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Abstract. Spiking statistics of a self-inhibitory neuron is considered. The
neuron receives excitatory input from a Poisson stream and inhibitory impulses

through a feedback line with a delay. After triggering, the neuron is in the

refractory state for a positive period of time.
Recently, [35, 16], it was proven for a neuron with delayed feedback and

without the refractory state, that the output stream of interspike intervals (ISI)

cannot be represented as a Markov process. The refractory state presence, in
a sense limits the memory range in the spiking process, which might restore

Markov property to the ISI stream.
Here we check such a possibility. For this purpose, we calculate the con-

ditional probability density P (tn+1 | tn, . . . , t1, t0), and prove exactly that it

does not reduce to P (tn+1 | tn, . . . , t1) for any n ≥ 0. That means, that ac-
tivity of the system with refractory state as well cannot be represented as a

Markov process of any order.

We conclude that it is namely the delayed feedback presence which results
in non-Markovian statistics of neuronal firing. As delayed feedback lines are

common for any realistic neural network, the non-Markovian statistics of the

network activity should be taken into account in processing of experimental
data.

1. Introduction. In a biological neural network, the component parts are neurons
which communicate with each other through synapses. The main inter-neuronal
communication unit — neuronal impulse — is initiated in the axonal hillock,[22]
and then propagates to a synapse through an extended neuronal process, axon,
with a finite speed. The finiteness of propagation speed results in a delay between
starting of impulse in axonal hillock of presynaptic neuron and receiving final exci-
tation/inhibition in the axonal hillock of corresponding postsynaptic neuron1. This
temporal interplay allows one to consider axon as communication line between so-
matic parts of two neurons. This point of view is utilized in most types of artificial
neural networks [11]. In artificial neural networks, a model neuron corresponds
to the soma/axonal hillock of biological neuron whereas communication line cor-
responds to axon. The axonal sprouting, which gives rise to multiple synapses is
modeled as multiple communication lines starting at the same point and receiving
identical inputs. If so, then the instantaneous dynamical state of a network must
include dynamical states of somatic parts of all the neurons together with the states
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of communication lines the network is composed of. The state of a model neuron
can be described as its degree of excitation. The state of a line consists of informa-
tion of whether the line is empty or conducts an impulse [13], [24, I.1.2, II.7.2]. If
it does conduct, then the state of the line can be described by the amount of time,
which is required for the impulse to reach the end of the line and impinge on the
target neuron.

In neurophysiological experiments, the triggering (spiking, firing) moments of
individual neurons but not the states of communication lines are recorded. The
sequence of intervals between the consecutive moments (inter-spike intervals, ISIs)
is frequently considered as a renewal [14] or Markovian [7] stochastic process. For a
renewal process, the consecutive ISIs are mutually statistically independent. On the
other hand, the experimentally obtained spike trains in auditory [18] and visual [17]
sensory systems do not support the ISIs’ mutual independence. These observations
can be associated with memory effects in the ISI sequence which arise from an
underlying non-renewal process. Recently [27], such a possibility was analyzed for
weakly electric fish electrosensory afferents using high-order interval analysis, count
analysis, and Markov-order analysis. The authors conclude that the experimental
evidence cannot reject the null hypothesis that the underlying Markov chain model
is of order m or higher, or maybe non-Markovian. The limited data sets used in
[27] allow to establish a lower bound for m as m ≥ 7 for some fibers.

What could be possible sources of such non-renewal, or even non-Markovian,
behavior in real neural network? First, this behavior could be inherited from non-
renewal (non-Markovian) character of the input signal. Such a signal could be
received through a sensory organ from external world. Second, intrinsic neuronal
properties, such as adaptation, could be responsible. This is because due to adap-
tation neuron can memorize influence of previous inputs. One more reason for a
network activity to be non-Markovian could be the presence of delayed recurrent
interconnections. The simplest possible recurrent interconnection can be realized
in a “network” composed of a single neuron sending its output impulses to its own
input with a delay. Configurations of this type are ubiquitous in real biological
neuronal networks, see [2, 26] and more references in Sec. 2.2. Here we prove that
the presence of delayed feedback in an inhibitory neuron with refractoriness can be
the possible source of the non-Markovian behavior. See also [16, 35], where this is
proven for either inhibitory, or excitatory neuron, both without refractoriness.

The non-Markovian behavior of the ISI sequence from neuron in a network with
delayed interconnections is not surprising. Indeed, the information about which
neurons are spiking/silent at any given moment of time leaves unknown the position
of impulses in the interconnection lines at that moment. And it is the previous
firing moments which determine the states of interconnection lines, which in turn
determine the next firing moments. Therefore, information about the previous
neuronal firing moments could improve our predicting ability as regards the next
firing moments.

We consider the simplest neural “net”, namely, a single inhibitory neuron with
delayed feedback. The neuron receives excitatory impulses from a Poisson process2

and sends its output inhibitory impulses to its own input through a feedback line
with the fixed time delay ∆. As neuronal model we take binding neuron (see Sec.

2As Poisson process we mean the counting process with continuous time and independent and
stationary increments, see [9, II.10].
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Figure 1. Binding neuron with feedback line under Poisson stim-
ulation. Multiple input lines with Poisson streams are joined into
a single one here. ∆ is the delay duration in the feedback line, s is
the time to live, see Definition 2.1.

2.1 for exact definition) as it allows rigorous mathematical treatment. We study
the ISI output sequence of this system.

In our previous papers [35, 16], we considered the case when refractory period r
of a neuron equals to zero, r = 0, which allows receiving and generating impulses
immediately after the previous spike. We have proven in [35] that the sequence of
output ISIs of excitatory binding neuron with delayed feedback cannot be repre-
sented as a Markov chain of any finite order. In [16], we prove the same issue for
an inhibitory binding neuron with delayed feedback. In this work, we check if this
result can be violated by presence of non-zero refractory period, r > 0. Let us first
explain, why this violation could happen.

The feedback line acts as a kind of memory device. Namely, the impulse arrival
from the line informs the neuron that there was an earlier spike ∆ units of time
before. In the case of no refractoriness, an ISI t may be arbitrarily short, t >
0, therefore, the earlier spike number, which the line is signaling about, can be
arbitrarily distant from the current spike number.

In presence of refractory time r > 0, any ISI t is longer than r:

t > r,

therefore, the number of ISI, when the impulse entered the line, can differ from the
number of ISI, when the line still contains the same impulse, by no more than nmax,

nmax = [∆/r] , (1)

were [x] gives an integer part of x. Thus, the ability of the impulse just arriving
from the line to provide information about the earlier spikes is limited as compared
with the case of no refractoriness. That is why, one could expect the finite Markov
order to be found for the output ISI stream in the presence of refractoriness. The
goal of this work is to check if this is the case.

The main result of this work is the proof that the sequence of output ISIs of
inhibitory neuron with delayed feedback cannot be represented as a Markov chain
of any finite order even in the presence of refractoriness. This suggests that activity
of any network with delayed feedback interconnections, if represented in terms of
ISIs, should be non-Markovian as well.

2. The object under consideration.

2.1. Binding neuron model. As a neuronal model we use here the binding neuron
(BN). The BN model describes functioning of a neuron in terms of discrete events,
which are input and output impulses, and degree of temporal coherence between the
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input events, see [31] for detailed description. Mathematically, this model is realized
as follows. We expect that all input impulses in all input lines are identical. Each
input impulse is stored in the BN for a fixed time, τ . The τ is similar to the
“tolerance interval” discussed in [20]. All input lines are excitatory. The neuron
fires an output impulse if the number of stored excitatory impulses, Σ, is equal or
higher than the threshold value, N0. After that, the BN clears its memory. That
is, every input impulse either disappears contributing to a triggering event, or it is
lost after spending τ units of time in the neuron’s internal memory. The latter case
represents leakage. Here, the leakage is abrupt, while in more traditional models it
is gradual.

