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Abstract. We derive learning rules for finding the connections between units

in stochastic dynamical networks from the recorded history of a “visible” sub-
set of the units. We consider two models. In both of them, the visible units are

binary and stochastic. In one model the “hidden” units are continuous-valued,

with sigmoidal activation functions, and in the other they are binary and sto-
chastic like the visible ones. We derive exact learning rules for both cases.

For the stochastic case, performing the exact calculation requires, in general,

repeated summations over an number of configurations that grows exponen-
tially with the size of the system and the data length, which is not feasible

for large systems. We derive a mean field theory, based on a factorized ansatz

for the distribution of hidden-unit states, which offers an attractive alternative
for large systems. We present the results of some numerical calculations that

illustrate key features of the two models and, for the stochastic case, the exact

and approximate calculations.

1. Introduction. Recent interest in network identification problems has been mo-
tivated by the advent of multi-electrode neural recordings and other large-scale
biological data [16, 13, 12, 7]. Current inference methods, however, do not take into
account the effects of units in the networks that are not recorded, though they are
almost always present. This problem can be serious: For example, in cortical neural
data, almost all recorded cells are excitatory, though inhibitory cells are essential
in the network dynamics. In this paper we extend previous methodology to include
“hidden units”, presenting algorithms for inferring the strengths of connections to,
from and among them.

There is a long history of work of problems of this sort. Perhaps the best know
is that on “Boltzmann machines” [1]. These are symmetrically coupled networks
of stochastic binary units. Their states are updated, one randomly chosen unit at
a time, with the probability of being in a particular one of its two possible states
given by a logistic sigmoid function of the net input from other units. Because of
the symmetric coupling matrix, their dynamics satisfies detailed balance, so their
equilibrium distributions are of Gibbs-Boltzmann form Z−1 exp(−E), where E is
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a quadratic form. This fact that simplifies their analysis considerably. The prob-
lem has also been studied in networks where the unit outputs are continuous sig-
moidal functions of their inputs, for both continuous-time (asynchronous-update)
and discrete-time (simultaneous-update) dynamics, extending the back-propagation
algorithm used earlier for layered networks.

Applying either of these kinds of models to multineuron spike data is problematic.
Real biological networks do not have symmetric connections, invalidating the first
kind, while the nature of synaptic transmission and neuronal spiking calls for a
stochastic binary representation, ruling out the second. In this paper we treat
models in which the recorded neurons are stochastic and binary, and there is no
symmetry requirement on the connections in the network. They obey a discrete-
time kinetic Ising (Glauber) dynamics [6], and a value +1 represents an action
potential. We study two kinds of models, in which the hidden units are deterministic
or stochastic, respectively. We employ, for convenience, a discrete-time dynamics
[10], though it should be straightforward to extend the treatment to continuous-time
models.

2. Continuous, deterministic hidden units. We examine first the deterministic
case, taking the output of a hidden unit to be a sigmoidal function of its input.
Though it is a big simplification of a real spiking-neuron network, this kind of model
can be practical for analyzing neural data. One cannot hope to model the detailed
dynamics of all the unrecorded neurons in the network of interest, because they
vastly outnumber the recorded ones. However, at least as a first approximation, one
can hope to describe the effect of unrecorded populations of neurons (for example, of
inhibitory neurons when only excitatory neurons have been recorded). The values
of the hidden units in our model here could represent the firing rates of those
populations. The available data might capture essential features of the network
dynamics, though they would never be sufficient to identify the entire network in
detail.

We draw here on work in learning in analog neural networks a couple decades
ago, under the names “back-propagation in time” and “recurrent back-propagation”
[14, 11, 9, 21]. Our treatment differs from that work in having stochastic visible
units and a likelihood-based objective function.

2.1. Model. We denote the states of the visible units by si(t), where i labels the
unit and t the time bin. They can take the values ±1. (We assume the recorded
spikes have been sorted into time bins small enough that there is no more than one
spike per bin.) We denote the hidden unit values by µa(t), 1 ≤ µa(t) ≤ 1. To make
our equations a little more transparent, we use indices i, j, · · · for visible units and
a, b, · · · for hidden ones. Our model is defined by the stochastic evolution rule

P [si(t+ 1)|{s(t), µ(t)}] =
exp[si(t+ 1)Hi(t)]

2 coshHi(t)
(1)

µa(t+ 1) = tanhBa(t), (2)

with

Hi(t) =
∑
j

Jijsj(t) +
∑
b

Kibµb(t) (3)

Ba(t) =
∑
j

Lajsj(t) +
∑
b

Mabµb(t). (4)



NETWORK INFERENCE WITH HIDDEN UNITS 151

All si(t + 1) are assumed independent, conditional on {sj(t)}, {µb(t)}. The model
is pictured in Fig. 1. We do not write constant bias terms in H or B here; they can
be included by adding input units which are always +1. We will denote the number
of visible units by Nv and the number of hidden ones by Nh.

