeri in patches 1 and 2.
If vectors are migrating northward only, the export of T. sanguisuga dominates the
import of T. gerstaeckeri thereby causing an overall decrease in patch 2 prevalence;
we note that the T. sanguisuga population density in patch 2 is approximately 50%
greater than the T. gerstaeckeri population density. For southward migration rates,
the import of T. sanguisuga dominates the export of T. gerstaeckeri into patch
1. In fact, for lower migration rates, the prevalence for T. gerstaeckeri increases
slightly due to the sharp increase in T. sanguisuga through the connection with the
woodrat host. The connection between the vectors is the infection cycle with the
woodrat host. Thus, the increase in prevalence for T. gerstaeckeri for lower south-
ward migration rates is due to the increase in the prevalence for woodrats through
the infection cycle with T. sanguisuga.

If migration is bidirectional, the patch 2 prevalence increases. After analysis of
one-directional migration, the reason for the patch 2 prevalence increase is more
apparent. We note here that the prevalence for T. sanguisuga is initially at a lower
prevalence in patch 2 than in patch 3, so the T. sanguisuga in patch 2 is gaining
vectors from a patch with a higher prevalence, thus the increase in T. sanguisuga
prevalence. The prevalence for T. gerstaeckeri increases in patch 2 in the case of
bidirectional migration due to the increase in woodrat prevalence (again through
the infection cycle with T. sanguisuga). We note here that these trends are observed
even if migration rates are considered symmetric (independent of patch size).

Because of the differences in patch sizes (especially the large size of patch 3
compared to patches 1 and 2), the vector density in each patch is affected differently
by migration. For example, the change in patch 2 vector density will be greater
than the change in patch 3 vector density for bidirectional migration. The patch 3
vector density is minimally affected by migration due to the large patch size.

Based upon these results we can conclude that infection dynamics in patch 2
are sensitive to migration, but primarily driven by the T. sanguisuga population.
Since the same trends in prevalence change are observed for migration independent
of patch size, we should investigate the distinctive transmission characteristics be-
tween host and vector. Thus, we consider differences in the T. sanguisuga and T.
gerstaeckeri populations. One major difference in the vector populations is the high
prevalence for T. sanguisuga in patch 3 compared to patch 2 and the prevalence for
T. gerstaeckeri. If we assume no difference in prevalence levels for T. sanguisuga
from patch 3 to 2, we can note that for southward migration, the prevalence in
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patch 2 still increases for small migration rates, but at a much slower rate, while for
northward migration, the prevalence decreases but at a much slower rate than if the
prevalence in patch 3 is at its current estimated level. These results give a different
picture for the patch 2 dynamics, which allow us to see a dampening effect of the
T. sanguisuga migration if the prevalence levels for the T. sanguisuga populations
in patches 2 and 3 are the same. Thus, we can attribute the majority of the patch
2 dynamics when migration is considered to the higher prevalence in T. sanguisuga
in patch 3.

This aim of this study is to determine the effect of vector migration on T. cruzi
transmission in the prominent sylvatic cycles ranging from northern Mexico to the
southeastern United States. The primary effect of migration is to increase preva-
lence in the overlap patch where the prevalence is initially at a lower level than
the outer (single-cycle) patches. The dominant force is the connection to the large
raccoon-T. sanguisuga in the southeastern United States, which is affected little on
such a large scale, but which can affect dynamics strongly in the overlap region with
woodrats and T. gerstaeckeri.

As in every study, certain limitations must be noted. Due to the very recent
awareness of the need to study T. cruzi in the United States, there have been very
few studies on the demography of vectors native to the U.S., especially regarding
vector population density. To date, there have been virtually no studies on the U.S.
Triatoma vectors’ dispersal or migration capabilities. Thus, with more studies,
we may be able to more accurately describe the dispersal capabilities (especially
regarding distance and frequency of vector flights). We acknowledge the need for
more experimental or field studies with heavy consideration on the Triatoma vectors
native to the United States, especially T. gerstaeckeri and T. sanguisuga which we
consider to be the primary vectors in the southeast.

