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Abstract. The question, how much information can be theoretically gained
from variable neuronal firing rate with respect to constant average firing rate

is investigated. We employ the statistical concept of information based on the

Kullback-Leibler divergence, and assume rate-modulated renewal processes as
a model of spike trains. We show that if the firing rate variation is sufficiently

small and slow (with respect to the mean interspike interval), the information

gain can be expressed by the Fisher information. Furthermore, under certain
assumptions, the smallest possible information gain is provided by gamma-

distributed interspike intervals. The methodology is illustrated and discussed

on several different statistical models of neuronal activity.

1. Introduction. Since the classical works of [2, 53, 43], the challenges of under-
standing the principles of neuronal coding have attracted an increasing number of
scientists from different fields. It is generally accepted that neurons communicate
using series of action potentials (spike trains) via chemical and electrical synapses.
Currently, there are two main hypotheses that describe the representation of infor-
mation in neuronal signal. In the first, denoted as the rate (or frequency) coding
hypothesis, information is represented by the neuronal firing rate. In the second
hypothesis, denoted as the temporal coding, features of the spiking activity beyond
the firing rate are employed [54]. In this paper we are concerned only with the rate
coding point of view.

A fundamental mathematical framework for the theoretical approach to the prob-
lem of information processing in neuronal systems is provided by information theory
[52], e.g., in the works by [10, 9, 53] and by the statistical estimation theory [32, 40],
e.g., in [24, 22, 23]. Along the latter approach, Koyama (2013) recently introduced
the Kullback-Leibler (KL) divergence for rate-modulated renewal processes to inves-
tigate how much information on time-varying firing rates is carried by spike trains.
It was shown that the KL divergence determines a lower bound for detectability of
rate fluctuations with a Bayesian rate estimator [37]. It was also found that the
information, as well as the lower bound, could significantly depend on the dispersion
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properties of neuronal firing, the effect of which, however, has not been investigated
systematically.

In this paper, we employ the approximation of KL divergence in terms of Fisher
information, which essentially relates the information gain and the dispersion of
neuronal firing in a single formula. Consequently, we investigate the effect of the
interspike interval (ISI) distribution dispersion on the overall encoding performance.
In particular, we show that among all scale-family ISI distributions that share the
same coefficient of variation, the gamma distribution attains the minimum infor-
mation gain. We also illustrate typical behavior of the Fisher information by using
generalized inverse Gaussian and lognormal distributions.

2. Methods. In this manuscript we employ the general concept of information
arising in statistics and introduced by [39], following the works of [52], [20] and [50].
In particular, assume that H1 is the hypothesis that the random variable X follows
probability distribution f1(x), and let H2 denote the hypothesis X ∼ f2(x). The
information contained (on average) in the observation X = x for discrimination in
favor of H1 against H2 is defined as the Kullback-Leibler (KL) divergence D(f1||f2)
(see [39] for more details)

D(f1||f2) =

∫
X

f1(x) ln
f1(x)

f2(x)
dx. (1)

The integral defining D(f1||f2) always exists (although it may be infinite), and
“0 = 0 ln 0” as follows by taking the limits. The units of information are either
“bits” (for the base-2 logarithm) or “nats” for the natural logarithm. The definition
of information in Eq. (1) is apparently distinct from the Shannon’s measures of self-
information and mutual information, although there is no contradiction as can be
demonstrated by a particular choice of H1, H2; the mutual information, for example,
is obtained by taking H1 and H2 to be joint density and the product of the marginal
densities, respectively [39, pp. 7–8]. See also [18] for further details.

Another measure of “information”, employed especially in the theory of statistical
estimation of continuously varying parameters [45], is the Fisher information. Let
f(x; θ) be a parametric family of probability densities, then

J(θ|X) =

∫
X

[
∂ ln f(x; θ)

∂θ

]2

f(x; θ) dx, (2)

is denoted as the Fisher information about parameter θ contained in a single obser-
vation of r.v. X, since J(θ|X) determines how well the value of θ can be estimated
from observing X (roughly stated, see e.g., [56] for details). In particular, for any

unbiased estimator θ̂(X) of parameter θ holds V ar(θ̂(X)) ≥ 1/J(θ|X) provided that
f(x; θ) satisfies certain technical conditions [45]. The Fisher information has been
used for measuring the encoding accuracy in the context of neural coding [8, 51, 57].

