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Abstract. Because every spike of a neuron is determined by input signals,
a train of spikes may contain information about the dynamics of unobserved

neurons. A state-space method based on the leaky integrate-and-fire model,

describing neuronal transformation from input signals to a spike train has been
proposed for tracking input parameters represented by their mean and fluctu-

ation [11]. In the present paper, we propose to make the estimation more real-

istic by adopting an LIF model augmented with an adaptive moving threshold.
Moreover, because the direct state-space method is computationally infeasible

for a data set comprising thousands of spikes, we further develop a practical

method for transforming instantaneous firing characteristics back to input pa-
rameters. The instantaneous firing characteristics, represented by the firing

rate and non-Poisson irregularity, can be estimated using a computationally
feasible algorithm. We applied our proposed methods to synthetic data to

clarify that they perform well.

1. Introduction. Neuroscience researchers have measured neuronal firing rates
in correlation to animals’ behavior, largely ignoring the detailed patterns of spike
times. In this paper, we examine spike timing to collect additional information
about the dynamics of unobserved neuronal populations, on the basis of the as-
sumption that neuronal spike timing can provide information about the population
activities of excitatory and inhibitory neurons.

Each cortical neuron constantly receives spiking signals from thousands of other
neurons. The random arrival of a number of synaptic inputs results in uncorrelated
fluctuations that can be characterized by their mean and amplitude, and these can
be related to the activities of presynaptic excitatory and inhibitory neuronal popu-
lations. Mathematical methods have been developed to infer the input parameters
from firing characteristics on the basis of the assumption that presynaptic neuronal
activities are constant across time [8, 5, 13, 20].

However, the stationary input conditions assumed by the standard leaky integrat-
e-and-fire (LIF) model [34] cannot account for the spiking statistics of cortical neu-
rons in vivo [32, 28, 26]. Some studies have suggested resolving this inconsistency
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by introducing nonstationary or correlated fluctuations to the inputs [32, 26]. Re-
cently, to track temporal variation of input parameters representing the mean and
the amplitude of uncorrelated fluctuations, several methods have been proposed
using time-dependent stimulus traces [22] or averaging over repeated trials [37].
More recently, a method for estimating input parameters in a single trial has been
suggested, based on the LIF model with current synapses [11].

However, the LIF model does not exhibit the adaptation that has been observed
in a majority of pyramidal cells in vitro [19, 17] and this is believed to cause the cor-
relations between successive interspike intervals (ISIs) that have been observed in
spike trains recorded in vivo [16, 21, 6, 1]. In this paper, we propose improving the
input estimation method by incorporating an adaptive threshold into the LIF model.
We examine the direct state-space method for carrying out the Bayesian inference
of input parameters, and show that it has an enormous computational complexity
that makes it infeasible for a train of a thousand spikes. In addition, to make input
estimation feasible for massive data, we propose a method for transforming neuronal
firing characteristics into input parameters. The firing characteristics consisting of
the instantaneous firing rate and firing irregularity are estimated using a compu-
tationally feasible state-space method that can efficiently process larger amounts
of data [27]. To make it possible to track inputs with parameters representing
their mean and fluctuation, we construct a computationally feasible transforma-
tion method. We test our proposed methods using synthetic data generated by the
numerical simulations of the generative model.

2. Generative models. To infer the firing activities of excitatory and inhibitory
neuronal populations from a train of evoked spikes, we need a forward generative
model that transforms the input signal into an output spike train. Recently, it has
been proposed that input parameters can be estimated using a basic LIF model
[11]. In this paper, we propose an efficient method of estimating inputs and apply
this method not only to the basic LIF model but also to an adaptive threshold LIF
model, which represents a more realistic neuronal transformation.