Figure 1. Schematic picture of the model. (Color online) White
squares represent visible units si; blue ones, hidden units µa (or σa
when they are stochastic). Visible-visible connections Jij are black,
hidden-to-visible ones Kib are red, visible-to-hidden ones Laj are
blue, and hidden to hidden ones Mab are green. Rows represent
time steps.

2.2. Objective function and learning rules. We assume we are given the data
{si(t)} and that we know the number of hidden units. The task is to learn the
connections {Jij}, {Kia}, {Laj}, and {Mab}, and our objective function is the log
likelihood of the observed visible history:

L =
∑
it

[si(t+ 1)Hi(t)− log 2 coshHi(t)]. (5)

We consider the simplest form of gradient-based learning, where the parameters
are adjusted proportional to the derivative of the log likelihood with respect to
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them. For {Jij} and {Kia}, this is straightforward:

∆Jkl =
∑
it

[si(t+ 1)− tanh(Hi(t))]
∂Hi(t)

∂Jkl
=
∑
t

εk(t+ 1)sl(t), (6)

∆Kkb =
∑
it

[si(t+ 1)− tanh(Hi(t))]
∂Hi(t)

∂Kkb
=
∑
t

εk(t+ 1)µb(t), (7)

with εk(t+ 1) = si(t)− tanhHi(t), the observed error on unit i at t+ 1 under the
model with the current parameters, given its state at t. This is standard error ×
input learning, as in networks without hidden units [14, 12].

For the connections that lead to hidden units, the derivatives ofHi(t) with respect
to {Laj} and {Mab} are through its dependence on the µb(t); as in

∆Lal =
∑
it

εi(t+ 1)
∂Hi(t)

∂Lal
=
∑
it

εi(t+ 1)
∑
b

Kib
∂µb(t)

∂Lal
. (8)

Furthermore, the derivatives of the µj(t) have terms proportional to derivatives of
all the µs at the previous time step:

∂µb(t)

∂Lal
= (1− µ2

b(t))

[
δabsl(t− 1) +

∑
c

Mbc
∂µc(t− 1)

∂Lal

]
. (9)

These equations can be iterated starting from the initial condition ∂µc(0)/∂Lal =
0. The solution can be written relatively compactly:

∂µb(t)

∂Lal
= Xbb(t)

{
δabsl(t− 1) +

t−1∑
q=1

[
q∏
r=1

[MX(t− r)]

]
ba

sl(t− q − 1)

}
, (10)

where

Xab(t) = (1− µ2
a(t))δab (11)

and we make the convention that the product over r is equal to 1 when q = 0. The
learning rule for Lal can then be written as

∆Lal =
∑
t

t−1∑
q=0

∑
i

εi(t+ 2 + q)

[
KX(t+ 1 + q)

(
q∏
r=1

MX(t+ r)

)]
ia

sl(t), (12)

Exactly the same procedure for the derivative with respect to Mab gives

∆Mab =
∑
t

t−1∑
q=0

∑
i

εi(t+ 2 + q)

[
KX(t+ 1 + q)

(
q∏
r=1

MX(t+ r)

)]
ia

µb(t), (13)

which differs from (12) only in the last factor.
This all has a nice graphical interpretation. The effective error is the sum over all

paths starting at future visible units (time t+ 2 + q) and propagating back through
the hidden units at intermediate times until it reaches the receiving unit a at time
t + 1. For each such path, we pick up a factor εi(t + q + 2) at the visible error
source, a factor of a Kib for backpropagating from the source unit to a hidden unit
b, factors of elements of M for the hidden–to-hidden connections on the path, and
factors of Xcc = 1 − µ2

c at every hidden unit c that it passes through. This is just
the standard prescription for back-propagation of errors in layered networks. Fig. 2
shows a typical path for q = 2.



NETWORK INFERENCE WITH HIDDEN UNITS 153

Figure 2. Back-propagation of errors from the future through the
hidden units. The example path here starts at a visible unit i where
the output error εi(t+ 4) is measured. It is then propagated back
in time, first to a hidden unit at time t+ 3, then through another
hidden unit at t + 2 and finally to the one at t + 1 which is the
receiving unit on the connection being evaluated. It gives a change
in that connection strength equal to the product of εi(t+4), all the
connection strengths on the path, and factors of 1− µ2

b(t) for each
hidden unit on the path. The total connection strength change is
a sum over all such paths from all visible units in the future.