Further, we expect that stream in each input line is a Poisson one with some
intensity λi. In this case, all input lines can be collapsed into a single one delivering
Poisson stream of intensity λ =

∑
i λi, see Figure 1.

A more formalized definition of the BN model can be given in the form of transfer
function. A transfer function allows exact calculation of output in terms of input.
In the case of neuron, input is a strictly increasing sequence of discrete arriving
moments of standard impulses: Tin = {l1, l2, l3, l4, . . . }. The output is a sequence
of discrete firing moments of BN: Tout = {f1, f2, . . . }. It is clear that Tout ⊂ Tin.
The transfer function in our case could be the function σ(l), l ∈ Tin, which equals
1 if l is the firing moment, l ∈ Tout, and 0 otherwise. For BN with threshold N0 the
required function can be defined as follows. It is clear that the first N0 − 1 input
impulses are unable to trigger neuron, therefore σ(l1) = 0, . . . , σ(lN0−1) = 0. The
next input impulse is able to trigger if and only if all first N0 arriving moments are
confined within a time interval, which is no longer than τ :

σ(lN0
) = 1 if and only if lN0

− l1 ≤ τ.
In order to determine σ(lN0+k), k ≥ 1, one must take into account previous input
moments, therefore we use notation σTin instead of σ. The values of σTin(lN0+k)
can be determined recursively:

[σTin
(lN0+k) = 1] if and only if [lN0+k − lk+1 ≤ τ and

∀i∈{k+1,...,N0+k−1} [σTin
(li) = 0]].

For analytic derivation, we use BN with N0 = 2 in order to keep mathematical
expressions shorter. For this case, the above definition of transfer function looks as
follows:

σ(l2) = 1 if and only if l2 − l1 ≤ τ,

[σTin
(lk+2) = 1] if and only if [lk+2 − lk+1 ≤ τ and σTin

(lk+1) = 0] , k ≥ 1.

It seems that cases with higher thresholds might be considered with the same
approach, but even the case without feedback and with N0 = 3 requires additional
combinatorial efforts, see [32]. Therefore, cases of higher threshold are tested here
only numerically.

As regards real biological neurons, the number of synaptic impulses able to trigger
a neuron can be rather small. E.g., a single excitatory impulse may trigger a
hippocampal inhibitory interneuron, [21].

2.1.1. BN with refractoriness – BN(r). The neuron experiences refractoriness dur-
ing r units of time after each firing. During the refractory time, the neuron is unable
to both receive and send any impulses.
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For short, we will use the notation BN(r) for BN with refractoriness, r > 0. In
the course of derivations, we will need to utilize some results, obtained before for
BN without refractoriness, r = 0. We use the notation BN(0) in this case.

2.2. Feedback line action. In real neuronal systems, a neuron can form synapses
from its axonal branch to its own dendritic tree [2, 5, 8, 19, 25, 26, 29, 30]. Synapses
of this type are called autapses. Some of the neurons forming autapses are known
to be inhibitory, see [8, 26, 29] for experimental evidence. As a result, the neuron
inhibits itself through an autapse after each firing with some propagation delay. We
model this situation assuming that output impulses of BN(r) are fed back into BN’s
input with delay ∆. This gives the inhibitory BN(r) with delayed feedback model,
Figure 1.

The action of an inhibitory feedback impulse is modeled in the following way.
When the inhibitory impulse reaches BN(r), it annihilates all excitatory impulses
already present in the BN(r)’s memory and vanishes instantaneously, similarly as
the Cl-type inhibition shunts depolarization of excitable membrane, see [28]. If at
the moment of inhibitory impulse arrival, the neuron is empty, then the impulse
disappears without any action, similarly as Cl-type inhibition does not affect mem-
brane’s voltage in its resting state. Such inhibition is “fast” in that sense, that the
inhibitory impulses act instantaneously and are not remembered by neuron. Mod-
eling the inhibition in this simple fashion is reasonable because of the relatively fast
kinetics of the chlorine inhibitory postsynaptic currents [6].

The feedback line either keeps one impulse, or keeps no impulses and cannot
convey two or more impulses at the same time. Biological correlates supporting to
an extent this assumption could be a prolonged refractory period and/or short-term
synaptic depression. The latter can have the recovery time up to 20 s [37].

Definition 2.1. The time to live of impulse in the feedback line, s, equals to the
time necessary for the impulse to reach the end of the line and enter the neuron,
see Fig. 1, where time to live is the temporal length of the thick part of the line.

This definition does not make sense if the line does not convey an impulse. On
the other hand, if the feedback line is empty at the moment of firing, the output
impulse enters the line, and after time interval equal ∆ reaches the BN(r)’s input.
If the line already keeps one impulse at the moment of firing, the just fired impulse
ignores the line. This means, that at the beginning of an output ISI the feedback
line is never empty, but keeps single impulse with time to live s ∈ ]0; ∆].

We assume, that time delay ∆ of impulse in the feedback line is smaller than the
BN(r)’s memory duration, τ :

∆ < τ. (2)

It allows to make analytic expressions shorter. Also, the assumption (2) is consistent
with the case of direct feedback, not mediated by other neurons.

2.3. Relation between feedback and refractoriness parameters. In order
to reveal the influence of refractoriness on the spiking statistics of a neuron with
delayed feedback, we consider the following case

r < ∆ < 2r, (3)

when no more than one output firing is possible while an impulse passes the feedback
line, see (1). In this case, the refractoriness, taking more than half of the delay time
within the feedback line, could reduce most correlations beetween the ISIs.
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3. Statement of the problem. The input stream of impulses, which drives neu-
ronal activity is a Poisson one. It is stochastic, therefore, the output activity of our
system requires probabilistic description in spite of the fact that both the BN(r)
and the feedback line action mechanisms are deterministic. We treat the output
stream of inhibitory BN(r) with delayed feedback as a stationary process3. In order
to describe its statistics, we introduce the following basic functions:

• the joint probability density P (tm, tm−1, . . . , t0) for (m+ 1) successive output
ISI durations, t0 is the earliest one.

• the conditional probability density P (tm | tm−1, . . . , t0) for output ISI dura-
tions; P (tm | tm−1, . . . , t0)dtm gives the probability to obtain an output ISI of
duration between tm and tm+dtm provided the previous m ISIs had durations
tm−1, tm−2, . . . , t0, respectively.

Definition 3.1. The sequence of random variables {tj}, taking values in Ω, is called
a Markov chain of the order n > 0, if

∀m>n∀t0∈Ω . . . ∀tm∈Ω P (tm | tm−1, . . . , t0) = P (tm | tm−1, . . . , tm−n),

and this equation does not hold for any n′ < n (see e.g. [9]). In the case of output
ISIs of the BN(r), one reads Ω =]r,∞[.

In particular, taking m = n+ 1, we have the necessary condition,

P (tn+1 | tn, . . . , t1, t0) = P (tn+1 | tn, . . . , t1), ti > r, i = 0, . . . , n+1, (4)

required for the stochastic process {tj} of ISIs to be the n-th order Markov chain.
Our purpose in this paper is to prove the following theorem.

Theorem 3.2. The output ISIs stream of inhibitory BN(r) with delayed feedback
under Poisson stimulation is not a Markov chain of any finite order.