2.1. The leaky integrate-and-fire (LIF) model. The LIF model is a succinct
model representing basic neuronal firing mechanisms, given by

τm
dV (t)

dt
= Vl − V (t) +RI(t),

if V (t) > Vth, then V (t)→ Vreset,
(1)

where τm, Vl, Vth, Vreset, R, and I(t) represent the membrane time constant, resting
potential, threshold potential, resetting potential, membrane resistance, and input
current, respectively. We set these parameters to values that have been adopted in
the literature [19, 18, 33]: τm = 20 ms, Vl = -75 mV, Vth = -55 mV, Vreset = Vth -
6 = -61 mV, and R = 40 MΩ.

To represent inputs, we adopted Stein’s model [34], in which the membrane
potential is increased or decreased by a fixed amount, called the excitatory and the
inhibitory post-synaptic potential (EPSP and IPSP), respectively, on the arrival of
each input spike signal. Thus, every input current is represented by a delta function
of time with a fixed positive or negative coefficient.

It is well known that each cortical neuron constantly receives signals from thou-
sands of neurons. If EPSPs and IPSPs occur at randomly in time and have small
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Figure 1. A schema for the estimation procedure. A neuron con-
stantly receives excitatory and inhibitory synaptic inputs, of which
sum can be approximated as a current with a mean µ and a fluc-
tuation σξ(t). We estimate the input parameters (µ, σ) from a
single output spike train {tj}, based on the direct and transforma-
tion methods. In the direct method, we compute the full statistics
of the data, that is, the probability of the spike train occurring,
and find the most probable input parameters. In the transforma-
tion method, we estimate the two firing characteristics of the spike
data, that is, the rate (mean of ISI) and irregularity (variance of
ISI), and transform their information into likely input parameters.

amplitudes, the input current can be approximated as a diffusion process with a
mean drift µ and temporally uncorrelated (white) fluctuation σξ(t) [12],

I(t) = µ+ σξ(t), (2)

where ξ(t) is white noise satisfying the ensemble statistics 〈ξ(t)〉= 0 and 〈ξ(t)ξ(t′)〉 =
δ(t− t′). Assuming white Gaussian inputs, the interspike interval (ISI) is given by
the first-passage time distribution of the Ornstein-Uhlenbeck process (OUP) [34].

2.2. The adaptive LIF model. No renewal process, including the basic LIF mod-
els described above, is capable of reproducing the spike-frequency adaptation ob-
served in a majority of pyramidal cells [19, 17], which is believed to cause the
correlation between successive ISIs observed in recorded spike trains [16, 21, 6, 1].

However, it is known that the spike-frequency adaptation can be realized by
modifying the LIF model in such a way that the threshold is dynamically modulated
as follows:

θ(t) = Vth + ∆S

∑
j

exp[−(t− tj)/τad], (3)

where Vth is the baseline threshold value, tj is the jth output spike time, τad is the
adaptation time constant, and ∆S is an increment that is added to the threshold
potential at each spike to suppress the firing activity. We set the model parameters
at values that have been adopted in the literature [16, 2]: Vreset = Vth − 10 = −65
mV, τad = 100 ms, and ∆S = 2 mV, with other parameters remaining the same as
those in the basic LIF model.
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3. Estimating input parameters (I): The direct state-space method.

3.1. The state-space method for an LIF model. Input parameters represent-
ing the mean and fluctuation of the input current Λ = (µ, σ−1) can be inferred from
the spike times {tj}nj=0 = {t0, t1, t2, · · · , tn} by using Bayes’ rule for the forward
spiking neuron model given in the above Eq. (1):

P (Λ(t)|{tj}) =
P ({tj}|Λ(t))P (Λ(t))

P ({tj})
. (4)

When the generative model is based on a renewal process, the probability of a spike
train occurring is factorized into probabilities of having ISIs:

P ({tj}|Λ) =

n∏
j=1

P (sj |Λ), (5)

where sj ≡ tj − tj−1 is the jth ISI. For time-varying input parameters Λ(t), given
the momentary input conditions, Λj−1 ≡ Λ(tj−1), we approximate the probability
as the product of probabilities of ISIs:

P ({tj}|Λ(t)) =

n∏
j=1

P (sj |Λj−1). (6)

Note that the constancy of the input parameters during each ISI does not mean
that the input current was constant; rather, the input current has fluctuated in
an amplitude σ, reflecting a number of input spikes coming from the presynaptic
populations of excitatory and inhibitory neurons.