2.3. Numerical results. In this calculations reported in this paper we restrict
ourselves to networks with no hidden-to-hidden connections (M = 0). This simplifies
the learning algorithm considerably: There are no backpropagation paths longer
than two steps. Fig. 3 shows an example of learning for a network with 18 visible
and 2 hidden units, based on T = 10000 time steps of data. The top left panel shows
how the cost function (the negative log-likelihood of the data per time step) falls
smoothly to a minimum. The top right panel shows the evolution of the errors in
the couplings Jij , Kib and Laj under learning. The apparent poor performance can
be understood by comparing the middle panels, which show the coupling matrix
elements of the model that generated the data (left) and the inferred couplings
(right), respectively. It is apparent that the input connection strengths L2j to the
second hidden unit (unit 20 in these plots) are negatives of each other in the two
panels. The same is true of the outgoing connections Ki2 from that unit, though
it is hard to see in these graphs. These two inversions have no effect on the visible
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units, so the “true” model and the one with the flipped signs of L2j and Ki2 are
equivalent: there is no way we can know from the visible data alone which one was
the true model. The bottom left panel shows how, if we bias the initial random
values of the couplings to have the right sign, results close to the true model are
obtained. The equivalence of the two inferred models is apparent from the fact
(bottom right panel) that the final values of the cost function are exactly the same.

In this example it was easy to see the relation between the inferred and true
connections. However, in general there is a 2Nh ×Nh!-fold degeneracy (the signs of
the connections to and from every hidden unit could be flipped, and the labels on
the hidden units can be permuted arbitrarily.) Thus, for large Nh, most likely one
will infer one of the models equivalent to the true one, but not the true one itself.

In all our calculations in this paper, we used “batch learning” (updating based
on the gradient of the total log likelihood). We always found optimal convergence
(maximum speed with monotonic cost function) with learning rates of order η/T ,
where T is the number of time steps. In the above calculations we used η = 0.5;
otherwise we used η = 1.

3. Stochastic hidden units. The case where all units in the model, including
the hidden ones, are stochastic is more difficult, but it is the more interesting one
from a theoretical point of view. Furthermore, it is not irrelevant to data analysis.
While complete inference of the couplings to, from, and among a set of unobserved
neurons much more numerous than the recorded ones is not practically possible,
performing the inference assuming a much smaller Nh ∼ Nv can still give some
insight into what “hidden” neurons are doing.

Denoting the hidden units by σa(t), the dynamics are now given by

P [si(t+ 1), σa(t+ 1)|{s(t), σ(t)}] =
exp[si(t+ 1)Hi(t)]

2 coshHi(t)

exp[σa(t+ 1)Ba(t)]

2 coshBa(t)
(14)

with

Hi(t) =
∑
j

Jijsj(t) +
∑
b

Kibσb(t) (15)

Ba(t) =
∑
j

Lajsj(t) +
∑
b

Mabσb(t). (16)

We restrict our treatment to networks with weak dense random connections, Jij , Laj
= O(1/

√
Nv), Kib,Mab = O(1/

√
Nh), so that Hi(t) and Ba(t) are of order 1.

The likelihood of the history of the full system is

P [s, σ] =
∏
tia

P [si(t+ 1), σa(t+ 1)|{s(t), σ(t)}], (17)

and the likelihood of the visible history is

P [s] =
∑
σ

P [s, σ]. (18)

The distribution of the σ, conditional on the observed data, is

P [σ|s] =
P [s, σ]

P [s]
. (19)

This has the form of a Gibbs distribution Z−1s exp(−Es[σ]), with

Es[σ] = logP [s, σ] (20)
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Figure 3. Learning example: network of 18 visible and 2 hidden
units (no hidden-hidden connections). Top left: iterative minimiza-
tion of the cost function −L/T for a data set of length T = 10000.
Top right: rms errors on Jij , Kib, and Laj as functions of the num-
ber of iterations of the learning algorithm when it is started at
small random values of the couplings. Middle panels: true (left)
and inferred coupling strengths. The hidden units are number 19
and number 20. Bottom panels: rms errors (left) and cost function
(right) when the initial parameter values have the correct signs. A
learning rate equal to 1/T was used in both cases.
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and

Zs = P [s] =
∑
σ

P [s, σ]. (21)

(Zs also depends on all the model parameters {Jij ,Kib, Laj ,Mab}, but to save some
space we do not write that explicitly.) To show the nature of the interactions in the
energy Es[σ], we write it out explicitly:

Es[σ] = −
∑
t

∑
ij

si(t+ 1)Jijsj(t) +
∑
ib

si(t+ 1)Kibσb(t)