Eqns. (1) and (2) differ obviously, nonetheless, many fundamental relationships
between these information measures have been found over the years, thus showing
the depth of correspondence between information theory, theory of point estimation
and statistics in general, see e.g., [5, 10, 33, 39, 45, 49] among others. An asymptotic
relation between Fisher information and KL divergence is also employed in this
paper.
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2.1. KL divergence for rate-modulated spike trains. We consider a rate-
modulated renewal process as a model of spike trains. Let N(t) be the number of
spikes that have already occurred at time t. A point process is generally defined by
the conditional intensity function:

r(t;H(t)) = lim
∆t→0

P (N(t+ ∆t)−N(t) = 1;H(t))

∆t
, (3)

where H(t) represent the history of spikes up to time t. Using this, the probability
density of a sequence of spikes {ti} := {t1, . . . , tn} in an interval [0, T ] is expressed
as [16, 31]

p({ti}) = exp

[
−
∫ T

0

r(t;H(t))dt

]
n∏
i=1

r(ti;H(ti)). (4)

Here, the exponential factor describes the probability of no spikes between the spike
times. (Intuitively, this arises from the product of 1− r(t;H(t))∆t as ∆t goes to 0
and the number of terms in the product goes to infinity.)

Consider a renewal process whose ISI density is f(x) with unit mean. The
conditional intensity, or hazard function, of this process is given by

r(s; s∗) =
f(s− s∗)

1−
∫ s
s∗
f(u− s∗)du

, (5)

where s∗ is the spike time preceding s.
A renewal process with arbitrary mean firing rate can be generated from Eq. (5)

by rescaling the time axis. First, consider that the mean firing rate is given by a
constant µ. The conditional intensity function is, then, obtained by simply rescaling
the time t = s/µ as

r(t; t∗, µ) =
µf(µ(t− t∗))

1−
∫ t
t∗
µf(µ(u− t∗))du

. (6)

Substituting Eq. (6) into Eq. (4), the probability density of a spike train {ti} in the
interval [0, T ] is obtained as

p({ti};µ)

= exp

[
−
∫ T

0

r(t; tN(t), µ)dt

]
n∏
i=1

r(ti; ti−1, µ)

= p({ti};µ) = p1(t1;µ) ·
n∏
i=2

µf(µ(ti − ti−1)) · P ((tn, T ];µ), (7)

where p1(t1;µ) is the probability density of the first spike occurring at t1, and
P ((tn, T ];µ) is the probability of no spikes being observed on (tn, T ]. The second
line of Eq. (7) is derived in Appendix A.

This transformation can be generalized to time-dependent firing rate [3, 4, 15,
38, 44, 47]. Consider next that the firing rate λ(t) is given as a function of t. By

defining the transformation Λ(t) :=
∫ t

0
λ(u)du and rescaling the time t = Λ−1(s)

(Figure 1), the conditional intensity function is obtained from Eq. (5) as

r(t; t∗, {λ(t)}) =
λ(t)f(Λ(t)− Λ(t∗))

1−
∫ t
t∗
λ(u)f(Λ(u)− Λ(t∗))du

. (8)
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In the same way as Eq. (7), the probability density of {ti} is obtained as

p({ti}; {λ(t)})

= p1(t1; {λ(t)}) ·
n∏
i=2

λ(ti)f(Λ(ti)− Λ(ti−1)) · P ((tn, T ]; {λ(t)}). (9)

This rate-modulated renewal process is a generalization of both the inhomogeneous
Poisson process (if f(x) is the exponential density) and the renewal process (if λ(t)
is constant).
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Figure 1. The time-rescaling transformation. A renewal spike
train {si}, whose ISI distribution is given by f(si− si−1), is trans-
formed to {ti} via ti = Λ−1(si). Accordingly, the transformed spike
train {ti} has the instantaneous firing rate λ(t).

Figure 2 depicts four probability densities f(x) with CV = 1 (left) and sample
spike trains derived from the rate-modulated renewal processes (9) with the sinu-
soidal rate process (17) (right). These models will be used for examples in the
following section.

To measure information gained by the fluctuating rate λ(t), Koyama (2013) in-
troduced the KL divergence between the two probability densities of spike trains
(7) and (9) [37]:

D[p(·; {λ(t)})||p(·;µ)] =
1

µT

∞∑
n=0

∫ T

0

∫ T

t1

· · ·
∫ T

tn−1

p({ti}; {λ(t)})

× ln
p({ti}; {λ(t)})
p({ti};µ)

dt1dt2 · · · dtn. (10)
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Figure 2. Left: the probability density functions of gamma
(‘gm’), reciprocal gamma (‘r-gm’), inverse Gaussian (‘invg’) and
lognormal (‘logn’) distributions for CV = 1. Right: sample spike
trains derived from the rate-modulated renewal processes with si-
nusoidal rate variation (17), whose parameters are µ = 1, σ = 0.4
and τ = 20.