To model the prior distribution of the input parameters represented by the two-
dimensional vector Λ(t) ≡ (Λ1(t),Λ2(t)), we incorporate the tendency to vary slowly
by penalizing large gradients:

P (Λ(t)) =

n∏
j=1

Pγ(Λj |Λj−1) ∝
n∏
j=1

2∏
k=1

exp

(
−

(Λkj − Λkj−1)2

2γksj

)
, (7)

where γ ≡ (γ1, γ2) is a hyperparameter representing the stationarity of the input
parameters. This is equivalent to the assumption that input parameters be ex-
hibiting a random walk; therefore, the variance should be rescaled with the ISI,
sj = tj − tj−1. The initial parameter Λ0 ≡ (Λ1

0,Λ
2
0) was set to the value that have

been estimated on the basis of the assumption that input parameters are constant
over time.

The hyperparameters γ ≡ (γ1, γ2) can be determined by a principle of the em-
pirical Bayes method, namely by maximizing the marginal likelihood, Pγ({tj}) =∏n
j=1

∫
dΛj−1P (sj |Λj−1)Pγ(Λj |Λj−1). Given a specific set of spike times, the mar-

ginal likelihood function can be maximized using the Expectation Maximization
(EM) algorithm [29]. In the EM algorithm, hyperparameters are determined by
iteratively maximizing the expected value of the log-likelihood function, Q:

Q(γ|γ(p)) = E[logPγ({tj}, {Λj})|{tj}, γ(p)]

=

n∑
j=1

E[logPγ(Λj |Λj−1)|{tj}, γ(p)]

+

n∑
j=1

E[logP (sj |Λj−1)|{tj}, γ(p)],

(8)
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where γ(p) ≡ (γ1(p), γ
2
(p)) is the set of hyperparameters for the pth iteration, and

E[|̇{tj}, γ(p)] represents the expectation with respect to the conditional distribution
of Λ given {tj}nj=0 under the pth estimate of the hyperparameters. The (p + 1)st
estimate of γ is determined by the conditions for dQ/dγ = 0, leading to the following
equation:

γk(p+1) =
1

n− 1

n−1∑
j=1

1

sj
E
[
(Λkj+1 − Λkj )2|{tj}, γ(p)

]
, for k = 1 and 2. (9)

The expected value appearing on the right hand side of Eq. (9) can be obtained using
the Kalman filtering and smoothing algorithm on the basis of the approximation
that the filtering distribution of input parameter Λ is Gaussian distributed (Laplace
approximation) [29, 27].

3.2. The state-space method for an adaptive LIF model. For an adaptive
LIF model in which the threshold is moving adaptively, the probability of a spike
train occurring can no longer be factorized into the probabilities of ISIs, because
the ISI distribution P (sj = tj − tj−1|Λj−1) is dependent on past firings. However,
it is possible to recover the Markov property by including the dynamical threshold
or Θj ≡ θ(tj)−Vth into dynamical conditions, because the threshold obeys a simple
first order recurrence equation:

Θj = Θj−1 · exp[−sj/τad] + ∆S . (10)

Thus the probability of a spike train occurring is calculated by modifying Eq. (6)
to

P ({tj}|Λ(t)) =

n∏
j=1

P (sj |Λj−1,Θj−1). (11)

The ISI distribution function for the given input conditions can be obtained by
solving a second-kind Volterra integral equation [3]. When computing the proba-
bility of a spike train occurring (Eqs. (6) and (11)), we used the method proposed
by Paninski et al. to compute the integral equation efficiently [23]. To perform
the numerical integration, we evenly divided the integration interval into 150 small
segments.