4. Main calculations. This section with Appendices contains the required proof
of Theorem 3.2.

4.1. Proof outline. In order to prove the Theorem 3.2, we are going to show
analytically that the equation (4) does not hold for any finite value of n. Namely, we
will derive exact analytic expression for the conditional probability density P (tn+1 |
tn, . . . , t1, t0) and show that it depends on t0 for any finite number n.

For this purpose we use the procedure, previously utilized in [35] and [16] for
excitory and inhibitory BN(0) with delayed feedback. We reproduce this section
from [16], as it appears to be also suitable for the case with refractoriness.

So, let us introduce the stream ts of events (t, s)

ts = {. . . , (ti, si), . . . },
where si is the time to live of the impulse in the feedback line at the moment, when
the ISI ti starts. At that moment, the feedback line always contains an impulse,
see Definition 2.1 and paragraph next to it. Therefore, any ISI ti can be attributed
with time to live si ∈ ]0; ∆], which is measured just at the beginning of that ISI. We
consider the joint probability density P (tn+1, sn+1; tn, sn; . . . ; t0, s0) for realization

3 The stationarity of the output stream results both from the stationarity of the input one and
from the absence of time-dependent parameters in the BN(r) model, see Section 2.1. In order to

ensure stationarity, we also expect that system is considered after initial period sufficient to forget
the initial conditions.
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of (n + 2) successive events (t, s), and the corresponding conditional probability
density P (tn+1, sn+1 | tn, sn; . . . ; t0, s0) for these events.

Then, we prove the following lemma, which will be used in our calculations.

Lemma 4.1. Stream ts is the 1-st order Markovian:

∀n≥0∀t0>r∀s0∈]0;∆] . . . ∀tn+1>r∀sn+1∈]0;∆]

P (tn+1, sn+1 | tn, sn; . . . ; t0, s0) = P (tn+1, sn+1 | tn, sn), (5)

where {t0, . . . , tn+1} is the set of successive ISIs, and {s0, . . . , sn+1} are the corre-
sponding times to live.

See Appendix A for the proof.
Then, in order to find the conditional probability density P (tn+1 | tn, . . . , t1, t0),

we perform the following steps:

• Step 1. Use the property (5) for calculating joint probability density of events
(t, s):

P (tn+1, sn+1; tn, sn; . . . ; t0, s0) =

P (tn+1, sn+1 | tn, sn) . . . P (t1, s1 | t0, s0)P (t0, s0), (6)

where P (t, s) and P (tn, sn | tn−1, sn−1) denote the stationary probability
density and conditional probability density (transition probability) for events
(t, s).
• Step 2. Represent P (tn+1, tn, . . . , t0) as marginal probability by integration

over variables si, i = 0, 1, . . . , n+ 1:

P (tn+1, tn, . . . , t0) =∫ ∆

0

ds0

∫ ∆

0

ds1 . . .

∫ ∆

0

dsn+1P (tn+1, sn+1; tn, sn; . . . ; t0, s0). (7)

• Step 3. Use the definition of conditional probability density:

P (tn+1 | tn, . . . , t1, t0) =
P (tn+1, tn, . . . , t0)

P (tn, . . . , t0)
. (8)

Taking into account the Steps 1 and 2, one derives the following expression for
the joint probability density:

P (tn+1, tn, . . . , t0) =∫ ∆

0

ds0 . . .

∫ ∆

0

dsn+1P (t0, s0)

n+1∏
k=1

P (tk, sk | tk−1, sk−1). (9)

In the next sections, we are going to find the exact expressions for probability
densities P (t, s) and P (tk, sk | tk−1, sk−1). Then, we will consider separately cases,
when t0 < ∆ and when t0 ≥ ∆, and perform the integration in (9) for both of them.
Then we will apply the Step 3, above, to find expressions for the conditional prob-
ability densities P (tn+1 | tn, . . . , t0) in two domains characterized with t0 < ∆ and
t0 ≥ ∆. It will appear, that P (tn+1 | tn, . . . , t1, t0) does not depend on t0 explicitly
in any of the two domains. Nevertheless, the expression for P (tn+1 | tn, . . . , t1, t0)
is different in each domain. The boundary between the two domains depends on
t0, and this means that the whole function P (tn+1 | tn, . . . , t1, t0) considered in the
union of the two domains, Dl ∪Dm, depends on t0.
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4.2. Probability density P (t, s) for events (t, s). The probability density P (t, s)
can be derived as the product

P (t, s) = F (t | s)f(s), (10)

where f(s) denotes the stationary probability density for time to live of the impulse
in the feedback line at the moment of an output ISI beginning, F (t | s) denotes
conditional probability density for ISI duration provided the time to live of the
impulse in the feedback line equals s at the moment of this ISI beginning. Exact
expressions for both f(s) and F (t | s) for inhibitory BN(r) with delayed feedback
are calculated in Appendices B and C. Particularly,

F (t | s) =


0, (t < r),

P 0(t− r), (t > r and s ≤ r) or (t ∈]r; s[ and s > r),

(1 + λ(s− r)) e−λ(s−r)P 0(t− s), (t ≥ s and s > r),

(11)
were P 0(t), t > 0, denotes an output ISI probability density for BN(0) without
feedback, which was obtained in [32, Eq. (3)]. Explicit expressions for P 0(t) are
different for different domains of t. For example,

P 0(t) = λ2t e−λt, t ∈]0; τ ], (12)

where λ is the input Poisson stream intensity. It is proven in [32], that P 0(t) is a
continuous function for whole range of ISI durations: t ∈]0;∞[.

It is essential for further study, that F (t | s) considered as function of t has a
jump discontinuity at t = s, when s > r. Indeed, using (11) and (12), one obtains

lim
t→s−0

F (t | s) = λ2(s− r) e−λ(s−r) > 0, 0 < r < s ≤ ∆,

lim
t→s+0

F (t | s) = 0.

The presence of jump in F (t | s) at t = s can be explained as follows. According
to the definition of F (t | s), the inhibitory impulse from the feedback line arrives s
units of time later than the corresponding ISI t starts. After the inhibitory impulse
arrival, it is guaranteed, that the BN(r) is empty. To trigger the BN(r) just after
that moment, it is necessary to get two impulses from the input stream within
infinitesimally small time interval. This event has infinitesimally small probability
for the Poisson process (as well as for any other point process). That is why, the
value of probability density F (t | s) drops to zero at t = s+0 and F (t | s) experiences
discontinuity at t = s.

It is important to emphasize, that F (t | s) is a continuous function elsewhere
except of the point t = s, where it has strictly negative jump. This follows from
(11) and from the continuity of P 0(t). The continuity of F (t | s) at t ∈]0; s[ and
t ∈]s;∞[, and its jump at t = s will be used later.

We also need an expression for f(s), which is

f(s) =


g(s), 0 < s < ∆− r,
0 ∆− r ≤ s < ∆,

a · δ(∆− s), s ∈]∆− ε; ∆],

(13)

where δ(·) – is the Dirac delta-function, g(s) – is a regular function, which vanishes
out of interval s ∈]0; ∆− r[ (see Appendix C, eq. (37) for the exact expression), the
a gives the probability to obtain the impulse in the feedback line with time to live
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Figure 2. Left : output ISI probability density P (t) ; Right :
probability density f(s) for times to live of the impulse in the feed-
back line. Here τ = 10 ms, ∆ = 4 ms, r=2.5 ms, λ = 1000 s−1,
N0=2.

equal ∆ at the beginning of an arbitrary output ISI, 1
2 < a < 1. The expression for

a is given in equation (39).
Let us explain the presence of Dirac δ-function type singularity in f(s). The

probability to have time to live, s, exactly equal ∆ at the moment of an output
ISI beginning is not infinitesimally small. Every time, when the line is free at the
moment of an output ISI beginning, the impulse enters the line and has time to
live equal ∆. For the line to be free from impulses at the moment of triggering,
it is necessary that t > s for the previous ISI. The set of realizations of the input
Poisson process, each realization satisfying t > s, has non-zero probability a, see
(13), and this gives the δ-function at s = ∆ in the probability density f(s).