Because of the differing patch sizes, a natural question arises to consider effects of
migration for higher spatial resolution where all patches are of uniform size. If the
geographical region is broken into smaller, same-size patches, we wish to examine
to what extent these results would change. Future work already in progress uses
cellular automata to see how migration among smaller patches affects the spread
of T. cruzi across a larger geographic region as well as determine a measure for
speed of invasion. Although no data exist on large-scale vector migration patterns
in this region, this work describes the geographical spread of T. cruzi under different
migration scenarios.
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Appendix A. Patch 2 with p = 0 and no migration. We determine the re-
productive number, R0, for section 3.2, patch 2 with no vertical transmission or
migration, using the next generation matrix method [53].

Based on the next generation matrix method, we rewrite system (4), dXdt = f(X)

in terms of two vectors: dX
dt = F0 − V0. F0 represents the terms generating new

infections, while V0 consists of the remaining terms. After computing the derivatives
of F0 and V0, we obtain
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and

V0 =


µS 0 0 0
0 µR 0 0
0 0 µG 0
0 0 0 µW

 .

The dominant eigenvalue of F0V
−1
0 is

R0 =

√
1

2

(
P +

√
P 2 − 4Q

)
,

where

P = f1 + f2 + f3, Q = f1f3, f1 =
(1− qW )βGβW2

µGµW

N∗G2

N∗W2

,

f2 =
qWβSW (1− qS)βWS

µSµW

N∗S2

N∗W2

, f3 =
qSβRβS2

µRµS

N∗S2

N∗R2

.

(12)

http://www.ams.org/mathscinet-getitem?mr=MR1950747&return=pdf
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/0303-2647(91)90043-K
http://dx.doi.org/10.1016/0303-2647(91)90043-K
http://www.who.int/mediacentre/factsheets/fs340/en
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It remains to be shown that
√
P 2 − 4Q is real. Thus, we must show that P 2 −

4Q > 0, as follows:

P 2 − 4Q = (f1 + f2 + f3)2 − 4f1f3

= f2
1 + f2

2 + f2
3 + 2f1f2 + 2f2f3 + 2f1f3 − 4f1f3

= f2
1 − 2f1f3 + f2

3 + 2(f1f2 + f2f3) + f2
2

= (f1 − f3)2 + 2(f1f2 + f2f3) + f2
2 > 0.

To determine the existence of endemic equilibria, we determine the equilibrium
conditions to be

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗S2)N∗S2 − µSx∗S2N

∗
S2 = 0,

βS2x
∗
S2N

∗
S2(1− x∗R2)− µRx∗R2N

∗
R2 = 0,

βW2x
∗
W2(1− x∗G2)N∗G2 − µGx∗G2N

∗
G2 = 0,

((1− qW )βGx
∗
G2N

∗
G2 + qWβSWx

∗
S2N

∗
S2)(1− x∗W2)− µWx∗W2N

∗
W2 = 0,

(13)

where x∗S2 =
I∗S2

N∗
S2
, x∗R2 =

I∗R2

N∗
R2
, x∗G2 =

I∗G2

N∗
G2
, and x∗W2 =

I∗W2

N∗
W2
.

To simplify, we divide the 1st and 3rd equations by the nonzero values N∗S2

and N∗G2 respectively and make the substitutions, β̃G = (1 − qW )βG
N∗

G2

N∗
W2

, β̃SW =

qWβSW
N∗

S2

N∗
W2

, and β̃S2 = βS2
N∗

S2

N∗
R2

.

We solve the 2nd and 3rd equations for x∗R2 and x∗G2:

x∗R2 =
β̃S2x

∗
S2

β̃S2x∗S2 + µR
and x∗G2 =

βW2x
∗
W2

βW2x∗W2 + µG

We then solve the 1st equation in order to isolate x∗W2. We obtain

(βRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗S2)− µSx∗S2 = 0.

Substituting the result for x∗R2 from above, we obtain[
qSβR

(
β̃S2x

∗
S2

β̃S2x∗S2 + µR

)
+ (1− qS)βWSx

∗
W2

]
(1− x∗S2)− µSx∗S2 = 0.