Note that the unit is “nats/spike”. Eq. (10) is generally difficult to be analyzed
because it is a functional of λ(t) and f(x), the effects of which are not separated
from each other in the formula, and contains a high-dimensional integration. As
shown in the section 3.1, it can be approximated to more tractable form if temporal
variation of the rate is sufficiently slow and small.

For the case of N identically and independent trials, or population of N neu-
rons, which may be more practical situation in estimating the firing rate, the KL
divergence is multiplied by the factor N due to the additivity of information gain.
Hence, it is enough to consider the case of single spike trains.

2.2. Fisher information for scale family of probability densities. We con-
sider the Fisher information for a scale family of probability densities p(t;λ) that
is generated from a probability density f(x) as

p(t;λ) = λf(λt), (11)

where λ > 0 is a scale constant. p(t;λ) has the same shape as f(x) but a different
scale. Here, f(x) is a distribution with unit mean, and λ is interpreted as the mean
firing rate.

Inserting Eq. (11) into Eq. (2), it is found that the Fisher information about the
scale parameter has the scaling property:

J(λ|T ) =
1

λ2
J(1|T ), (12)

where J(1|T ) is dimensionless and is uniquely determined by the shape of the density
f(x). Therefore, J(1|X) can be interpreted as a kind of “dispersion” measure of
random variable X ∼ f(x). In the following, we use a notation I[f ] := J(1|T ) to
indicate that it is a functional of f(x). I[f ] is expressed as

I[f ] =

∫ ∞
0

[
1 + x

∂ ln f(x)

∂x

]2

f(x)dx

= 1−
∫ ∞

0

x2 ∂
2 ln f(x)

∂x2
f(x)dx, (13)

where the second line is obtained by integration by parts.
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3. Results. We first show that the KL divergence (10) can be approximated by the
Fisher information (13) for slow and small rate variation. From this point of view, all
the properties of the Fisher information play important role. In particular, we show
that the minimum of the Fisher information I[f ], given the coefficient of variation,
is achieved by the gamma distribution. Typical behavior of the Fisher information
is illustrated by using generalized inverse Gaussian and lognormal distributions.

3.1. Relation between the KL and Fisher information. Let µ = 1
T

∫ T
0
λ(t)dt

and σ2 = 1
T

∫ T
0

[λ(t)−µ]2dt be the mean of and variance of λ(t). We also let τ be the

characteristic time scale of λ(t)1. In the limit of T →∞ and under the conditions
of τµ � 1 (slow variation) and σ/µ� 1 (small variation), the KL divergence (10)
is approximated as

D[p(·; {λ})||p(·;µ)] =
σ2

2µ2
I[f ] +O(

σ

τµ2
). (14)

The details are given in Appendix B.
It must be noticed that the rhs of (14) is analytically more tractable than Eq. (10),

because i) I[f ] is defined for single ISIs while D[p(·; {λ})||p(·;µ)] is defined for whole
spike trains, from which we can avoid performing the high-dimensional integration,
and ii) I[f ] is separated from the effect of rate variation.

By using this approximation, we can study the effect of dispersion of firing,
which is described by I[f ], on the information gain, separably from the effect of
the rate variation. For this purpose, it is necessary to verify that the leading term
in the rhs of Eq. (14) dominates the KL divergence under reasonable range of
parameter values. This is done by computing the KL divergence (10) numerically,
and comparing it with the approximation (14). The KL divergence is computed
by simulating a large number of spikes {ti}, and averaging the log likelihood ratio,
ln p({ti}; {λ(t)})− ln p({ti};µ), over the sample spikes:

D[p(·; {λ})||p(·;µ)] =
1

n− 1

n∑
i=2

{
lnλ(ti)f(Λ(ti)− Λ(ti−1))

− lnµf(µ(ti − ti−1))
}
. (15)

The spike trains are simulated by generating spikes {si} from the renewal process
with ISI density f(x), and then by applying the time-rescaling transformation,
ti = Λ−1(si).