It is worth to notice, that in the case (3) there are only two possible functional
states, the feedback line can have at the beginning of an ISI. Namely, the line either
keeps an impulse with time to live exactly equal ∆ at the beginning of an ISI, or it
does not affect the neuron within this ISI. Indeed, according to (13), the probability
density for time to live s is positive only within the range ]0; ∆−r[ and at the point
s = ∆. But the condition (3) ensures, that

∆− r < r.

It means, that in the case s ∈]0; ∆ − r[ the impulse from the feedback line will
arrive during the refractory period and will not affect the neuron’s state. This fact
will be prominent in the final expression for P (tn+1 | tn, . . . , t0), see discussion in
Sec. 4.5.1.

The output ISI probability density P (t) for inhibitory BN(r) with delayed feed-
back and with refractoriness can be obtained as the result of integration of (10):

P (t) =

∫ ∆

0

F (t | s)f(s)ds. (14)

Discontinuity of F (t | s) at t = s and δ-function type singularity at s = ∆ in f(s)
result in discontinuity of P (t) at t = ∆.

Examples of P (t) and f(s) graphs can be found in Fig. 2.

4.3. Conditional probability density P (tk, sk | tk−1, sk−1). Here we find the
conditional probability density P (tk, sk | tk−1, sk−1) for events (tk, sk), which de-
termines the probability to obtain the event (tk, sk), with precision dtkdsk, provided
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the previous event was exactly (tk−1, sk−1). We reproduce this section from [36],
where P (tk, sk | tk−1, sk−1) was obtained for the case r = 0. It appears, that the
same considerations as those used in [36] are also valid for r > 0. Even the final
expression (15) looks the same. But it is worth to notice, that explicit expressions
for F (t | s) in (15) will be different for r > 0 and r = 0.

By definition of conditional probabilities, the probability density wanted can be
represented as the following product

P (tk, sk | tk−1, sk−1) = F (tk | sk, tk−1, sk−1)f(sk | tk−1, sk−1),

where F (tk | sk, tk−1, sk−1) denotes conditional probability density for ISI duration,
tk, provided i) this ISI started with time to leave of impulse in the feedback line
equal to sk, and ii) previous (t, s)-event was (tk−1, sk−1); the f(sk | tk−1, sk−1)
denotes conditional probability density for times to live of impulse in the feedback
line under condition ii). It is obvious, that

F (tk | sk, tk−1, sk−1) = F (tk | sk),

because with sk being known, the previous event (tk−1, sk−1) does not add any
information, useful to predict tk (compare with the proof of Lemma 4.1, Appendix
A).

In order to find the probability density f(sk | tk−1, sk−1), let us consider various
possible relations between tk−1 and sk−1. If tk−1 ≥ sk−1, the line will have time
to get free from the impulse during the ISI tk−1. That is why at the beginning of
the ISI tk, an output spike will enter the line and will have time to live sk = ∆
with probability 1. Therefore, the probability density contains the corresponding
δ-function:

f(sk | tk−1, sk−1) = δ(sk −∆), tk−1 ≥ sk−1.

If tk−1 < sk−1, than the ISI tk−1 ends before the impulse leaves the feedback line.
Therefore, at the beginning of the tk, the line still keeps the same impulse as at the
beginning of tk−1. This impulse has time to live being equal to sk = sk−1 − tk−1,
so

f(sk | tk−1, sk−1) = δ(sk − sk−1 + tk−1), tk−1 < sk−1.

Taking all together, for the conditional probability density P (tk, sk | tk−1, sk−1) one
obtains

P (tk, sk | tk−1, sk−1) = F (tk | sk)δ(sk −∆), tk−1 ≥ sk−1,

= F (tk | sk)δ(sk − sk−1 + tk−1), tk−1 < sk−1, (15)

where exact expression for F (t | s) is given in (11).

4.4. Joint probability density P (tn+1, . . . , t0). In this section, we are going to
find the exact analytic expressions for the joint probability density P (tn+1, . . . , t0)
at two following domains:

Dl =
{

(t0, . . . , tn, tn+1)
∣∣∣ t1 < ∆, . . . , tn < ∆, t0 < ∆,

}
, (16)

Dm =
{

(t0, . . . , tn, tn+1)
∣∣∣ t1 < ∆, . . . , tn < ∆, t0 ≥ ∆,

}
. (17)

Notice, that coordinate tn+1 is not included to the condition here. The notations
Dl and Dm are introduced in correspondance to the sign between t0 and ∆, –
“l” for t0 < ∆, and “m” for t0 ≥ ∆. It is also worth to notice, that within the
introduced model, it is impossible to obtain any ISI of duration t < r, which follows
directly from the meaning of refractoriness, sec. 2.1.1 and can be derived from (11).
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Therefore, the conditions ti < ∆ in (16) and (17) actually mean r < ti < ∆,
i = 0, 1, . . . , n and i = 1, . . . , n, respectively. Hereinafter we will keep this in mind,
considering domains Dl and Dm.

It is worth to notice the following:

Lemma 4.2. The set of (n+2) successive ISI durations t0, . . . , tn, tn+1 has non-zero
probability to fall into the domain D∗, where ∗ means either l, or m.

See Appendix D for the proof.

4.4.1. P (tn+1, . . . , t0) at Dl. Before we start derivation of P (tn+1, . . . , t0), it is
worth to notice, that in the case (3) considered here, the following inequalities
hold:

∆− ti < r, i ∈ Z+, (18)

ti + tj > ∆, i, j ∈ Z+. (19)

Indeed, tj > r, j = 0, 1, . . ., and due to relation (3), r ≤ ∆ < 2r. Combining these
inequalities, one obtains (18), (19). We will keep in mind relations (18), (19), while
performing integration in (9).

So, consider a fixed (n + 2)-tuple (t0, . . . , tn, tn+1) ∈ Dl. Substituting P (t0, s0)
and P (tk, sk | tk−1, sk−1) from expressions (10) and (15) to (9) and performing
integration over variables s1, . . . , sn+1 using (19), one obtains

P (t2k, . . . , t0) =

k∏
i=1

F (t2i | ∆− t2i−1)F (t2i−1 | ∆)

t0∫
0

F (t0 | s0)f(s0)ds0

+ F (t2k | ∆)

k−1∏
i=1

F (t2i+1 | ∆− t2i)F (t2i | ∆)×

×
∆∫
t0

F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0, k = 0, 1, . . . , (20)

P (t2k+1, . . . , t0) = F (t2k+1 | ∆)

k∏
i=1

F (t2i | ∆− t2i−1)F (t2i−1 | ∆)×

×
t0∫

0

F (t0 | s0)f(s0)ds0

+

k∏
i=1

F (t2i+1 | ∆− t2i)F (t2i | ∆)×

×
∆∫
t0

F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0, k = 0, 1, . . . , (21)

where F (t | s) and f(s) were defined in (11) and (13). We assume here, that
j∏
i

= 1,

when j < i. Note, that formula (20) with k = 0 gives an expression (14) for P (t0).
At the domain Dl, all the differences (∆ − ti), i = 0, . . . , n, take values within

interval ]0; r[, see (18). Therefore, according to (11), all F (t2i | ∆ − t2i−1) and
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F (t2i+1 | ∆ − t2i) in (20) and (21) should be substituted with P 0(t2i − r) and
P 0(t2i+1 − r), respectively.