Multiplying through on both sides by the denominator and combining like terms
results in

− (qSβRβ̃S2 + β̃S2µS)(x∗S2)2 − (1− qS)βWS β̃S2x
∗
W2(x∗S2)2 + (1− qS)βWSµRx

∗
W2

+ ((1− qS)βWS β̃S2 − (1− qS)βWSµR)x∗W2x
∗
S2 + ((1− qS)βRβ̃S2 − µSµR)x∗S2 = 0

We then divide everything by µR and µS to obtain

−

(
qSβRβ̃S2

µRµS
+
β̃S2

µR

)
(x∗S2)2 +

(
qSβRβ̃S2

µRµS
− 1

)
x∗S2 −

(
(1− qS)βWS β̃S2

µRµS
(x2
S2)

−

(
(1− qS)βWS β̃S2

µRµS
− (1− qS)βWS

µS

)
x∗S2 −

(1− qS)βWS

µS

)
x∗W2 = 0.

(14)

To simplify, we make the substitutions A = qSβR

µS
, B = β̃S2

µR
, and C = (1−qS)βWS

µS

and solve for x∗W2 to obtain

x∗W2 =
x∗S2

[
(A+ 1)x∗S2 −A+ 1

B

]
C(1− x∗S2)

(
x∗S2 + 1

B

) . (15)
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We finally solve the 4th equation; substituting x∗G2, we obtain[
β̃G

(
βW2x

∗
W2

βW2x∗W2 + µG

)
+ β̃SWx

∗
S2

]
(1− x∗W2)− µWx∗W2 = 0.

Multiplying through by the denominator on both sides, we obtain

−(β̃GβW2 + βWµW )(x∗W2)2 − β̃SWβW2x
∗
S2(x∗W2)2 + (β̃SWβW2 − β̃SWµG)x∗S2x

∗
W2

+ (β̃GβW2 − µGµW )x∗W2 − β̃SWµGx∗S2 = 0,

and dividing all terms by µW and µG to get

−

(
β̃GβW2

µGµW
+
βW2

µG

)
(x∗W2)2 +

(
β̃GβW2

µGµW
− 1

)
x∗W2

−

(
β̃SWβW2

µGµW
(x∗W2)2 −

(
β̃SWβW2

µGµW
− β̃SW

µW

)
x∗W2 −

β̃SW
µW

)
x∗S2 = 0

(16)

We make the substitutions D = β̃SW

µW
, E = βW

µG
, and F = β̃G

µW
and rewrite the

previous equation as

(1− x∗W2)

(
x∗W2 +

1

E

)
x∗S2 =

1

D
x∗W2

[
(F + 1)x∗W2 − F +

1

E

]
.

We can now determine a polynomial in x∗S2, say φ(x∗S2). The resulting polynomial is
of 4th degree, once the disease free equilibrium has been divided out, with constant
term φ(0) = C(P −Q− 1), with P,Q as defined in (5), which is positive for R0 > 1
by the following result

R2
0 > 1

1

2

[
P +

√
P 2 − 4Q

]
> 1√

P 2 − 4Q > 2− P
P 2 − 4Q > 4− 4P + P 2

P −Q > 1

Therefore, since
√
P 2 − 4Q is real, we have R0 > 1 ⇔ P − Q > 1. Furthermore,

it is observed that φ(1) < 0 which implies that φ(x∗S2) crosses the x-axis 1 or 3
times between 0 and 1. By inspection of the form of x∗R2 and x∗G2, we see that x∗R2

is in (0,1) if x∗S2 is in (0,1) and x∗G2 is in (0,1) if x∗W2 is. Alternatively, we can
use the equations (14) and (16) to obtain a polynomial in x∗W2 and apply the same
technique. Thus, there are either 1 or 3 endemic equilibria for this system when
R0 > 1. Thus, if (x∗S2, x

∗
W2) ∈ [0, 1]× [0, 1], then the remaining values, x∗R2 and x∗G2

are also in [0, 1].