In the simulation, we use the gamma density function with unit mean for f(x):

f(x) =
κκxκ−1e−κx

Γ(κ)
, (16)

where Γ(κ) =
∫∞

0
xκ−1e−xdx is the gamma function, and a sinusoidally varying

rate:

λ(t) = µ+
√

2σ sin
2π

τ
t. (17)

Figure 3 depicts the KL divergence, and its approximation (14) as a function of σ/µ.
Note that the difference between these two quantities corresponds to the error term
O( σ

τµ2 ). For instance, this error term is relatively small even if the rate fluctuation

1 For a stochastic process λ(t) whose correlation function is φ(u) = limT→∞
1
T

∫ T
0 [λ(t) −

µ][λ(t+ u) − µ]dt, it is given by τ = 1
φ(0)

∫∞
0 φ(u)du. For a periodic process such as a sinusoidal

function (17) used as an example below, τ is given by the period.
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is relatively large (σ/µ
.
= 1) for τµ = 3, with which 3 spikes on average appear in

a cycle of the sinusoidal firing rate. it is therefore confirmed that the expression of
the KL divergence (14) with I[f ] provides a good approximation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σ/μ

K
L

  
[n

a
ts

/s
p

ik
e

]
 

approx

τμ=1

τμ=3

τμ=5

Figure 3. The information gain due to sinusoidally varying fir-
ing rate and gamma distribution of interspike intervals with shape
parameter κ = 2. The value of σ/µ is the ratio of the amplitude
to the mean of the driving sinusoid (the “fluctuation rate”). The
number τµ determines the average number of spikes per sinusoidal
period, here shown for τµ = 1 (dash-dotted line), τµ = 3 (dashed
line) and τµ = 5 (dotted line). The solid line is the approximation
using the Fisher information. Note that the approximation holds
well even for relatively high fluctuation rates (σ/µ

.
= 1).

3.2. The density function that achieves the minimum Fisher information.
Given the mean and variance, or the coefficient of variation CV , the minimum of
the Fisher information is achieved by the gamma distribution. This has been known
in the literature [30]. In this paper, we provide another proof. The proof is done
by showing that the Fisher information I[f ] is bounded as

I[f ] ≥ C−2
V , (18)

and then, showing that only the gamma distribution achieves the minimum of the
Fisher information, C−2

V . The details are given in Appendix C.

3.3. Examples. We use two specific models, generalized inverse Gaussian (GIG)
family and lognormal distribution to illustrate behavior of the Fisher information
(13).

The GIG family may be used as a statistical descriptor of ISIs for several reasons
[28]. First, for certain values of the parameters of this family, its members are the
first passage time distributions of certain diffusion processes to a constant bound-
ary. It also contains gamma and inverse Gaussian distributions as sub-families, and
thus unifies commonly used distributions. Gamma distribution is one of the most
frequent statistical descriptors of ISIs [17, 41, 46]. Note that for CV = 1 gamma
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distribution becomes exponential, resulting in the neuronal firing described by the
Poisson process [55]. The inverse Gaussian distribution [11] is often used to describe
neural activity [19, 55] and fitted to experimentally observed ISIs [41, 46]. This dis-
tribution results from the Wiener process with positive drift (the depolarization has
a linear trend to the threshold) as the stochastic perfect integrate-and-fire neuronal
model [55].

The lognormal distribution of ISIs, with some exceptions [6], is rarely presented
as a result of a neuronal model. However, it represents quite a common descriptor
in ISI data, see e.g. [46, 55] and references therein. Furthermore, a mixture of two
lognormal distributions has been used recently [7] as an statistical ISI descriptor.

3.3.1. Generalized inverse Gaussian distribution. The GIG distribution has a den-
sity function:

f(x;w, η, a) =
1

2ηaKa(w)
xa−1 exp

[
− 1

2

(
w

η
x+

wη

x

)]
, (19)

where Ka(w) is the modified Bessel function of the second kind with index a ∈
(−∞,∞) [1], and η ≥ 0 and w ≥ 0 represent a scale and concentration parameters,
respectively. This becomes the inverse Gaussian distribution (for a = −1/2) and
gamma distribution (16) (for a = κ > 0, w/(2η) = κ and w → 0) as special cases.
See [29] for statistical properties of the GIG distribution.

The mean and variance of X are, respectively, given by

E(X) = η
Ka+1(w)

Ka(w)
, (20)

and

V ar(X) = η2

[
Ka+2(w)

Ka(w)
−

(
Ka+1(w)

Ka(w)

)2]
, (21)

from which the square of the coefficient of variation is obtained as

C2
V =

Ka+2(w)Ka(w)

Ka+1(w)2
− 1. (22)

I[f ] of the GIG is calculated as

I[f ] = 1− E
[
x2 ∂

2 ln f(x;w, η, a)

∂x2

]
= a+ wηE

( 1

X

)
. (23)

Using Eq. (70), I[f ] is obtained as

I[f ] = w
Ka+1(w) +Ka−1(w)

2Ka(w)
. (24)

In the following, we analyze the behavior of Eqs. (22) and (24) in asymptotic cases.