Similarly, at the domain Dl, all ti < ∆, i = 0, . . . , n, see (16). Therefore,
according to (11), all F (tj | ∆), j = 2k, 2k+1, in (20) and (21) should be substituted
with P 0(tj − r).

Now, consider integral in the first term of (20) and (21). Probability density f(s)
is zero within interval [∆ − r; ∆[, see (13). So, the integration domain in the first
term should be narrowed to s0 ∈]0; ∆ − r[. At this domain, s0 < r, as it follows
from relation (3). Therefore, F (t0 | s0) should be substituted with P 0(t0 − r) and
carried out from the integral. Finally, we use, that f(s) is normed:

∆−r∫
0

ds0f(s0) = 1− a,

where a was defined in (13) and (39).
Taking into account all the considerations above, and using (13) for integration

in the second term, one obtains:

P (tn+1, . . . , t0) = P 0(tn+1 − r)
n∏
i=0

P 0(ti − r) · (1− a)

+ F (tn+1 | ∆)

n∏
i=0

P 0(ti − r) · a, n = 2k + 1,

P (tn+1, . . . , t0) = F (tn+1 | ∆)

n∏
i=0

P 0(ti − r) · (1− a)

+ P 0(tn+1 − r)
n∏
i=0

P 0(ti − r) · a, n = 2k, k = 0, 1, . . . (22)

4.4.2. P (tn+1, . . . , t0) at Dm. Consider a fixed (n+2)-tuple (t0, . . . , tn, tn+1) ∈ Dm.
Applying the similar considerations as in Sec. 4.4.1 to perform the intergration in
(9), one obtains

P (tn+1, . . . , t0) =


n+1∏
i=1

P 0(ti − r) · P (t0), n = 2k + 1,

F (tn+1 | ∆)
n∏
i=1

P 0(ti − r) · P (t0), n = 2k,
(23)

where P (t0) = a ·F (t0 | ∆) + (1− a) ·P 0(t0 − r), compare with the top line of (22)

4.5. P (tn+1 | tn . . . , t0) at domains Dl and Dm. The expressions (22) and (23)
give the joint probability density P (tn+1, . . . , t0) for consecutive ISI durations for
an arbitrary n at the domains Dl and Dm, respectively. Therefore, the conditional
probability density P (tn+1 | tn, . . . , t0) at Dl and Dm can be obtained readily, see
equation (8). One just needs to take (22) and (23) with (n− 1) substituted instead
of n to find P (tn, . . . , t0), and use, that F (tn | ∆) = P 0(tn) at both Dl and Dm.
Substituting obtained expressions for P (tn+1, . . . , t0) and P (tn, . . . , t0) to (8), one
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(t0, . . . , tn) ∈ Dl (t0, . . . , tn) ∈ Dm

n = 2k, P 0(tn+1 − r) · a+ F (tn+1 | ∆) · (1− a) F (tn+1 | ∆)
k = 0, 1, . . .

n = 2k + 1, F (tn+1 | ∆) · a+ P 0(tn+1 − r) · (1− a) P 0(tn+1 − r)
k = 0, 1, . . .

Table 1. Expressions for P (tn+1 | tn . . . , t0) at domains Dl and Dm.

obtains

P (tn+1 | tn . . . , t0)
∣∣∣
Dl

=

{
P 0(tn+1 − r) · a+ F (tn+1 | ∆) · (1− a), n = 2k,

F (tn+1 | ∆) · a+ P 0(tn+1 − r) · (1− a), n = 2k + 1,

(24)

P (tn+1 | tn . . . , t0)
∣∣∣
Dm

=

{
F (tn+1 | ∆), n = 2k,

P 0(tn+1 − r), n = 2k + 1,
(25)

where k = 0, 1, . . ., and a ranges within 0.5 and 1, see Appendix C. Expressions for
P (tn+1 | tn, . . . , t0), given in (24) and (25), are arranged in the Table 1.

We can see, that for t1 < ∆, . . . , tn < ∆ the conditional p.d.f. P (tn+1 | tn, . . . , t0)
can be represented as a linear combination of functions P 0(tn+1 − r) and F (tn+1 |
∆), with coefficients, which depend on whether t0 < ∆ or t0 ≥ ∆ and on the parity
of n. Functions P 0(tn+1 − r) and F (tn+1 | ∆) are different and they have different
properties. Namely, P 0(tn+1 − r) is a continuous function at all its domain, and
F (tn+1 | ∆) contains a jump at the point tn+1 = ∆, see an example of P 0(tn+1− r)
at Fig. 6, right, and an example of F (tn+1 | ∆) at Fig. 3, right4. This means, that
P (tn+1 | tn, . . . , t1, t0) changes its value when t0 changes its value from t0 < ∆ to
t0 ≥ ∆. Therefore conditional p.d.f. P (tn+1 | tn, . . . , t1, t0) does depend on the
condition t0. This means, that the condition (4) does not hold for any n for the
output stream of BN(r) with delayed feedback. The Theorem 3.2 is proven.

4.5.1. Discussion of result for P (tn+1 | tn, . . . , t0). In this section, we are going
to explain additionally, how the results (24) and (25) for the conditional p.d.f.
P (tn+1 | tn, . . . , t0) should be understood.

Let us first consider P (tn+1 | tn, . . . , t0) at Dm, expression (25). The condition
t0 ≥ ∆ in (17) ensures, that the impulse will leave the feedback line during ISI t0, no
matter what its time to live was at the beginning of t0 (compare with considerations
in the proof of Lemma 4.2, Appendix D). So, at the next firing, the line will start
to conduct a new impulse with time to live equal s1 = ∆. As t1 < ∆ at Dm, then
at the beginning of the next ISI, the line will still conduct the same impulse with
time to live s2 = ∆ − t1 < ∆ − r < r, where we use (3) and t1 > r. At the next
firing, the line will start to conduct a new impulse with time to live equal s3 = ∆,
and due to the condition t3 < ∆ will contain the same impulse at the beginning of
ISI t4 with time to live s4 = ∆− t3 < r, see Fig. 9 in Appendix D.

4 We use here, that P (tn+1 | tn, . . . , t0) = P 0(tn+1−r) for n = 2k+1 and P (tn+1 | tn, . . . , t0) =
F (tn+1 | ∆) for n = 2k at Dm, expression (25).
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Proceeding with such considerations, one concludes, that the states of the feed-
back line at the beginning of ISIs t1, . . . , tn alternate; namely, si = ∆ for an odd
and si < r for an even number i. So, if we take n = 2k, k = 0, 1, . . ., in (25), an
ISI tn+1 will start with time to live sn+1 = ∆. Ones sn+1 is known, the condi-
tions t1, . . . , tn do not add any information, useful to predict tn+1, compare with
the proof of Lemma 4.1. Formally, it means, that all the conditions tn, . . . , t0 in
P (tn+1 | tn, . . . , t0) should be substituted with the condition sn+1 = ∆, which gives
the top line of (25).

Now, if we take n = 2k + 1, k = 0, 1, . . ., in (25), an ISI tn+1 will start with
time to live sn+1 < r. Inequality sn+1 < r ensures, that the feedbacked impulse
will enter the neuron during refractory period and therefore will disappear without
any action. Therefore, the probability to obtain an output ISI of definite duration
for BN(r) with delayed feedback is the same as for BN(0) without feedback, which
started to receive impulses at the moment r (after the end of refractoriness). This
explains the bottom line of (25).