Appendix B. Patches 1 and 2, 1 host 1 vector, with VT, unidirectional
migration of infected vectors. To determine the basic reproductive number for
section 3.3, we apply the next generation matrix method [53] to (6). We determine
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the relevant matrices to be

F1 =


0 0 βW2

N∗
G2

N∗
W2

0

0 0 0 βW
N∗

G1

N∗
W1

βG 0 pW rW

(
1− N∗

W2

KW

)
0

0 βG 0 pW rW

(
1− N∗

W1

KW

)


and

V1 =


µG −b̃G 0 0
0 µG + b̄G 0 0
0 0 µW 0
0 0 0 µW

 .

After computing F1V
−1
1 , we obtain the dominant eigenvalue as

R0 = max

{
1

2

(
pW +

√
4

βGβW
(µG + b̄G)µW

N∗G1

N∗W1

+ p2
W

)
,

1

2

(
pW +

√
4
βGβW2

µGµW

N∗G2

N∗W2

+ p2
W

)}
.

To study the existence of endemic equilibria, we first determine

N̄∗G2 = KG

(
1− µG − b̃Gx∗G1

rG

)
, N̄∗G1 = KG

(
1− µG + b̄Gx

∗
G1

rG
.

)
The remaining equilibrium conditions are given by

βW2x
∗
W2(1− x∗G2)N̄∗G2 − µGx∗G2N̄

∗
G2 + b̃Gx

∗
G1N̄

∗
G1 = 0

βGx
∗
G2N̄

∗
G2(1− x∗W2)− µWx∗W2N

∗
W2(1− pW ) = 0

βWx
∗
W1(1− x∗G1)N̄∗G1 − µGx∗G1N̄

∗
G1 − b̄Gx∗G1N̄

∗
G1 = 0

βGx
∗
G1N̄

∗
G1(1− x∗W1)− µWx∗W1N

∗
W1(1− pW ) = 0

(17)

As N̄∗G1 = KG

(
1− µG+b̄Gx

∗
G1

rG

)
6= 0 since rG > µG + b̄G, we can divide both sides

of the 3rd equation by N̄∗G1 to obtain

x∗G1 =
βWx

∗
W1

βWx∗W1 + µG + b̄G
.

It can be seen that if 0 ≤ x∗W1 < 1, then 0 ≤ x∗G1 < 1. To show 0 < x∗W1 < 1, we
substitute this expression for x∗G1 into the 4th equation in the equilibrium conditions
and expand to obtain a cubic polynomial in x∗W1. We can factor out the disease
free equilibrium (in patch 1), in which x∗W1 = 0 leads us to the simple one host one
vector patch 2 only endemic equilibrium. Thus, if R1 < 1 < R2, we have existence of
precisely one endemic equilibrium. Otherwise, for x∗W1 > 0, our resulting quadratic

polynomial is ζ(x∗W1) = a2x
∗
W1

2 + a1x
∗
W1 + a0 = 0 with

a0 = rGµWN
∗
W1(b̄G + µG)2

(
βGβWN

∗
G1

(b̄G + µG)µWN∗W1

+ pW − 1

)
,

a1 = −βW
[βGKG((µG+ b̄G)(rG−µG)−βW (rG−(µG+ b̄G)))+2(µG+ b̄G)rGµWN

∗
W1(1−pW )],

a2 = −β2
W [βGKG(rG − (µG + b̄G)) + rGµWN

∗
W1(pW − 1)]
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We first observe that the constant term, ζ(0) = a0 is positive if and only if R1 > 1
by the result below:

R1 > 1

1

2

(
pW +

√
4

βGβWN∗G1

(µG + b̄G)µWN∗W1

+ p2
W

)
> 1(

pW +

√
4

βGβWN∗G1

(µG + b̄G)µWN∗W1

+ p2
W

)
> 2√

4
βGβWN∗G1

(µG + b̄G)µWN∗W1

+ p2
W > 2− pW

4pW + 4
βGβWN

∗
G1

(µG + b̄G)µWN∗W1

− 4 > 0

pW +
βGβWN

∗
G1

(µG + b̄G)µWN∗W1

− 1 > 0

Furthermore ζ(1) < 0. Thus, we can conclude that ζ(x∗W1) crosses the x-axis
precisely once between 0 and 1.