4. Estimating input parameters (II): The transformation method. The di-
rect state-space method introduced above requires heavy computation, particularly
in computing the ISI distribution for a set of input parameters, and therefore, even
with a high-speed large-capacity computer, we had to limit the analysis to trains of
not more than several hundred spikes. It has been suggested that the capacity for
input estimation can be increased by introducing a two-step analysis method [11] in
which (1) the firing characteristics are estimated using a computationally feasible
state-space algorithm, and (2) the firing characteristics are converted into likely
input parameters across time by inverting the neuronal forward transformation. In
step (1), the instantaneous firing characteristics comprising the firing rate and non-
Poisson irregularity can be estimated using a computationally feasible state-space
model that can process extremely large data sets containing as many as 1,00,000
spikes [27]. To characterize the ISI distribution, we adopted an exponential family
of distribution functions fλ,κ(s), that are parameterized with a scale factor λ and
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a shape factor κ, representing the mean firing rate and the firing irregularity, re-
spectively. A shape factor deviating from κ = 1 represents non-Poisson irregularity.
We can use the state-space method to obtain the maximum a posteriori (MAP)

estimates of the time-varying firing rate λ̂(t) and firing irregularity κ̂(t).
In step (2), these firing characteristics are converted into the most likely input

parameters, as represented by their means µ̂ and variations σ̂2. This is done by
using transformation formulas, µ = M(λ, κ) and σ = S(λ, κ), that are obtained by
inverting the neuronal forward transformation of the input signals to output spiking
with λ = L(µ, σ) and κ = K(µ, σ). It has been suggested that a table or a spline
fitting formula be constructed for this purpose, by fitting the gamma distribution
to the ISI distribution of the spiking neuron model through the minimization of the
Kullback–Leibler (KL) divergence [11].

Here, we consider applying the transformation method to not only the LIF model
but also the adaptive LIF model. However, it is difficult to use the proposed tech-
nique of using a lookup table for adaptive LIF models that require fitting three
parameters. Thus, we suggest another principle which is to fit a two-parameter
exponential family of distribution functions fλ,κ(s) to the empirical ISI distribution
of a spiking neuron model P (s|µ, σ) by fitting their low-order moments. That is,
the firing characteristics (λ, κ) are converted into the input parameters (µ, σ) on
the condition that the means and variances of the ISIs are equal:

EP [s](µ, σ) = Ef [s](λ, κ), (12)

VarP [s](µ, σ) = Varf [s](λ, κ). (13)

Here EP [s] and VarP [s] represent the mean and variance of the ISI distribution
P (s|µ, σ), respectively, and Ef [s] and Varf [s] represent those of the exponential
family distribution fλ,κ(s). In the next section, we summarize the methods to
obtain the means EP [s] and variances VarP [s] of ISI distributions, and transform
the firing characteristics (λ, κ) into the input parameters (µ, σ), with respect to the
non-adaptive and adaptive LIF models, respectively.

Here for the purpose of describing our methods succinctly, we consider a standard
Ornstein-Uhlenbeck process model with two independent parameters for the non-
adaptive LIF model:

dV (t)

dt
= −V (t) + µ+ σξ(t),

if V (t) > 1, then V (t)→ 0.
(14)

Also for the adaptive LIF model, we adopt a standard adaptive LIF model:

θ(t) = 1 + εj−1 exp[−β(t− tj−1)], tj−1 < t < tj

εj = εj−1 · exp[−βsj ] + ∆ε,
(15)

where sj = tj−tj−1 is the jth ISI. The ISI distribution of a particular LIF model (see
Eqs. (1) and (3) in the main text) can be reconstructed from that of the standard
model (Eqs. (14) and (15)) by replacing the variables and parameters in Eqs. (14)
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and (15) as:

t→ t/τm,

µ→ Rµ/(Vth − Vreset) + (Vl − Vreset)/(Vth − Vreset),
σ → Rσ/(

√
τm(Vth − Vreset)),

β → τm/τad,

∆ε → ∆S/(Vth − Vreset).