+
∑
aj

σa(t+ 1)Lajsj(t) +
∑
b

σa(t+ 1)Mabσb(t)

−
∑
i

log 2 cosh

∑
j

Jijsj(t) +
∑
b

Kibσb(t)


−

∑
a

log 2 cosh

∑
j

Lajsj(t) +
∑
b

Mabσb(t)

 . (22)

The first term is just a constant (independent of the σs), the next two are like
external fields acting on the σa(t) from the visible data si(t ± 1) one time step
in the future and past, respectively, and the fourth term represents interactions
between σs at successive time steps. The final two terms are interactions among all
the σs at one time (but these terms do not couple σs at different times). Their non-
polynomial form leads to important features in this problem that are not present
in Boltzmann machines.

3.1. Exact learning algorithm. Just as for Boltzmann machines, we can derive
an exact learning algorithm for the model parameters by gradient ascent on logZs,
the log likelihood of the visible history. It can be written

∆Jij ∝ ∂ logZs
∂Jij

=
∑
t

[si(t+ 1)− 〈tanhHi(t)〉σ|s]sj(t) (23)

∆Kib ∝ ∂ logZs
∂Kib

=
∑
t

〈[si(t+ 1)− tanhHi(t)]σb(t)〉σ|s (24)

∆Laj ∝ ∂ logZs
∂Laj

=
∑
t

〈σa(t+ 1)− tanhBa(t)〉σ|ssj(t) (25)

∆Mab ∝ ∂ logZs
∂Mab

=
∑
t

〈[σb(t+ 1)− tanhBa(t)]σb(t)〉σ|s (26)

The averages 〈· · · 〉σ|s are over all hidden histories σ(t), weighted by the probability

P [σ|s] = Z−1s exp{−Es[σ]} that they produce the known visible history s. In each
learning rule, the first term comes from differentiating the terms in the first two
lines of (22) and the second from differentiating one of the log 2 cosh terms.

When there are no hidden-to-hidden connections Mab, P [σ|s] becomes a product
of independent terms, one for each t. The averages over P [σ|s] in (23-26) then
involve sums over 2Nh terms, where Nh is the number of hidden units. For small
networks, they can be computed exactly in a reasonable time.
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3.2. Numerical results. Fig. 4 shows, for a model with Nh = Nv = 10 (and,
again, no hidden-to-hidden connections), how the cost function (−L/T , the negative
log-likelihood of the data per time step) converges to its asymptotic value as the
number of steps in the data set is increased. All the couplings in this example were
i.i.d. and normal with variance 0.1. In addition to −L/T evaluated on the training
data, we plot it evaluated on an independently-generated test data set. It is evident
that these converge to a common value for large T . We also plot the values of the
Akaike and Bayesian information criteria, based on the training cost function. The
Akaike information criterion penalizes the estimated log likelihood (i.e., increases
the cost) by the number of parameters N , and the Bayesian information criterion
penalizes it by N logN . Thus these statistics are equal to the training cost function
plus N/T and (N logN)/T , respectively, so they also approach the training set cost
function as T →∞.
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Figure 4. Cost functions for learning in a network of 10 visible
and 10 hidden units, as functions of the data length T . (Color
online) Blue: evaluated on training data. Green: evaluated on
independent test data. Red: Akaike information criterion (AIC
[2]). Cyan: Bayesian information criterion (BIC [17]). Purple:
T → ∞ limiting value. A learning rate equal to 1/T was used in
all calculations.

For networks larger than ∼ 10, one has to resort to Monte Carlo to estimate the
averages. When there are hidden-to-hidden connections, the number of states to
sum over becomes 2NhT , where T is the number of time steps in the data. In this
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case, exact calculations are never possible, even for just one hidden unit, and even
Monte Carlo becomes impractical for moderate numbers of hidden units.

4. Mean field theory for stochastic hidden units. An attractive approximate
alternative is mean field theory. It can be formulated variationally [3]: One seeks
the best approximation to P [σ|s] that factorizes over the different σa(t). Each
such factor is parametrized by a single number: the probability that σa(t) = +1.
Equivalently (and conventionally), one can use the “magnetization”, denoted µa(t),
which is the difference between the probabilities to be +1 and −1. The entire
factorizable distribution is then parametrized by the set of magnetizations {µa(t)}.
The learning proceeds in an EM fashion [18, 4], iterating the two steps: (1) For
given coupling parameters, find the µa(t) that maximize the factorized logZs, and
(2), for these µa(t), improve the estimates of the coupling parameters as in rules
(23-26) but with the averages computed under the factorized approximate P [σ|s].