Now, let us consider P (tn+1 | tn, . . . , t0) at Dl, expression (24). Using the same
considerations as for Dm, one can conclude, that the states of the feedback line at
the beginning of ISIs t0, t1, . . . , tn also alternate. But in the case of Dl, the condition
t0 < ∆ leaves unknown the state of the feedback line at the beginning of t1, and
eventually at the beginning of any later ISI, as the conditions t1 < ∆, . . . , tn < ∆
hold. So, at the beginning of t0 the line either has an impulse with time to live
s0 = ∆, with probability a, or it contains an impulse with time to live s0 < r, with
probability (1− a). Here we use (13) and normalization condition (38). If s0 = ∆,
then sn+1 = ∆ for n = 2k+ 1 and sn+1 < r for n = 2k, k = 0, 1, . . ., which explains
the first term in top and bottom lines of (24). Othervise, if s0 < r, then sn+1 < r
for n = 2k + 1 and sn+1 = ∆ for n = 2k, which corresponds to the second term in
top and bottom line of (24).

5. Numerical simulation. In order to check the correctness of obtained ana-
lytic expressions, and also to investigate whether the output ISIs stream is non-
Markovian for inhibitory BN(r) with higher thresholds as well, numerical simula-
tions were performed. A C++ program, containing class, which models the opera-
tion manner of inhibitory BN(r) with delayed feedback, was developed. Object of
this class receives the sequence of pseudorandom numbers with Poisson probability
density to its input. The required sequences were generated by means of utilities
from the GNU Scientific Library5 with the Mersenne Twister generator as source
of pseudorandom numbers.

Program contains function, the time engine, which brings system to the moment
just before the next input signal, bypassing moments, when neither external Poisson
impulse, nor impulse from the feedback line comes. So, only the essential events
are accounted. It allows one to make exact calculations faster as compared to the
algorithm where time advances gradually by adding small time-steps.

The conditional probability densities, P (t1 | t0) and P (t2 | t1, t0), are found by
counting the number of output ISI of different durations and normalization (see
Figures 3 – 7). Obviously, for calculation of conditional distributions only those
ISIs are selected, which follow one or two ISIs of fixed duration, t0 for P (t1 | t0)
and {t1, t0} for P (t2 | t1, t0). The single- and double-ISI conditional probability
densities, found numerically for inhibitory BN(r) with threshold 2, coincide with

5http://www.gnu.org/software/gsl/
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Figure 3. Conditional probability density P (t2 | t1) for τ = 10
ms, ∆ = 4 ms, λ = 1000 s−1, N0 = 2, r=2.5 ms, t1=5 ms, t1 ∈
Dm, found numerically by means of Monte-Carlo method (left)
and derived analytically using (25) (right). The number of firings
accounted in numerical simulation N = 30 000.
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Figure 4. Conditional probability density P (t2 | t1) for τ = 10
ms, ∆ = 4 ms, λ = 1000 s−1, N0 = 2, r=2.5 ms, t1=3.5 ms,
t1 ∈ Dl, found numerically by means of Monte-Carlo method (left)
and derived analytically using (24) (right). The number of firings
accounted in numerical simulation N = 30 000.
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Figure 5. Conditional probability density P (t2 | t1, t0) for τ =
10 ms, ∆ = 4 ms, λ = 1000 s−1, N0 = 2, r=2.5 ms, t1=3.5 ms,
t0=3 ms, (t0, t1) ∈ Dl, found numerically by means of Monte-Carlo
method (left) and derived analytically using (24) (right). The num-
ber of firings accounted in numerical simulation N = 30 000.
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Figure 6. Conditional p.d.f. P (t2 | t1, t0) for τ = 10 ms, ∆ =
4 ms, λ = 1000 s−1, N0 = 2, r=2.5 ms, t1=3.5 ms, t0=5 ms,
(t0, t1) ∈ Dm, found numerically by means of Monte-Carlo method
(left) and derived analytically using (25) (right). The number of
firings accounted in numerical simulation N = 30 000.
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Figure 7. Conditional p.d.f. P (t2 | t1, t0) for τ = 10 ms, ∆ =
4 ms, λ = 1000 s−1, N0 = 4, r=2.5 ms, t1=3.5 ms, t0=3 ms,
(t0, t1) ∈ Dl (a) and t1 = 3.5 ms, t0 = 5 ms, (t0, t1) ∈ Dm (b),
found numerically by means of Monte-Carlo method (N = 30 000).

 0

 100

 200

 0.002  0.004  0.006  0.008  0.01

P(
t2

|t1
,t0

),
 1

/s

t2, s

 0

 100

 200

 0.002  0.004  0.006  0.008  0.01

P(
t2

|t1
,t0

),
 1

/s

t2, s

Figure 8. Conditional p.d.f. P (t2 | t1, t0) for the LIF model found
numerically by means of Monte-Carlo method (N = 30 000). Here
λ = 500 s−1, r=2.5 ms, τM = 10 ms, y0 = 4 mV, V0 = 5 mV; (a)
t0=3 ms, t1 = 3.5 ms, (t0, t1) ∈ Dl, (b) t0 = 5 ms, t1 = 3.5 ms,
(t0, t1) ∈ Dm.
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those obtained analytically in (25) and (24), compare left and right panels in Figs. 3–
6.

For N0 > 2, conditional probability densities P (t1 | t0) and P (t2 | t1, t0) are
similar to those, found for N0=2. In particular, both the availability and position
of discontinuity coincide with those obtained for inhibitory BN(r) with threshold 2,
as expected, compare Figure 7, left with Figure 5 and Figure 7, right with Figure 6.

In order to compare results for the BN neuron with the leaky integrate-and-fire
(LIF) model, numerical simulation was performed for the LIF model as well. The
LIF neuron was simulated in its simplest version. Namely, the neuron’s state at
any moment of time ϑ is completely characterized by its membrane voltage at that
moment, V (ϑ). Without stimulation, the V (ϑ) decays exponentially to the resting
state with V = 0:

V (ϑ+ t) = e−t/τM V (ϑ),

where τM – is the membrane relaxation time. An input impulse advances V by a
fixed value, y0, instantaneously:

V → V + y0,

where y0 mimics the EPSP peak value. If the resulting voltage satisfies the inequal-
ity

V + y0 > V0,

where V0 – is the firing threshold, then the LIF neuron fires an output spike and
appears in the resting state.

For numerical simulations we choose τM = 10 ms, y0 = 4 mV, V0 = 5 mV.
These values are comparable with those found in the inhibitory interneurons of
CA3 hippocampal region, [21]. The relation between V0 and y0 ensures that two
input impulses are able to trigger the LIF provided they are close in time (which
corresponds to N0 = 2 in BN model). For the inhibitory interneurons, this is
because of their depolarized resting state, [15]. It is reported, [12], that even single
impulse from a piramidal cell may trigger interneuron of this type. Interesting, that
selfinhibition is found in the inhibitory interneurons also, but in the neocortex, [3].

The result, obtained for the LIF model, Fig. 8, conforms with non-Markov
behavior, obtained for the BN model.

6. Conclusions. Our results reveal the influence of delayed feedback presence on
the neuronal firing statistics. In the contrast to the cases of BN(0) without feedback
[33] and BN(0) with instantaneous feedback [34], the neighbouring output ISIs of
inhibitory BN(r) with delayed feedback are mutually correlated, compare with [4].
This means that even in the simplest possible reverberatory network with random
stimulation the output ISI stream is not as a renewal one.