1. Limit of w → 0 for a > 0. The gamma distribution is obtained in this limit.
Using the asymptotic formula:

Ka(w) ∼ Γ(a)2a−1

wa
, (25)
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C2
V and I[f ] are evaluated as

C2
V ∼ Γ(a+ 2)Γ(a)

Γ(a+ 1)2
− 1 =

1

a
, (26)

and

I[f ] ∼ Γ(a+ 1)

Γ(a)
+

Γ(a− 1)

4Γ(a)
w2 → a =

1

C2
V

, (27)

which is consistent with the result in the section 3.2, that is, I[f ] of the gamma
distribution corresponds to the minimum value 1/C2

V .
2. Limit of w → 0 for a < 0. Using the asymptotic formula for this limit:

Ka(w) ∼ 2−a−1Γ(−a)wa, for a < 0 (28)

and

K0(w) ∼ − ln
w

2
− γ, (29)

where γ is the Euler constant, C2
V and I[f ] are obtained as

C2
V ∼



Γ(−a−2)Γ(−a)
Γ(−a−1)2 − 1 = − 1

a+2 , a < −2

−2(ln w
2 + γ) → ∞, a = −2

Γ(a+2)Γ(−a)
Γ(−a−1)2

22a+4

w2a+4 − 1 → ∞, −2 < a < −1
1

w2(ln w
2 +γ)2 − 1 → ∞, a = −1

Γ(a+2)Γ(−a)
Γ(a+1)2

w2a

22a − 1 → ∞, −1 < a < 0

(30)

and

I[f ] ∼


Γ(−a+1)+2−2Γ(−a−1)w2

Γ(−a) → −a, a < −1

1− w2 ln w
2 − w

2γ → 1 a = −1
Γ(−a+1)+22aΓ(a+1)w−2a

Γ(−a) → −a, −1 < a < 0

(31)

Particularly, I[f ] for a < −2 is expressed as

I[f ] =
1

C2
V

+ 2. (32)

It is worth noting that the GIG for a < 0, wη = 2β and w → 0 becomes the
reciprocal gamma distribution:

f(x;β, a) =
β−a

Γ(−a)
xa−1 exp

(
− β

x

)
. (33)

3. Limit of w →∞. Using the asymptotic formula in this limit:

Ka(w) ∼
√
π

2
e−ww−

1
2

(
1 +

4a2 − 1

8w

)
, (34)

we obtain

C2
V ∼

[1 +O(w−1)][1 +O(w−1)]

[1 +O(w−1)]2
− 1→ 0, (35)

and

I[f ] ∼ w · 1 +O(w−1)

1 +O(w−1)
→∞. (36)

Thus, the Fisher information diverges as C2
V → 0.
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4. Upper and lower bounds of I[f ]. As shown in section 3.2, the gamma dis-
tribution gives the lower bound of I[f ] (among all ISI densities), which is
obtained in the limit w → 0 for a > 0. On the other hand, the GIG becomes
the reciprocal gamma distribution in w → 0 for a < 0, whose C2

V and I[f ]

are obtained as Eqs. (30) and (31). Taking into account that I[f ] and C−2
V

monotonically increase as the concentration parameter w is increased, and the
mapping from (w, a) to (C−2

V , I[f ]) is one-to-one and smooth, it can be shown
that the reciprocal gamma distribution (32) gives the upper bound of I[f ]
among the GIG family.

5. Case of a = −1/2. The GIG becomes the inverse Gaussian distribution for
this case, the density function of which is given by

f(x;w, η) =

√
wη

2πx3
exp

[
− w(x− η)2

2ηx

]
(37)

Using the formula:

K 1
2
(w) =

√
π

2
e−ww−

1
2 , K 3

2
(w) =

√
π

2
e−ww−

1
2

(
1 +

1

w

)
, (38)

and K−a(w) = Ka(w), or calculating directly from Eq. (37), we obtain C2
V =

1/w and

I[f ] = w +
1

2
=

1

C2
V

+
1

2
. (39)

3.3.2. Lognormal distribution. Next, we examine the lognormal distribution. The
density function has a form:

f(x;µ, σ2) =
1

x
√

2πσ2
exp

[
− (lnx− µ)2

2σ2

]
. (40)

The mean and variance are given by E(X) = exp(µ + σ2

2 ) and V ar(X) = (eσ
2 −

1) exp(2µ+ σ2), respectively. Using Eq. (13), I[f ] is obtained as

I[f ] =
1

σ2
=

1

ln(C2
V + 1)

. (41)

I[f ] is a monotonically decreasing function of CV . Particularly, I[f ]→∞ as CV →
0, and I[f ]→ 0 as CV →∞.