In order to show that 0 ≤ x∗G2 < 1 and 0 ≤ x∗W2 < 1, we solve the first equilibrium
condition for x∗G2 in terms of x∗W2 and x∗G1,

x∗G2 =
βW2x

∗
W2N̄

∗
G2 + b̃Gx

∗
G1N

∗
G1

βW2x∗W2N̄
∗
G2 + µGN̄∗G2

=
βW2x

∗
W2 + b̃Gx

∗
G1

N̄∗
G1

N̄∗
G2

βW2x∗W2 + µG

We note that if x∗W2 is in (0, 1),
N̄∗

G1

N̄∗
G2

< 1 and µG > b̄G, then 0 ≤ x∗G2 < 1. To

show 0 ≤ x∗W2 < 1, we substitute the expression for x∗G2 into the 2nd equilibrium
condition from (17):

η(x∗W2) = −(βGβW2N̄
∗
G2 + βW2µW (1− pW )N∗W2)(x∗W2)2

+ [βGβW2N̄
∗
G2 − µGµW (1− pW )N∗W2 − βGb̃Gx∗G1N̄

∗
G1]x∗W2 + βGb̃Gx

∗
G1N̄

∗
G1 = 0.

Since we have shown 0 ≤ x∗G1 < 1 and N̄∗G2, N̄
∗
G1, and N∗W2 are all nonzero,

positive constants, it is clear that η(0) = βGb̃Gx
∗
G1N̄

∗
G1 > 0 and η(1) = −(1 −

pW )µWN
∗
W2(βW2+µG) < 0. Thus, η(x∗W2) crosses the x-axis precisely once between

0 and 1. Thus, 0 ≤ x∗W2 < 1 which implies that 0 ≤ x∗G2 < 1, so that there exists
precisely one endemic equilibrium value for system (6) when R1 > 1.

If R1 < 1, we observe that the constant term, ζ(0) = a0, is negative. Further-
more, ζ(1) is also negative. Thus, ζ has either 0 or 2 roots between 0 and 1. After a
numerical investigation using the parameters estimated in section 4, we determine
that both roots of ζ are always negative for R1 < 1, thus no roots are in (0,1).
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Appendix C. Patches 1 and 2, 2 hosts 2 vectors, no VT, unidirectional
migration of infected vectors. We wish to determine existence of endemic equi-
libria for section 3.6, system (9). We first determine that

N∗G2 = KG2

(
1− µG − b̃Gx∗G1

rG

)
, N∗G1 = KG1

(
1− µG + b̄Gx

∗
G1

rG

)
.

We then wish to solve the remaining equilibrium conditions given by

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗S2)N∗S2 − µSx∗S2N

∗
S2 = 0

βSx
∗
S2N

∗
S2(1− x∗R2)− µRx∗R2N

∗
R2 = 0

βW2x
∗
W2(1− x∗G2)N∗G2 − µGx∗G2N

∗
G2 + b̃Gx

∗
G1N

∗
G1 = 0

((1− qW )βGx
∗
G2N

∗
G2 + β̃SWx

∗
S2N

∗
S2)(1− x∗W2)− µWx∗W2N

∗
W2 = 0

βWx
∗
W1(1− x∗G1)N∗G1 − (µG + b̄G)x∗G1N

∗
G1 = 0

βGx
∗
G1N

∗
G1(1− x∗W1)− µWx∗W1N

∗
W1 = 0

(18)

To simplify, we make the substitution β̃SW = qWβSW
N∗

S2

N∗
W2

and β̃S2 = βS2
N∗

S2

N∗
R2

.

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗S2)− µSx∗S2 = 0

β̃S2x
∗
S2(1− x∗R2)− µRx∗R2 = 0

βW2x
∗
W2(1− x∗G2)− µGx∗G2 + b̃Gx

∗
G1

N∗G1

N∗G2

= 0

((1− qW )βGx
∗
G2

N∗G2

N∗W2

+ β̃SWx
∗
S2)(1− x∗W2)− µWx∗W2 = 0

βWx
∗
W1(1− x∗G1)N∗G1 − (µG + b̄G)x∗G1N

∗
G1 = 0

βGx
∗
G1N

∗
G1(1− x∗W1)− µWx∗W1N

∗
W1 = 0

(19)

In system (19), the last 2 equations decouple from the system, so we may study
those equations separately. By inspection, we see that the last two equations are
identical to the last two equations of (17) with pW = 0. From analysis of (17) we
see that either x∗G1 = x∗W1 = 0 or R1 > 1. In this patch alone, one unique endemic
equilibrium exists if and only if R1 > 1 (as shown in Appendix B for system (17)).