The non-renewalness of experimentally registered spike trains was observed for
neuronal activity in various CNS areas in mammals [18, 10, 23] and fish [17, 27].
The simplest stochastic processes which are not renewal are the Markov processes
of various order. The order of underlying Markov process was estimated in [27] for
activity in the weakly electric fish electrosensory system. It was found in [27] that
for some neural fibers the Markov order should be at list seven, which does not
exclude that the genuine order is higher, or that the activity is non-Markovian.

Actually, for proving based on experimental data that a stochastic activity has
Markov order m, one needs increasing amount of data with increasing m. If
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so, it seems impossible to prove experimentally that a stochastic activity is non-
Markovian. Similarly as it is impossible to prove experimentally that a number
is irrational. We prove here that the output ISI stream of inhibitory BN(r) with
delayed feedback is non-Markovian based on complete knowledge of the mechanism
which generates the output stream. In a sense, to have this knowledge is equivalent
as to have an unlimited amount of experimental data.

It is worth to notice, that the activity of excitatory BN(r) with delayed feedback
would be non-Markovian as well. We conclude, that it is namely the delayed feed-
back presence, which results in non-Markovian statistics of neuronal firing. One
should take this facts into account during analysis of neuronal spike trains obtained
from any reverberatory network.

7. Discussion. The relative simplicty of expressions for P (tn+1 | tn, . . . , t0), see
(24), (25) and Table 1, are due to the relationship (3) between the temporal length
of the feedback line, ∆, and the refractory period, r. Due to this relationship, the
feedback line can act in a binary mode only. Namely, the only state of the line at
the beginning of any ISI, which can influence the subsequent firing activity, is the
state with s = ∆. All other values of s, 0 < s < ∆, (actually, 0 < s < ∆− r < r),
are equally unable to influence the firing process, and therefore, can be qualified as
belonging to the same unique state. In the opposite to (3) situation, when ∆ > 2r,
among the states with s < ∆, there appears a continuum of states with r < s <
∆− r, which are able to influence the firing process in distinguishable manner. In
that case, the feedbacked impulse can provide more detailed information about the
previous events and the correlations and memory effects in the ISI sequence would
be stronger. Therefore, as the non-Markovian behavior was found for the case (3),
one would expect the same in the case ∆ > 2r.

In this paper, we have proven that the memory time scale of the output ISIs
stream is infinite, provided a delayed feedback is involved. It is possible to try to
approximate a non-Markov process with a Markov process. An interesting question
would be to estimate how good such an approximation could be. The answer
depends on what is expected to calculate with the initial non-Markov process and
its Markov approximation. E.g., a so called Markovian projection [1] offers a good
approximation if a stochastic volatility of prices is calculated, but it is not clear
what could it mean for a neuronal system. A simpler task would be to estimate
correlations between different ISIs, and how fast do the correlations decay with
order/temporal distance between the ISIs. This is expected to try in another work.

Appendix A. Proof of Lemma 4.1. We reproduce this proof literally from [36],
as all the consiredations from [36] for the case r = 0 are also valid for r > 0.

In the compound event (tn+1, sn+1), the time to live sn+1 always gets its value
before than the tn+1 does. The value of sn+1 can be determined unambiguously
from the (tn, sn) value (See Sections 2.2 and 4.3):

sn+1 =

{
sn − tn, tn < sn,

∆, tn ≥ sn.
(26)

The only two factors, which determine the next ISI duration, tn+1, are (i) the
value of sn+1, and (ii) the behavior of the input Poisson stream under the condition
(tn, sn; . . . ; t0, s0) after the moment θ, when the tn+1 starts. The sn+1 value does not
depend on (tn−1, sn−1; . . . ; t0, s0), see above. As regards the input Poisson stream,
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condition (tn, sn; . . . ; t0, s0) imposes certain constraints on its behavior before the
θ. But what do we need in the definition of the P (tn+1, sn+1 | tn, sn; . . . ; t0, s0), it
is the conditional probability to obtain input impulses at definite moments after the
θ. For a Poisson stream this conditional probability does not depend on conditions
before the θ. For example, conditional probability to obtain the first after θ impulse
at θ + t equals e−λtλdt, whatever conditions are imposed on the stream before the
θ. This proves (5).

Appendix B. Derivation of F (t | s). In order to derive conditional p.d.f. F (t |
s), we are going to consider separately cases s ≤ r and s > r.

Let us start with s ≤ r. In this case, inhibitory impulse from the feedback line
does not affect the neuron, as it arrives during refractory period. According to
our model (Sec. 2.1.1), BN(r) is unable to receive and send any impulses during
refractory period, so F (t | s) = 0 if t < r. As the line is free of impulse at the
moment when neuron recovers from itsr refractory period, the probability to obtain
ISI of definite duration t > r is the same as for BN(0) without feedback, which
started to receive excitatory impulses at the moment r. So, the expression for
F (t | s) can be readily obtained:

F (t | s) =

{
0, t ≤ r and s ≤ r,
P 0(t− r), t > r and s ≤ r, (27)

where P 0(t) is the probability density for output ISI durations for BN(0) without
feedback, which was derived in [32].

Now consider the case, when s > r. Again, it is impossible to obtain any ISI of
duration less than r, so F (t | s) = 0 if t < r. Until the feedbacked impulse arrives,
the neuron is unaffected by the feedback line, therefore F (t | s) = P 0(t − r) if
t ∈]r; s[. Finally, in order to obtain an ISI of duration t > s, the following conditions
must be satisfied: i) BN(0) without feedback, which started to receive impulses at
the moment r, should not fire until moment s, ii) BN(0) without feedback, which
started to receive impulses at the moment s fires for the first time at the moment t.
The probability of event i) is Π0(s− r), where Π0(t) gives the probability to obtain
an ISI longer than t at the output of BN(0) without feedback:

Π0(t) ≡
∞∫
t

P 0(t′)dt′.

The expression for Π0(t) is different for different domains of t. In this work, we
need only the expression for the domain t < τ . This can be calculated with the
usage of (12) and the fact that P 0(t) is normalized to 1:

Π0(t) = 1−
t∫

0

P 0(t′)dt′ = (1 + λt)e−λt, t < τ.

The probability of event ii) is simply P 0(t− s)dt.
Taking all together, one obtains for s > r:

F (t | s) =


0, t ≤ r,
P 0(t− r), t ∈]r; s[,

Π0(s− r)P 0(t− s), t ≥ s.
(28)
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Note, that p.d.f. F (t | s), given in (27) and (28), is normalized:
∞∫
0

F (t | s)dt = 1.

Appendix C. Stationary probability density f(s). In order to derive f(s),
let us define transition probability densities P (s′ | s). Namely, P (s′ | s)ds′ gives
the probability to find the impulse in the feedback line with time to live within
interval [s′; s′ + ds′[ at the begining of some ISI, provided that at the beginning of
the previous ISI, time to live of the impulse in the feedback line was s.

Ones P (s′ | s) is known, stationary probability density f(s) can be found as a
normalized to 1 solution of the following equation:

∆∫
0

P (s′ | s)f(s)ds = f(s′). (29)

C.1. Derivation of the transition probability densities P (s′ | s). In order to
derive P (s′ | s), let us again consider different domains of s and s′ values separately.