3.3.3. Summary of the Fisher information. Figure 4 summarizes the Fisher infor-
mation I[f ] of the GIG family (gray region) and lognormal distribution (dash-dotted
line). The gamma distribution (solid line) and its reciprocal (dashed line), respec-
tively, give the lower and upper bounds of I[f ] of the GIG family.

The Fisher information generally decreases as CV is increased. It, however, does
not necessarily converge to zero as CV → ∞: for the GIG, the Fisher information
converges to the finite value I[f ]→ −a for −2 ≤ a < 0.

As seen in this figure, the Fisher information can significantly differ among the
distributions even if they share the same value of CV . For CV = 1, I[f ] of gamma,
reciprocal gamma, inverse Gaussian and lognormal distributions are 1, 3, 1.5, and
1.44, respectively.
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Figure 4. Fisher information-based dispersion of neuronal firing,
I[f ], for the generalized inverse Gaussian family (gray region) and
lognormal distribution (“logn”) of interspike intervals, as a func-
tion of CV . The “gm”, “r-gm” and “invg” represent the gamma,
reciprocal gamma and inverse Gaussian distributions, respectively.
The value of I[f ] plays a key role in the approximate expression
for the information gain due to variable firing rate.

4. Discussion. In this paper, we studied how much information can be gained
from variable neuronal firing rate with respect to constant firing rate. For this pur-
pose, we employed the KL divergence and its approximation in terms of the Fisher
information. It was shown that the KL divergence, defined for rate-modulated spike
trains, can be reduced to the Fisher information for single ISIs in the limit of slow
(τµ � 1) and small (σ/µ � 1) rate variation. The numerical study quantitatively
verified that the Fisher information approximates the KL divergence reasonably
well (Figure 3).

We stress at this point, that the overall methodology presented in this paper is not
restricted to the scale-family probability distributions. The approximate relation
between KL divergence and Fisher information holds for an arbitrary parameteri-
zation [39, p.26]. Here, however, we restrict ourselves to the scale parameterization
due to its relationship to the rate coding scheme (see e.g., [27, 42]) and due to
tractable properties of the Fisher information [26, 30]. In particular, we justify that
among all scale-family ISI distributions that share the same coefficient of variation,
the gamma distribution reaches the minimum information gain.

The KL divergence employed in this paper is different from the Shannon mutual
information. The mutual information between the firing rate λ(t) and spike train
{ti} can be defined by introducing the probability distribution of λ(t). Asymptotic
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relations between Fisher information and mutual information has also been well
investigated, analogously to the relation of KL divergence with Fisher information
[5, 10, 33, 34, 39, 45, 49]. In our case, it is easily speculated that under the same
condition as the KL divergence (i.e., slow and small rate variation), the Fisher
information I[f ] will appear in the approximate mutual information.

As the definition, I[f ] quantifies the change in the shape of the probability density
under infinitesimally small changes in the scale. Therefore, “smooth” density shapes
attain lower I[f ] than, e.g., multimodal ones. Similarly, [35] employed a dispersion
measure based on the Fisher information for the location-family class, and analyzed
its statistical properties. It may be interesting to investigate the relation among
these measures.

As shown in Figure 4, I[f ] generally has a monotonic relationship with C−2
V ,

but reflects additional statistical properties beyond the second moment of ISIs.
I[f ] can take different values among various probability distributions that share
the same value of C−2

V , and vice versa. I[f ] is equal to C−2
V , i.e., the minimum

value, only for the gamma distribution. An interesting property of I[f ] is that it is
directly connected with the information-theoretic measure (the KL divergence) on
rate coding, while CV is not. Therefore, characterizing the dispersion of ISI with
I[f ] could give some new information if the rate reflected the information processing
in neuronal systems (e.g., see [14, 25, 48]), and statistical properties of spike trains
were significantly deviated from the gamma statistics. It would be interesting to
examine if these were the case for biological spike trains.