If x∗G1 = x∗W1 = 0, we determine the remaining equilibrium conditions

(qSβRx
∗
R2 + (1− qS)βWSx

∗
W2)(1− x∗S2)− µSx∗S2 = 0

β̃S2x
∗
S2(1− x∗R2)− µRx∗R2 = 0

βW2x
∗
W2(1− x∗G2)− µGx∗G2 + b̃Gx

∗
G1

N∗G1

N∗G2

= 0

((1− qW )βGx
∗
G2

N∗G2

N∗W2

+ β̃SWx
∗
S2)(1− x∗W2)− µWx∗W2 = 0

(20)

which are identical to the equilibrium conditions (13) for patch 2 alone, in which
we have determined that if R2 > 1, either 1 or 3 endemic equilibrium exists, in
addition to the disease free equilibrium (which always exists).

If instead, R1 > 1, we assume that x∗G1 is the positive equilibrium given in
Appendix B for system (6) with pW = 0. Thus, in determining possible endemic
equilibrium values for this system, we may solve the 3rd equation of (19) to obtain
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x∗G2 =
βW2x

∗
W2 + b̃Gx

∗
G1

N∗
G1

N∗
G2

βW2x∗W2 + µG
(21)

We substitute x∗G2 into the 4th equation obtainingβ̃G
βW2x

∗
W2 + b̃Gx

∗
G1

N∗
G1

N∗
G2

βW2x∗W2 + µG

+ β̃SWx
∗
S2

 (1− x∗W2)− µWx∗W2 = 0

and multiplying through by the denominator we obtain

−
(
β̃GβW2 + βWµW

)
(x∗W2)2 − β̃SWβW2x

∗
S2(x∗W2)2 +

(
β̃SWβG − β̃SWµG

)
x∗S2x

∗
W2

+

(
β̃GβW2 − β̃Gb̃Gx∗G1

N∗G1

N∗G2

− µGµW
)
x∗W2 + β̃SWµGx

∗
S2 + β̃Gb̃Gx

∗
G1

N∗G1

N∗G2

= 0,

and dividing every term by µW , µG, the expression becomes

−

(
β̃GβW2

µGµW
+
βW2

µG

)
(x∗W2)2 +

 β̃GβW2

µGµW
− 1−

β̃Gb̄Gx
∗
G1

N∗
G1

N∗
G2

µWµG

x∗W2

−

(
β̃SWβW2

µGµW
(x∗W2)2 −

(
β̃SWβW2

µGµW
− β̃SW

µW

)
x∗W2 −

β̃SW
µW

)
x∗S2

+
β̃Gb̄Gx

∗
G1

N∗
G1

N∗
G2

µWµG
= 0.

(22)

Applying the same substitutions in Appendix B, where the first two equations of
(19) are identical to the first two equations of (13) in Appendix A and letting

X =
b̄Gx

∗
G1

N∗
G1

N∗
G2

µG
, we obtain

D(1− x∗W2)(x∗W2 −
1

E
)x∗S2 = (F + 1)(x∗W2)2 −

(
F +

X + 1

E

)
x∗W2 −

X

E
. (23)

Finally, we use (23) and (15) from Appendix A to obtain a polynomial in x∗S2,

g(x∗S2) = E(F + 1 +Dx∗S2)[A(B + 1)x∗S2 + (1−AB)]2(x∗S2)2 − (FX +Dx∗S2)×
[C(Bx∗S2 + 1)(1− x∗S2)]2[1− EF + FX + (1− E)Dx∗S2]×
[A(B + 1)x∗S2 + (1−AB)]x∗S2[C(Bx∗S2 + 1)(1− x∗S2)] = 0.