4.1. Derivation of mean-field theory. Under the factorizability assumption, the
likelihood of the visible data {si(t)}, given 〈σa(t)〉 = µa(t), is

PMF [µ, s] = exp{S[µ]− Es[µ]} ≡ expA[µ, {Jij ,Kib, Laj ,Mab}], (27)

where

S[µ] = −
∑
at

[
1 + µa(t)

2
log

(
1 + µa(t)

2

)
+

1− µa(t)

2
log

(
1− µa(t)

2

)]
(28)

is the entropy: the average log of the probability of magnetizations µa(t). In (27) we
indicate explicitly that A depends on the parameters {Jij ,Kib, Laj ,Mab} (through
Es). Thus, the EM learning procedure involves repeatedly maximizing over µ for
fixed parameters (the “E-step”) and taking uphill steps on A (equivalently, downhill
steps on Es) in parameter space for fixed µ (the “M-step”).

The prescription for obtaining the average energy by the replacement σa(t) →
µa(t) in Es is based on the independence of different σa(t) under the factorized
distribution. For example, if Es contains a term like σa(t)σb(t), then 〈σa(t)σb(t) =
〈σa(t)〉〈σb(t)〉 = µa(t)µb(t). Thus, one might think that we get the Es[µ] to use in
(27) by simply substituting µ for σ in (22). Then maximizing A[µ] would lead to
the equations

tanh−1 µa(t) =
∑
j Lajsj(t− 1) +

∑
bMabµb(t− 1)

+
∑
i

{
si(t+ 1)− tanh

[∑
j Jijsj(t) +

∑
bKibµb(t)

]}
Kia

+
∑
b

{
µb(t+ 1)− tanh

[∑
j Lbjsj(t) +

∑
cMbcµc(t)

]}
Mba (29)

for the µa(t). This equation has a nice interpretation: The first two terms are just
the inputs from visible and hidden units, respectively, at the previous time step,
and the last two terms are just the back-propagated errors from visible and hidden
units one time step later.

However appealing this equation looks, it is wrong. One has to be careful in
the log 2 cosh terms in Es[σ]. Expanding it in powers of the Kib, we get a second
order term proportional to

∑
abKiaKibσaσb. The double sum includes terms with

a = b, and for these terms we should make the replacement σ2
a = 1, not σ2

a = µ2
a.

(This situation does not arise for the usual Ising energy −
∑
i<j Jijsisj , since the

i = j term is explicitly excluded from the sum.) The same problem comes up in
all higher-order terms in the expansion whenever there are repeated indices in the
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sums over hidden unit indices. This problem was noticed already by Saul et al
[15], who tried to deal with it by introducing an extra set of variational parameters.
Here, we make a treatment for a particular ensemble of models that is exact (within
the factorization approximation) in the limit of large Nh. In these models, all the
couplings are zero-mean independent random numbers with variances proportional
to 1/N . This makes the net inputs Hi(t) and Ba(t) Gaussian (for large N), with
variances of order unity.

Writing the nth order term in the expansion of log 2 coshH (we drop the visible
unit index i temporarily here, for simplicity) as

αn =
cn
n!

∑
a1···an

Ka1 · · ·Kanσa1 · · ·σan , (30)

consider first the terms in every term of (30) where two of the indices are equal.
There are n(n − 1)/2 such pairs, so the correction to this subset of the nth order
terms is

γ(2)n = 1
2

cn
(n− 2)!

∑
a1,a2,···an−2

Ka1 · · ·Kan−2
σa1 · · ·σan−2

[∑
a

K2
a(1− µ2

a)

]
. (31)

because naive substitution of µa for σa would have given µ2
a instead of 1. But what

multiplies the sum on a here is just half the n − 2nd term in the expansion of the
second derivative of log 2 coshH, i.e., 1 − tanh2H. So we can sum all such terms
over n, yielding a correction

E2 = 1
2 (1− tanh2H)

∑
a

K2
a(1− µ2

a). (32)

Thus, at this level of approximation, we should use an energy Es[µ] in which∑
i log 2 coshHi(t) is replaced by∑

i

log 2 coshHi(t) + 1
2

∑
ia

[1− tanh2Hi(t)]K
2
ia[1− µ2

a(t)] (33)

(now with the substitution σ → µ in the first term). This looks like the TAP term
in the free energy for the usual Ising model, but with the opposite sign. The same
argument applies to the log 2 coshB term in Es, which should be replaced by∑

a

log 2 coshBa(t) + 1
2

∑
ab

[1− tanh2Ba(t)]M2
ab[1− µ2

b(t)]. (34)

These corrections will lead to new terms in the MF equations for µa(t) and in the
learning rule for the Kia and Mab. Note also that, for the models we are considering,
these correction terms are of order 1 (per visible or hidden unit, respectively) since
they contain sums of Nh terms and each term is of order 1/Nh.