Consider s < ∆ at the beginning of some ISI. Depending on the duration t of
this ISI, time to live s′ at the beginning of the next ISI can take different values
(See Sections 2.2 and 4.3):

s′ =

{
s− t, t < s,

∆, t ≥ s, (30)

compare with (26).
Namely, if t < s, then s′ = s− t and ISI t is generated without the feedback line

involved. As the probability to obtain an ISI of duration t ≤ r is zero, then

P (s′ | s) = 0 for 0 < s− s′ ≤ r.
To obtain an ISI of duration t = s− s′ > r, it is necessary, that the BN(0) without
feedback, which started to receive impulses at the moment r, fires for the first time
at the moment t. The probability of this event is P 0(t− r)dt, therefore

P (s′ | s) = P 0(s− s′ − r), when 0 < s′ < s− r.
On the other hand, if t ≥ s, then the feedback line will get free from its impulse

during ISI t. So, at the beginning of the next ISI, new impulse will enter the line
and will have time to live exactly equal s′ = ∆. This results in δ-function in the
conditional p.d.f. P (s′ | s) at the point s′ = ∆. The mass of this δ-function is the
overall probability to obtain any ISI of duration t ≥ s, given that at the beginning
of this ISI time to live of the impulse in the feedback line was s. This probability
can be calculated as follows:

∞∫
s

F (t | s)dt =

{
1, s ≤ r,
Π0(s− r), s > r,

were we substituted F (t | s) from (28) and (27) and used the normalization condition
∞∫
0

P 0(t)dt = 1.

Finally, as it follows from Section 2.2 and can be seen in (30), it is impossible to
obtain s ≤ s′ < ∆.
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Taking all together, one obtains:

P (s′ | s) =


0, s ≤ s′ < ∆,

0, 0 < s− s′ ≤ r,
P 0(s− s′ − r), 0 < s′ < s− r,
A(s, r)δ(s′ −∆), s′ ∈]∆− ε; ∆],

(31)

where

A(s, r) =

{
1, s ≤ r,
Π0(s− r), s > r.

Note, that p.d.f. P (s′ | s), given in (31), is also normalized:
∆∫
0

P (s′ | s)ds′ = 1.

C.2. Derivation of the f(s). In order to solve equation (29), we present f(s) in
the following form:

f(s) = g(s) + a · δ(∆− s), (32)

where δ(·) – is the Dirac delta-function, g(s) – is a regular function, which vanishes
out of interval s ∈]0; ∆], a – some constant, which will be defined from normalization
condition.

Substituting (32) to (29) and separating terms without δ-function, one obtains
equation for the regular part g(s) of probability density f(s):

g(s′) = a · F (s′ | ∆) +

∆∫
r

P reg(s′ | s)g(s)ds,

where P (s′ | s) is defined by (31), and superscript “reg” denotes its regular part
(without δ-function).

One should consider cases 0 < s′ < ∆ − r and ∆ − r ≤ s′ ≤ ∆ separately, as
the espressions for P (s′ | s) are different for different domains. Let us start with
s′ ∈ [∆− r; ∆]. Substituting P (s′ | s) from (31), one obtains the trivial result:

g(s′) = 0, s ∈ [∆− r; ∆], (33)

which simply reflects the impossibility to obtain an ISI of duration less than r.
Now consider the case 0 < s′ < ∆ − r. Substituting corresponding expressions

for P (s′ | s) from (31), one obtains

g(s′) = a · λ2(∆− s′ − r)e−λ(∆−s′−r) + λ2

∆∫
r

(s− s′ − r)e−λ(s−s′−r)g(s)ds, (34)

were we used (12). In order to solve this equation, let us represent g(s) as

g(s′) = eλs
′
φ(s′), 0 < s′ < ∆. (35)

Substituting (35) to (34), one obtains

φ(s′) = a · λ2(∆− s′ − r)e−λ(∆−r) + λ2eλr
∆∫
r

(s− s′ − r)φ(s)ds, 0 < s′ < ∆− r,

(36)
or after double differentiation

d2

ds′2
φ(s′) = φ(s′ + r), 0 < s′ < ∆− r.
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Figure 9. Relation between s1, s2, . . . and t1, t2, . . . at the do-
main Dm, (17). Each ISI starts with refractory time r, indicated
by “xxxxxx” at the time axis. The values the s can take at the
beginning of any ISI are indicated by solid line and dot at s-axis.
The states of the feedback line at the beginning of t1, t2, . . . alter-
nate: the line keeps an impulse with time to live either equal ∆,
or less than r. In the letter case the feedbacked impulse arrives
during refractory period and does not affect neuron.

But φ(s′ + r) ≡ 0, see (33). Therefore, for g(s) one obtains:

g(s′) = a · λ2(∆− s′ − r)e−λ(∆−s′−r), 0 < s′ < ∆− r, (37)

were we used (36). Taking together (32), (33) and (37), one obtains (13).
According to (32) and (37), the normalization condition can be written as

∆−r∫
0

g(s)ds+ a = 1, (38)

which results in

a =
eλ(∆−r)

2 eλ(∆−r) − 1− λ(∆− r) . (39)

Analyzing expression (39) and using λ(∆ − r) > 0, one can find, that constant a
takes values within interval

1

2
< a < 1.

Appendix D. Proof of Lemma 4.2. Let us first consider Dm. The condition
t0 ≥ ∆ in (17) ensures, that the feedback line will discharge its impulse during ISI
t0. So, at the next firing, new impulse will enter the line, and will have time to
live equal s1 = ∆. But at the domain Dm, t1 < ∆, which means, that ISI t1 was
generated without the feedbacked impulse involved. At the beginning of the next
ISI, the line still conducts the same impulse with time to live s2 = ∆− t1 < ∆−r <
r, where the conditions (3) and t1 > r are used, see Fig. 9. Inequality s2 < r
means, that the feedback line will not affect BN during ISI t2 (compare with the
end of Section 4.2). Proceeding with such considerations, one concludes, that ISIs
t1, t2, . . . , tn are generated without feedback line involved (with Poissonian impulses
only).

BN(0) with threshold N0 = 2 requires 2 input impulses from the Poisson stream
within time window ]r; ∆[ to be triggered within this window (condition (2) ensures
that no one input impulse will be lost). This event has the probability λ2(∆− r)2 ·



DELAYED FEEDBACK → NON-MARKOVIAN STATISTICS 103

e−λ(∆−r)/2. Therefore, the probability to have n ISIs each within interval ]r; ∆[, is
given by λ2n(∆− r)2n · e−nλ(∆−r)/2n.

The state of the feedback line at the beginning of t0 is unknown. But no matter
the state was, it is guaranteed, that after ∆ units of time after the ISI beginning, the
inhibitory impulse is already utilized and BN procceds driven by the Poisson process
only, until the next spike will be generated. The lower bound for the probability

to obtain t0 ≥ ∆ can be estimated as Π0(∆ − r)
∞∫
∆

P 0(t − ∆) = Π0(∆ − r) =

(1 + λ(∆− r))e−λ(∆−r).
Therefore, the set of (n+ 2) successive ISI durations t0, . . . , tn, tn+1 has non-zero

probability,

Prob [(t0, . . . , tn+1) ∈ Dm] >
λ2n(∆− r)2n

2n
· e−(n+1)·λ(∆−r) > 0

to fall into the domain Dm.
Now, consider the domain Dl. Applying the similar considerations as in the case

of Dm, one can conclude, that at Dl all the ISIs t0, t1, . . . , tn are generated without
feedback line involved. Therefore the lower bound for the probability to fall into
this domain can be estimated as

Prob [(t0, . . . , tn+1) ∈ Dl] >
λ2(n+1) · (∆− r)2(n+1)

2n+1
· e−(n+1)·λ(∆−r) > 0

This proves Lemma 4.2.
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