(16)

4.1. The transformation method for an LIF model. For standard LIF models
(14), the mean and variance of the ISI distribution, denoted by E0

P [s] and Var0P [s]
respectively, can be calculated quickly with the following equations [10, 25, 28]:

E0
P [s](µ, σ) = φ1(

√
2η+)− φ1(

√
2η−), (17)

Var0P [s](µ, σ) = φ21(
√

2η+)− φ2(
√

2η+) + φ2(
√

2η−)− φ21(
√

2η−), (18)

where

η+ = (1− µ)/σ, η− = −µ/σ,

φl=1,2 =
l

2l

100∑
k=1

(
√

2z)k

k!
Γ
(k

2

)
ρ
(l)
k , : z > −5.70

φ1(z) = −

(
KB + log |z|+

10∑
k=1

bk
z2k

)
, : z ≤ −5.70

φ2(z) = 2

[
KD +KB log |z|+ 1

2
(log |z|)2 (19)

+

10∑
k=1

bk
log |z|
z2k

+

10∑
k=1

gk
z2k

]
, : z ≤ −5.70

ρ
(1)
k = 1, ρ

(2)
k = ψ(k/2)− ψ(1),

KB = 0.63518142, KD = 0.818578,

ak =
(−1)k−1(2k − 2)!

(k − 1)!2k−1
, bk = −ak+1

2k
, ck = ak + bk,

dk = ck − (2k − 1)dk−1, gk = KB bk −
ak+1

4k2
− dk

2k
.

Here ψ(·) denotes the digamma function. Because the derivatives of the mean and
variance with respect to the input parameters can also be determined by the set of
equations (19), we can solve the moment-matching equations (12) and (13) by the
standard Newton-Raphson method [24], given the mean and variance of the ISIs of
the exponential family distribution under the specified scale and shape factors, λ
and κ.

When executing the Newton-Raphson method, it is essential to choose an ap-
propriate initial value, and this can be obtained as follows. Assuming that µ = 1,
the mean, E0

P [s] = −φ1(−
√

2/σ2), is a monotonically decreasing function of σ, and
therefore, the root σ0 of Eq. (12) can be obtained with the bisection method [24].
Then, beginning with (1, σ0), the root (µ, σ) of Eq. (13) can be sought along the
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curve of E0
P [s] = const. [35] satisfying

dµ

dσ2
= (η+ − η−)

[
η+ exp(η2+)erf(−η+)− η− exp(η2−)erf(−η−)

exp(η2−)erf(−η−)− exp(η2+)erf(−η+)

]
, (20)

where erfc(z) denotes the complementary error function.

4.2. The transformation method for an adaptive LIF model. To estimate
the ISI distribution for the standard adaptive LIF models (15), we have to take
into account the initial value of the moving threshold, 1 + εj , at each spike time, in
addition to the input parameters. In cases where εj is small, the mean and variance
of the ISI distribution for the adaptive LIF model, denoted by E

εj
P [s] and Var

εj
P [s]

respectively, can be calculated by expanding the mean and variance for the standard
LIF model (14) in terms of εj/(1 + εj) [15]:

E
εj
P [s](µ, σ) ' E0

P [s](µ′, σ′)

+
εj

1 + εj

{√
π

σ′

[
ρ0(β)eη

′2
+ erfc(−η

′

+)− eη
′2
− erfc(−η

′

−)

]

+ (1− c1)
∂

∂µ′
E0
P [s](µ′, σ′)

}
, (21)

Var
εj
P [s](µ, σ) ' Var0P [s](µ′, σ′)

+
εj

1 + εj

{
−2
√
π

σ′

[
eη
′2
+ erfc(−η

′

+)
(dρ0
dβ

+ ρ0(β)E0
P [s](µ′, σ′)

)
+
√
πJ(η′−)−

√
πρ0(β)J(η′+)

]
+ (1− c2)

∂

∂µ′
Var0P [s](µ′, σ′)

}
, (22)

where

µ′ = (µ+ c1εj)/(1 + εj), σ′ = σ(1 + c2εj)/(1 + εj),

η′+ = (1− µ′)/σ′, η′− = −µ′/σ′, (23)

J(z) =
d

dz

[
φ21(z)− φ2(z)

]
, ρ0(β) =

H−β(−η′−)

H−β(−η′+)
.