We can also sum up terms with 2 pairs of indices equal, 3 pairs of indices, equal,
etc. Consider first the terms where two pairs of indices are equal. In the nth order
term αn (30), there are n!/[4!(n− 4)!] ways of picking the 4 indices and 3 ways to
pair them. The correction is

γ(4)n =
3

4!

cn
(n− 4)!

∑
a1,a3,···an−4

Ka1 · · ·Kan−4
σa1 · · ·σan−4

.

[∑
a

K2
a(1− µ2

a)

]2
(35)
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The sum over n of these terms is just

E4 =
3

4!

∂4(log 2 coshH)

∂H4

[∑
a

K2
a(1− µ2

a)

]2
. (36)

Like (32), (35) is of order 1.
Extending this argument to the general term with j/2 pairs of coincident indices,

in the nth order term, there are n!/[j!(n− j)!] ways to pick our the j indices, and
the number of ways to pair them is (j − 1)!! ≡ (j − 1)(j − 3) · · · 3 · 1. Thus, we get
a correction

Ej =
(j − 1)!!

j!

∂j(log 2 coshH)

∂Hj

[∑
a

K2
a(1− µ2

a)

]j
. (37)

Again, all these terms are all of order 1.
On the other hand, terms we have not considered, with 3 or more indices equal,

are negligible in the mean-field limit Nh →∞. (Consider terms with p equal indices.

They involve the sum
∑
aK

p
a , which is of order N

1−p/2
h and therefore negligible for

p > 2 as Nh →∞.
Now we can sum all the Ej over j, exploiting the fact that (j − 1)!! is the jth

moment of a zero-mean univariate normal distribution. The result of all these
manipulations is simply the replacement

log 2 coshHi(t) −→
∫
Dx log 2 cosh[Hi(t) + ∆i(t)x], (38)

where Dx means (2π)−1/2e−x
2/2dx and

∆2
i (t) =

∑
a

K2
ia[1− µ2

a(t)]. (39)

Thus, the effect of all these corrections can be described in terms of an effective
Gaussian noise. The same arguments apply to the log 2 coshB term, with the final
result that the effective energy can be written, exactly in the limit Nh →∞, as

Es[µ] = −
∑
t

∑
ij

si(t+ 1)Jijsj(t) +
∑
ib

si(t+ 1)Kibµb(t)

+
∑
aj

µa(t+ 1)Lajsj(t) +
∑
b

µa(t+ 1)Mabµb(t)

−
∑
i

∫
Dx log 2 cosh

∑
j

Jijsj(t) +
∑
b

Kibµb(t) + ∆i(t)x


−

∑
a

∫
Dy log 2 cosh

∑
j

Lajsj(t) +
∑
b

Mabµb(t) + Γa(t)y

 ,(40)

with
Γ2
a(t) =

∑
b

M2
ab[1− µ2

b(t)]. (41)

We note that this form could have been motivated heuristically: In (15) and
(16), the σb(t) are fluctuating variables of variance 1 − µ2

b(t). Since Kib and Mab

are assumed to be independent random variables, Hi(t) and Ba(t) are normally
distributed with variances ∆2

i (t) and Γ2
a(t) given by (39) and (41), respectively.
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4.2. Learning algorithm. The resulting equations for the E-step are then

tanh−1 µa(t) =
∑
j Lajsj(t− 1) +

∑
bMabµb(t− 1)

+
∑
i

{
si(t+ 1)−

∫
Dx tanh

[∑
j Jijsj(t) +

∑
bKibµb(t) + ∆i(t)x

]}
Kia

+µa
∑
i

{
1−

∫
Dx tanh2

[∑
j Jijsj(t) +

∑
bKibµb(t) + ∆i(t)x

]}
K2
ia

+
∑
b

{
µb(t+ 1)−

∫
Dy tanh

[∑
j Lbjsj(t) +

∑
cMbcµc(t) + Γb(t)y

]}
Mba

+µa
∑
b

{
1−

∫
Dy tanh2

[∑
j Lbjsj(t) +

∑
cMbcµc(t) + Γb(t)y

]}
M2
ba. (42)

They differ from the naive equations (29) in that the tanh terms in the second and
fourth lines are averaged over the Gaussian noises and in the presence of the new
terms on the third and fifth lines. The latter have the form of cavity field corrections
[8]: The effect of µa itself on the expected si(t + 1) and µb(t + 1) should not be
counted in calculating the tanhH terms in the second and fourth lines.