In order to estimate the Fisher information I[f ] from experimentally observed
spike trains, It would be preferable to perform nonparametric inference. Recently,
[36] introduced a Fisher information estimator for the location family, based on
the maximum penalized likelihood estimation of the probability density function
[21]. Nonparametric inference of Fisher information is generally not straightforward
because it contains the derivative of density, which is sensitive to estimates of the
density. It remains for a future work to develop a reliable method for estimating
I[f ] and examine how much information can be gained from real spike trains.
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Appendix A. Derivation of Eq. (7). Eq. (7) is written as

p({ti};µ)

= p1(t1;µ) ·
n∏
i=2

r(ti; tN(ti), µ) exp

[
−
∫ ti

ti−1

r(t; ti−1, µ)dt

]
· P ((tn, T ];µ),

(42)

where

p1(t1;µ) = exp

[
−
∫ t1

0

r(t; t0, µ)dt

]
r(t1; t0, µ) (43)
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is the probability density of the first spike occurring at t1
2, and

P ((tn, T ];µ) = exp

[
−
∫ T

tn

r(t; tn, µ)dt

]
(44)

is the probability of no spikes being observed on (tn, T ].
Consider the following derivative:

d

dti
ln

[
1−

∫ ti

ti−1

µf(µ(u− ti−1))du

]
= − µf(µ(ti − ti−1))

1−
∫ ti
ti−1

µf(µ(u− ti−1))du

= −r(ti; ti−1, µ), (45)

from which we obtain

1−
∫ ti

ti−1

µf(µ(u− ti−1))du = exp

[
−
∫ ti

ti−1

r(t; ti−1, µ)dt

]
. (46)

Using this, the conditional intensity function (6) is written as

r(ti; ti−1, µ) =
µf(µ(ti − ti−1))

1−
∫ ti
ti−1

µf(µ(u− ti−1))du

= µf(µ(ti − ti−1)) exp

[∫ ti

ti−1

r(t; ti−1, µ)dt

]
. (47)

Substituting this into Eq. (42), we obtain Eq. (7).

Appendix B. Derivation of Eq. (14). Let λi be

λi :=
Λ(ti)− Λ(ti−1)

ti − ti−1
=

1

ti − ti−1

∫ ti

ti−1

λ(t)dt. (48)

From the mean-value theorem, there exists s ∈ (ti−1, ti) such that λ(s) = λi.
Expanding λ(ti) around s, we obtain

λ(ti) = λi +
dλ(s)

d(s/τ)

ti − s
τ

+O((
ti − s
τ

)2), (49)

where the order of each factor is dλ(s)/d(s/τ) ∼ σ, ti − s ∼ 1/µ. Thus, the error
in approximating λ(ti) to λi is evaluated as

λ(ti) = λi +O(
σ

τµ
). (50)

Using Eqs. (48) and (50), Eq. (9) is expressed as

p({ti}; {λ(t)}) = p1(t1; {λ(t)}) ·
n∏
i=2

p̃(xi;λi) · P ((tn, T ]; {λ(t)}), (51)

where xi = ti − ti−1 and

p̃(xi;λi) =

[
λi +O(

σ

τµ
)

]
f(λixi). (52)

2 Here, t0(< 0) represents the spike time preceding t1. If we have no information about t0, it

is be set to be p1(t1;µ) = µ[1 −
∫ µt
0 f(u)du] [13].
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Inserting Eq. (51) into Eq. (10), and taking it into account that p1(t1|{λ(t)}) and
P ((tn, T ]|{λ(t)}) are negligible in the limit of T → ∞ if the mean firing rate is
nonzero µ > 0, the KL divergence is rewritten as

D[p(·; {λ})||p(·;µ)]

= lim
n→∞

1

n− 1

n∑
i=2

∫ ∞
0

· · ·
∫ ∞

0

n∏
i=2

p̃(xi;λi) ln

∏n
i=2 p̃(xi;λi)∏n
i=2 p(xi;µ)

dx2 · · · dxn

= lim
n→∞

1

n− 1

n∑
i=2

∫ ∞
0

p̃(xi;λi) ln
p̃(xi;λi)

p(xi;µ)
dxi

= lim
n→∞

1

n− 1

n∑
i=2

Ds(λi||µ) +O(
σ

τµ2
), (53)

where

Ds(λi||µ) :=

∫ ∞
0

p(xi;λi) ln
p(xi;λi)

p(xi;µ)
dxi (54)

is the KL divergence between the two ISI densities. Thus, the KL divergence of the
spike trains is reduced to the KL divergence of the single ISIs.