Here Hν(z) denotes the Hermite function, and can be calculated quickly, when the
parameter |ν| << 1, based on the following series expansion formula [14]:

Hν(z) =



1

2Γ(−ν)

100∑
k=0

(−1)kΓ(k−ν2 )

k!
(2z)k, |z| < 5.0

10∑
k=0

(−1)k

k!

Γ(−ν + 2k)

Γ(−ν)
(2z)ν−2k

−I(−z)
√
πeνπi

Γ(−ν)
ez

2

z−ν−1
10∑
k=0

Γ(ν + 2k + 1)

k! Γ(ν + 1)
(2z)−2k, |z| ≥ 5.0

(24)

where I(z) is the step function satisfying I = 0 for z < 0 and I = 1 for z > 0.
For this study, we set the two parameters c1 and c2, which in general, depend on
β, µ and σ, to β2. Using the roots of Eqs. (12) and (13) for εj = 0 as a initial
point, we can solve the set of equations (12) and (13) for εj 6= 0 using the standard
Newton-Raphson method.
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Figure 2. Comparison of the direct and transformation methods
for estimating stationary input parameters. (A) The parameter
ranges with the least average squared errors for the transformation
method with the normal, gamma, inverse Gaussian, and log-normal
distributions are depicted by circles, squares, triangles, and cross
marks, respectively. The input region that generates biologically
implausible outputs (those in which the firing rate is less than 0.01
or greater than 100 [1/τm], or the Cv is less than 0.01) was not
searched. The dashed line represents the contour line of Cv =
1.5. (B) The ratio of the average squared error for the gamma
distribution to that for the direct method. (C) Computational
costs of the transformation method with the gamma distribution
and the direct method for a spike train comprising 1,000 ISIs.

5. Results.

5.1. Comparison of the exponential families of the distribution functions.
For the application of our method to neurophysiological data, we selected an ex-
ponential family of distribution functions based on the accuracy of the input esti-
mation. For this purpose, we compared the normal, gamma, inverse Gaussian, and
log-normal distribution functions with respect to their fit to the ISIs generated by
the OUP. Here without loss of generality, we set τm, R, and Vth in Eq. (1) to unit,
and Vreset and Vl to zero (see Eqs. (14)-(16)).

Distribution fλ,κ(s) Ef [s] Varf [s]

Normal
√

κλ2

2π exp
[
−κ2 (1− λs)2

]
1
λ

1
(κλ2)

Gamma κλ(κλs)κ−1 exp
[
−κλs

]
/Γ(κ) 1

λ
1

(κλ2)

Inv. Gauss.
√

κ
2πs3 exp

[
− κ

2sλ (1− λs)2
]

1
λ

1
(κλ2)

Log-normal
√

κ
2πs2 exp

[
−κ2 (log(sλ) + 1

2κ )2
]

1
λ

(e1/κ−1)
λ2

Table 1. Γ(κ) denotes the gamma function, and Ef [s] and Varf [s]
are the mean and variance of each distribution fλ,κ(s), respec-
tively. The parameters in the exponential families represent the
firing characteristics of the spike data: λ represents the firing rate,
and κ represents irregularity.
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Given a set of input parameters (µ, σ) and dividing the spike train into m short
spike trains each comprising 100 ISIs, we generated 100×m ISIs with the OUP and
repeatedly estimated the input parameters from each spike train. To investigate
the suitability of the distributions for the moment-matching strategy (Eqs. (12)
and (13)), we assumed that the input parameters to be estimated are constant,
that is, we set the hyperparameters γ to zero (maximum likelihood estimation).
The goodness of the estimation is then measured by the average squared error of
the input parameters,