For the M-step, the learning rules for Jij and Laj are

∆Jij ∝ − ∂Es
∂Jij

=
∑
t

{
si(t+ 1)−

∫
Dx tanh [Hi(t) + ∆i(t)x]

}
sj(t) (43)

∆Laj ∝ − ∂Es
∂Laj

=
∑
t

{
µa(t+ 1)−

∫
Dy tanh [Ba(t) + Γa(t)y]

}
sj(t), (44)

differing from those we would find in the naive mean field theory only in the aver-
aging of the tanh’s over the Gaussian noises. The rules for Kib and Mab,

∆Kib ∝ − ∂Es
∂Kib

=
∑
t

{(
si(t+ 1)−

∫
Dx tanh [Hi(t) + ∆i(t)x]

)
µb(t)

−
[
1−

∫
Dx tanh2[Hi(t) + ∆i(t)x]

]
Kib[1− µ2

b(t)]

}
(45)

∆Mab ∝ − ∂Es
∂Mab

=
∑
t

{(
µa(t+ 1)−

∫
Dy tanh [Ba(t) + Γa(t)y]

)
µb(t)

−
[
1−

∫
Dy tanh2[Ba(t) + Γa(t)y]

]
Mab[1− µ2

b(t)]

}
(46)

have extra terms that come from the dependence of ∆i(t) and Γa(t) on Kia and
Mab in (39) and (41), respectively.

For small Kia and Mab (i.e., at the level of the corrections (33) and (34), the
E-step equations reduce to

tanh−1 µa(t) =
∑
j

Lajsj(t− 1) +
∑
b

Mabµb(t− 1)

+
∑
i

{
[si(t+ 1)− tanhHi(t)]Kia + [1− tanh2Hi(t)]K

2
iaµa(t)

+ tanhHi(t)[1− tanh2Hi(t)]Kia

∑
b

K2
ib[1− µ2

b(t)]

}
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+
∑
b

{
[µb(t+ 1)− tanhBb(t)]Mba + [1− tanh2Bb(t)]M

2
baµa(t)

+ tanhBb(t)[1− tanh2Bb(t)]Mba

∑
c

M2
bc[1− µ2

c(t)]

}
, (47)

and the learning rules are

∆Jij ∝
∑
t

{
si(t+ 1)− tanhHi(t)[1− (1− tanh2Hi(t))∆i(t)]

}
sj(t) (48)

∆Laj ∝
∑
t

{
µa(t+ 1)− tanhBa(t)[1− (1− tanh2Ba(t))Γa(t)]

}
sj(t), (49)

∆Kib ∝
∑
t

{(
si(t+ 1)− tanhHi(t)[1− (1− tanh2Hi(t))∆i(t)]

)
µb(t)

−
[
1− tanh2Hi(t)

]
Kib[1− µ2

b(t)]
}

(50)

∆Mab ∝
∑
t

{(
µa(t+ 1)− tanhBa(t)[1− (1− tanh2Ba(t))Γa(t)]

)
µb(t)

− [1− tanh2Ba(t)]Mab[1− µ2
b(t)]

}
(51)

A few final remarks are in order. The reader might notice that the lowest-
order corrections in (33), (34), and (47) resemble Thouless-Anderson-Palmer (TAP)
corrections in spin glasses [20]. However, there the TAP equations come from the
first corrections to the factorized-distribution approximation, whereas ours here
come from evaluating the average energy within that approximation. We expect
that for our model here, as for spin glasses, to get an exact theory for large Nh,
TAP corrections analogous to theirs should also be included. We do not try to do
that here, working entirely within the factorized-distribution ansatz. In problems
like ours for networks without hidden units, this is sometimes called “naive mean
field theory” [12].

4.3. Numerical results. We have carried out mean-field inference computations
for some models with no hidden-to-hidden connections (Mab = 0), using the lowest-
order mean-field equations (47-51). Fig. 5 shows how the mean square errors of Jij ,
Kib and Laj depend on the data set length T for two networks with 80 visible units.
The left-hand panel shows the case where the number of hidden units Nh = 80, and
the right-had panel shows the case where Nh = 20. For the smaller Nh, all three
mean square errors fall off like 1/T , as we would expect to find if we could do this
calculation exactly. However, for the larger Nh, while the errors on the visible-to-
visible couplings also fall off with T in this way, the errors on the couplings to and
from the hidden units are larger and fall off much more slowly.