Since the mean of λ(t) is given by µ, λi may be expressed by λi = µ + δi with
δi ∼ O(σ). Using the scaling property of Ds(λ||µ) (i.e., Ds(λ||µ) = Ds(cλ||cµ),
c > 0), we obtain

Ds(λi||µ)

= Ds(1||
µ

µ+ δi
)

= Ds(1||1) +
∂Ds(1||z)

∂z

∣∣∣∣
z=1

· ξi +
1

2

∂2Ds(1||z)
∂z2

∣∣∣∣
z=1

· ξ2
i +O(ξ3

i ). (55)

where ξi = −δi/µ+ (δi/µ)2−· · · . The first and second terms in the above equation
vanish, and the coefficient of the third term is computed as

∂2Ds(1||z)
∂z2

∣∣∣∣
z=1

= −
∫ ∞

0

∂2 ln p(x; z)

∂z2
p(x; 1)dx

∣∣∣∣
z=1

= I[f ]. (56)

Thus, the KL divergence of the single ISIs is expanded with respect to δi/µ as

Ds(λi||µ) =
I[f ]

2
(
δi
µ

)2 +O((
δi
µ

)3). (57)

Substituting Eq. (57) into Eq. (53), the KL divergence is obtained as

D[p(·; {λ})||p(·;µ)] =
I[f ]

2
lim
n→∞

1

n− 1

n∑
i=2

(
δi
µ

)2 +O(
σ

τµ2
). (58)

If we further assume that the rate fluctuation is ergodic with a limiting density
p(λ), the summation can be replaced as

lim
n→∞

1

n− 1

n∑
i=2

→
∫ ∞

0

λp(λ)

µ
dλ =

∫ ∞
0

(1 +
δ

µ
)p(µ+ δ)dδ, (59)
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where δ = λ− µ. Taking into account δi = δ + O(σ/(τµ)) from Eq. (50), Eq. (58)
becomes

D[p(·; {λ})||p(·;µ)]

=
I[f ]

2

∫ ∞
0

( δ
µ

+O(
σ

τµ2
)
)2

(1 +
δ

µ
)p(µ+ δ)dδ +O(

σ

τµ2
)

=
σ2

2µ2
I[f ] +O(

σ

τµ2
). (60)

Appendix C. Proof of minimum Fisher information. Consider the scale fam-
ily of densities p(t;λ) given by Eq. (11). The mean is given by E(T ) = 1/λ if the
mean of f(x) is unity. Then, applying the Cramér-Rao inequality [45] leads to

V ar(T ) ≥
(dE(T )

dλ

)2
J(λ)

=
E(T )2

I[f ]
, (61)

from which we obtain

I[f ] ≥ E(T )2

V ar(T )
= C−2

V , (62)

where CV =
√
V ar(T )/E(T ) is the coefficient of variation of p(t;λ) as well as f(x).

Thus, given the coefficient variation CV = 1/
√
κ, the density function f(x) that

achieves the minimum fisher information satisfies

I[f ] = 1−
∫ ∞

0

x2 ∂
2 ln f(x)

∂x2
f(x)dx = κ, (63)

which holds if f(x) satisfies

x2 ∂
2 ln f(x)

∂x2
= 1− κ. (64)

The solution of the differential equation (64) is found to be f(x) = exp[(κ−1) log x−
c1x+ c2], where c1 = κ and c2 = κ log κ− log Γ(κ) are the constants of integration
that are determined from the normalization condition

∫∞
0
f(x)dx = 1 and the mean

of f(x). Therefore, it is shown that the gamma density function (16) attains the
minimum of I[f ].

Let f(x) and g(x) be probability densities having fixed mean and the variance.
Then, it is easily proven that, for 0 ≤ θ ≤ 1, θf(x) + (1− θ)g(x) also has the same
mean and variance. Therefore, the set of distributions with fixed mean and variance
is convex. Since I[f ] is a strictly convex functional [12], only the gamma density
function achieves the minimum Fisher information.

Appendix D. E(1/X) of the GIG. Applying E[ ∂∂θ lg f(X; θ)] = 0 to Eq. (19)
leads to

E

[
∂ ln f(x;w, η, a)

∂w

]
= −

∂Ka(w)
∂w

Ka(w)
− 1

2

[
E(X)

η
+ ηE

( 1

X

)]
= 0. (65)

Using Eq. (20) and

∂Ka(w)

∂w
= −1

2
[Ka+1(w) +Ka−1(w)], (66)

E(1/X) is obtained as

E
( 1

X

)
=

1

η

Ka−1(w)

Ka(w)
. (67)
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Another expression of E(1/X) is obtained by taking the derivative of log f with
respect to η,

E

(
∂

∂η
log f(x;w, η, a)

)
= −a

η
− 1

2

[
− wE(X)

η2
+ wE

( 1

X

)]
= 0. (68)

Using Eq. (20), E(1/X) is obtained as

E
( 1

X

)
=

1

η

Ka+1(w)

Ka(w)
− 2a

wη
. (69)

From Eqs. (67) and (69), E(1/X) is also expressed as

E
( 1

X

)
=

1

2η

Ka+1(w) +Ka−1(w)

Ka(w)
− a

wη
. (70)
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