E =
1

m

m∑
i=1

[
(µ̂i − µ)2 + (σ̂i − σ)2

]
, (25)

where µ̂i and σ̂i are the estimated input mean and fluctuation amplitude for the ith
spike train. The distributions of the functional families that produced the minimum
squared error for various sets of input parameters (µ, σ) are displayed in Fig. 2A,
where m is set at 1,000. The distributions show that in the biologically plausible
region where the coefficient of variation (Cv) of a spike train is around less than
1.5 [28, 30], the gamma and inverse Gaussian distributions worked well compared
to the others. Because the ratio of the squared error for the gamma distribution to
that for the inverse Gaussian distribution is less than 1.7 (not shown in Fig. 2), the
gamma distribution function generally gives the best estimation. Figure 2B displays
the ratio of the average estimation error with the gamma distribution to that for
the direct method with m = 100, showing that the transformation method with the
gamma distribution performs well even compared to the direct one. In addition, the
computation for the transformation method is very fast (Fig. 2C). Thus, in what
follows, we adopt the gamma distribution for fitting the ISI distribution of the OUP.

5.2. Evaluating the estimation methods with synthetic data. We compared
the direct and transformation methods with respect to their accuracy in estimating
the input parameters from the spike trains generated by LIF models with specific
time-varying input parameters.

We generated spikes using the standard LIF model (1) and the adaptive LIF
model (3) under the time-varying input conditions,

µ(t) = µ0 + δµ sin(ωt) (26)

σ(t) = σ0 + δσ sin(ωt+ φ), (27)

where we specified µ0 = 0.5 [nA], δµ = 0.1 [nA], σ0 = 0.8 [nA·ms1/2], δσ = 0.5
[nA·ms1/2], and φ = π/2 for the standard LIF model, and µ0 = 1.0 [nA], δµ = 0.7
[nA], σ0 = 3 [nA·ms1/2], δσ = 2 [nA·ms1/2], and φ = π/2 for the adaptive LIF
model, with the periods of input fluctuation for both models specified as T =
2π/ω = 0.5, 1, 1.5, 2, 2.5, 3 [s]. Figures 3A and 3B display sample estimations by
both the direct (red or light gray) and transformation (blue or dark grey) methods
for the period T = 3 [s].

Comparison of the direct and transformation methods. We evaluated the goodness
of each input estimation method in terms of the integrated squared error (ISE)
between the intended input parameters and the estimated parameters:

ISE =
1

10T

∫ 10T

0

dt
[
(µ̂(t)− µ(t))2 + (σ̂(t)− σ(t))2

]
. (28)
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Figure 3. Estimation of fluctuating input parameters with syn-
thetic data. (A) The estimated input parameters obtained using
the direct (red or light gray) and the transformation (blue or dark
grey) method, based on the standard LIF model. In the transfor-
mation method, we evaluate the two firing characteristics, rate λ
and irregularity κ, from a sample spike train, then we transform the
information into most likely input parameters. (B) The estimated
input parameters based on the adaptive LIF model, with the direct
(green or light gray) and the transformation (magenta or dark grey)
method. (C) The estimated input parameters normalized by their
own average, obtained using the adaptive (green or light gray) and
the standard (blue or dark grey) LIF model. The data was gen-
erated with the adaptive LIF model. The bottom panel displays
the trajectory of the thresholds in the adaptive and standard LIF
models. (D) The ISE between the intended input parameters and
estimated parameters against the period of the input modulation
T . The scales on the left vertical axis indicate the ISE values for
the standard LIF model (blue and red), and those for the adaptive
LIF model (green and magenta) are to be read from the right axis.
(E) Computational cost of the direct and transformation method
for analyzing a 10T of spike train, comprising about 300, 600, 800,
1,200, 1,400, and 1,600 ISIs for the periods T = 0.5, 1, 1.5, 2, 2.5, 3
[s], respectively.