We can get a little insight into this behavior by doing the mean-field calculations
for small Nh, where it is also possible to do the exact calculations, as described in
Sect. 2.3. Fig. 6 shows the results of both kinds of calculations for Nv = Nh = 5 and
8. In these cases we can see that for small T the mean-field and exact calculations
nearly coincide. The T -dependence is in this region is qualitatively like that for
the mean-field results at Nv = Nh = 80. However, at larger T , the mean-field
errors all fall less rapidly. At the same time, the exact calculation gives errors on
the Js which continue to fall off like 1/T , and those on the Ks and Ls also start
to fall more rapidly at the largest T s studied. This behavior is consistent with the
expectation that, as for models with no hidden units, all exact-method errors should
fall off asymptotically like 1/T , while the mean-field errors should approach limits
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Figure 5. Mean square errors on Js (blue), Ks (green) and Ls
(red) computed in mean field theory as functions of data set length
T . (Color online) Left panel: Nv = Nh = 80. Right panel: Nv =
80, Nh = 20. All couplings are i.i.d. normal, with variance 1/Nv
for Jij and Laj and 1/Nh for Kib. Learning rates: 1/T in all cases.
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Figure 6. Mean square errors on Js (blue), Ks (green) and Ls
(red) as functions of data set length for small networks. (Color
online) Left Panel: Nv = Nh = 5. Right Panel: Nv = Nh = 8.
Mean-field results are solid lines; exact results are dashed. Cou-
plings chosen as in Fig. 5. (All learning rates = 1/T .)

∝ 1/Nh [12]. However, apparently one has to go to very large data sets (roughly
T > 103Nh) to see this.

5. Discussion. We have derived learning rules for two kinds of stochastic binary
networks with hidden units. These networks differ from Boltzmann machines in
that (1) the units in them are updated synchronously rather than asynchronously,
and (2) the connection strengths are allowed to be asymmetric. Because of these
differences, the usual kind of Gibbs equilibrium does not hold, and a new kind of
treatment is required.
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The first kind of network has deterministic, continuous-valued hidden units. The
learning rules for it are very similar to those in the back-propagation-in-time ap-
proach for recurrent networks where all the units are deterministic and continuous-
valued.

Units in the second kind of network are binary and stochastic, like the visible
units. Here the learning problem is harder, but we have showed that one can always
put it into the form of an equilibrium statistical mechanical problem with a non-
polynomial energy function. The learning rules involve averages over the Gibbs
distribution for this problem. For small systems and in the absence of hidden-to-
hidden couplings, the problem can be solved exactly numerically, but otherwise one
must resort to Monte Carlo methods or other approximations. We explored in detail
one such approximation: mean field theory. A careful analysis revealed that the
naive way one might write this theory was wrong, but we were able to construct
a version of mean field theory that was exact for weak, dense connectivity in the
limit of a large number of hidden units (the analog of the Sherrington-Kirkpatrick
model of spin glasses [19]).

We also performed some numerical calculations to illustrate and to begin to
explore some of the features of the different kinds of networks and learning rules. A
general feature is that when the number of hidden units is large (i.e., comparable to
the number of visible units), the errors in determining the couplings to and from the
hidden units are much larger than those on the couplings among the visible units.
This is true for both kinds of networks and for both exact learning algorithms
and mean field theory. This should not be surprising, since the information about
the connections to and from hidden units is only available indirectly, through the
statistics of the visible units. On the other hand, it is noteworthy that even a rather
poor estimation of the connections to and from the hidden units does not spoil the
good estimation of the couplings among the visible ones.

Another point worth mentioning is that for small data lengths mean field theory
is as good as doing the full exact calculation, which would take prohibitively long
for Nh much bigger than 10 or so. For large Nh the errors on connections to and
from hidden units can be rather large and fall off very slowly with T , but the results
on small systems seem to show that doing the exact calculation instead of mean
field theory (even if this were feasible), would not help except at very large T .

We have only scratched the surface of this problem in our numerical calculations.
It would be useful to know, for example, what the asymptotic errors on the Ks and
Ls are for the mean-field algorithm in the limit of large data sets and at what T
the approach to these values begins, as functions of Nh and Nv. We leave this and
other questions to future work. The theory presented here provides a foundation
for those investigations and, we hope, will point the way toward other questions
that will be interesting to study.

Dunn and Roudi [5] have derived similar results in a different way for weak
coupling. (In the context of the models considered by both them and us, where,
e.g., Kia = κN (0, 1)/

√
Nh, “weak coupling” means small κ, and analogously for

the other couplings.) When there are no hidden-to-hidden couplings (M = 0), their
results agree with ours in this limit (i.e., at the level of eqns. (47)-(51)), but our
more general results (42)-(45) are not restricted to small κ. On the other hand,
they are also able (for weak coupling) to learn hidden-to-hidden couplings Mab.
This requires TAP corrections which are (as remarked above) beyond the naive
mean-field theory that we treat here, but which appear naturally in their approach.
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