We note that

x∗W2 =
x∗S2

[
(A+ 1)x∗S2 −A+ 1

B

]
C(1− x∗S2)

(
x∗S2 + 1

B

) . (24)

is positive if and only if

x∗S2 >
AB − 1

AB +A
,

in which case AB > 1 for the expression to be positive (biologically significant).
Thus, we determine that g(0) < 0, g( AB−1

AB+A ) < 0 and g(1) > 0, so that g has at

least one root in
(
AB−1
AB+A , 1

)
.
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Appendix D. Patches 1, 2, and 3, 2 hosts 2 vectors, no VT, unidirectional
migration of infected vectors. To study the existence of endemic equilibria for
system (10) in section 3.7, we first determine that

N∗S3 = KS3

(
1− µS − b̃Sx∗S2

rS

)
, N∗S2 = KS2

(
1− µS + b̄Sx

∗
S2

rS

)
.

N∗G2 = KG2

(
1− µG − b̃Gx∗G1

rG

)
, N∗G1 = KG1

(
1− µG + b̄Gx

∗
G1

rG

)
.

The remaining equilibrium conditions are given by

βRx
∗
R3(1− x∗S3)N∗S3 − µSx∗S3 + b̃Sx

∗
S2N

∗
S2 = 0

βSx
∗
S3N

∗
S3(1− x∗R3)− µRx∗R3N

∗
R3 = 0

((1− qS)βRx
∗
R2 + qSβWSx

∗
W2)(1− x∗S2)N∗S2 − (µS + b̄S)x∗S2N

∗
S2 = 0

βS2x
∗
S2N

∗
S2(1− x∗R2)− µRx∗R2N

∗
R2 = 0

βW2x
∗
W2(1− x∗G2)N∗G2 − µGx∗G2N

∗
G2 + b̃Gx

∗
G1N

∗
G1 = 0

((1− qW )βGx
∗
G2N

∗
G2 + qWβSWx

∗
S2N

∗
S2)(1− x∗W2)− µWx∗W2N

∗
W2 = 0

βWx
∗
W1(1− x∗G1)N∗G1 − (µG + b̄G)x∗G1N

∗
G1 = 0

βGx
∗
G1N

∗
G1(1− x∗W1)− µWx∗W1N

∗
W1 = 0

(25)

If x∗G1 = x∗W1 = 0, the remaining equilibrium conditions are

βRx
∗
R3(1− x∗S3)N∗S3 − µSx1

S3 ∗+b̃Sx
∗
S2N

∗
S2 = 0

βSx
∗
S3N

∗
S3(1− x∗R3)− µRx∗R3N

∗
R3 = 0

((1− qS)βRx
∗
R2 + qSβWSx

∗
W2)(1− x∗S2)N∗S2 − (µS + b̄S)x∗S2N

∗
S2 = 0

βS2x
∗
S2N

∗
S2(1− x∗R2)− µRx∗R2N

∗
R2 = 0

βW2x
∗
W2(1− x∗G2)N∗G2 − µGx∗G2N

∗
G2 = 0

((1− qW )βGx
∗
G2N

∗
G2 + qWβSWx

∗
S2N

∗
S2)(1− x∗W2)− µWx∗W2N

∗
W2 = 0

(26)

If R1 < 1, R2 > 1, x∗S2, x
∗
W2, and x∗G2 are all positive, then it is clear that x∗R3 =

x∗S3 = 0 is not a solution to system (26). Thus, we have existence of 1 or more
endemic equilibrium in patches 2 and 3 alone. On the other hand, if x∗G1 and x∗W1

are positive, then infection must persist in all patches, i.e. x∗G2 = x∗W2 = x∗S2 =
x∗R2 = x∗R3 = x∗S3 = 0 is not a solution to system (25). Intuition suggests that there
exists one endemic equilibria for patch 3 alone if R1 < 1 and R2 < 1. In this case,
if we set I∗S2 = I∗R2 = I∗W2 = I∗G2 = 0, system (10) breaks down to the simple one
host one vector model in which there exists precisely one endemic equilibrium if
and only if R3 > 1.
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