Figure 3D compares the ISEs of the two methods as plotted against the period of
the input modulation, demonstrating that the transformation method can provide
accurate estimations compared to the direct method, and with a significantly shorter
computation time (Fig. 3E). The difference in ISEs’ scales between standard and
adaptive LIF models is due to the values of the input parameters to estimate.
Because of its computational cost, the direct method is impracticable for analyzing
biological data, which typically contain more than several hundred spikes, while
the transformation method can analyze thousands of spike trains, each of which
contains thousands of spikes.
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Comparison of the non-adaptive and adaptive LIFs. Here, we examine what hap-
pens when the standard (non-adaptive) LIF models are employed to analyze spike
trains derived from adaptive LIFs. To eliminate the dependence of estimated val-
ues on the model parameter settings, we used input parameters normalized by their
own averages. Figure 3C displays sample input trajectories (black dashed line) and
estimated trajectories based on the standard (magenta) and adaptive LIF (green)
models, given the same spike train data used for Fig. 3B. Figure 3C shows that when
the threshold dynamics are ignored, the dynamic behavior of the input fluctuation
can be inferred correctly, but the modulation in the input mean is substantially un-
derestimated. The adaptive threshold produces a negative correlation in successive
ISIs, which decreases the modulation in the output firing rate, and as a result, the
modulation in the input mean is underestimated. Although the estimation method
based on the standard LIF model can also capture the qualitative behavior of in-
puts, it is essential to include an appropriate modeling of threshold adaptation for
the quantitative analysis of input signals.

We also note that our current proposal for fitting the moments works quite
efficiently.

6. Discussion. We have developed a method for estimating nonstationary input
parameters from a single train of neuronal spikes. We have added an adaptive
threshold in the LIF generative model and proposed a new principle for fitting the
exponential family of distribution functions based on the first two moments. Our
transformation method for estimation proved to perform well in place of the direct
inference method, which is computationally infeasible for a data set comprising
thousands of spikes.

We compared the four representative exponential families based on the goodness
of their input estimations, finding that the gamma and inverse Gaussian distri-
butions work better than the normal and log-normal distribution functions in the
region of input parameters that generate biologically plausible firing characteristics.
This result is consistent with the previous report [9] that neuronal activity can be
modeled with a good fit using the generalized inverse Gaussian distribution, which
includes the gamma and inverse Gaussian distributions. We also found that the
gamma distribution works poorly for highly irregular firing regimes; this may be
due to the fact that the maximum likelihood estimator of the shape parameter in
the gamma distribution has a large positive bias [4].

Utilizing the fact that the first and second moments of the LIF model with
an exponentially decaying threshold can be obtained analytically as expansions in
terms of the small threshold modification εj , we proposed an estimation method that
is applicable to the adaptive LIF models. We confirmed in a simulation analysis that
the expansion formula works robustly even for εj ∼ 2, where the output firing rate
is over 100 Hz. However, it has been reported that the formula sometimes yields
negative moments for large values of εj [15], and therefore, it is worth investigating
whether the algorithm can calculate the moments quickly and robustly for even
larger values of εj .

Because the mean drift and uncorrelated fluctuation of input are related to the
rates of excitatory and inhibitory input spikes [34, 12, 11], we can investigate the
existence of balanced regime of a neuronal network from the behavior of uncorre-
lated Gaussian input. The covariation between excitatory and inhibitory activities
has recently been analyzed in the cerebral cortex by carefully observing temporal
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modulation of synaptic conductances [31, 36, 7], although our method does not
require anesthesia or significant constraints on the animal when estimating inputs.
We can estimate inputs solely from extracellular data.

A notable advantage of our method is its relatively low computational cost. In
addition to enable us to analyze large amounts of data, our method enabled us
to perform more sophisticated analyses of input signals, combined with computa-
tionally expensive techniques such as switching state-space models, hidden Markov
models.
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