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Abstract. A model is considered for a neural network that is a stochastic
process on a random graph. The neurons are represented by “integrate-and-

fire” processes. The structure of the graph is determined by the probabilities of

the connections, and it depends on the activity in the network. The dependence
between the initial level of sparseness of the connections and the dynamics of

activation in the network was investigated. A balanced regime was found

between activity, i.e., the level of excitation in the network, and inhibition,
that allows formation of synfire chains.

1. Introduction.

1.1. Search for synfire chains. The idea that neuronal networks may be orga-
nized as feed-forward structures composed of multiple layers in which the activity
flows from the input naturally arises from neuronal recording of precisely-timed
spiking activity in brain (Abeles 1982, Abeles 1991). Beginning with the work of
Abeles (1991), synfire chains have been intensively studied as a model for neu-
ral information processing in the cortex. Synfire chains are capable of generating
temporally extended and precisely timed patterns of spiking activity, and thus can
explain precisely timed sequential activity patterns, as demonstrated by electro-
physiological recordings. Spatiotemporal activity patterns were found, for example,
in monkeys (Prut et al., 1998, Ayzenshtat et al., (2010)), rats (Villa et al., 1999),
and birds (Hahnloser et al., 2002; Mooney and Prather, 2005). All these studies
indicate that spatiotemporal activity patterns play a role in cortical mechanisms of
information processing. It has also been suggested that strictly feed-forward synfire
chains may encode the syllables that make up the song of birds (Fiete et al., 2010).

It is therefore natural to use spatiotemporal patterns to encode information.
Hence, synfire chains provide a possible paradigm for cognitive representations.
Assuming that the basic pool-to-pool structure of synaptic connections is available,
one can associate the capacity of a network to encode and process information
with a number of chains effectively embedded into a network (Trengove et. al.
2012). There are common problems to all encoding paradigms (see, e.g., Rolls and
Treves 2011): how to balance the number of encoded images and the ability of the
network to activate a number of chains simultaneously. It seems that the use of
spatiotemporal patterns or synfire chains in encoding information presents a great
challenge for theory and simulations.
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Perhaps an even greater challenge is to describe a biologically plausible mecha-
nism for growing synfire chains. Searching for the conditions for the self-sustained
spontaneous activity which can lead to a formation of long synfire chains has been
continuing for a couple of decades (e.g., Hertz and Prügel-Bennett 1996, Bienen-
stock 1995, Waddington et al. 2011, and the references therein).

To demonstrate the growth of feedforward structures usually models based on
spike-timing dependent plasticity (STDP) or other plasticity mechanisms are con-
sidered. The initial assumptions are commonly accepted: a network consists of a
large number (about 10,000) neurons, and each of every possible connection between
the neurons is independently assigned a weight (or a probability of activation). In
other words, transmission of signals is possible from each to any other of the neurons
in the network.

In this context the neurons are typically modelled as integrate-and-fire devices.
Then an external stimulus activates a (small) part of the network, causing a ran-
dom trajectory of the propagation of the impulses in the network. The STDP can
be realized by increasing the causal connections between the neurons, and on the
contrary, decreasing the weights of synapses which disagree with the direction of
activation. It is noted in the context of this synaptic weight modification that
there is some evidence that the synaptic weights may follow a discrete distribution
(Montgomery and Madison (2004)).

However, it has been observed (e.g., Iglesias and Villa (2008), see also discussion
in Waddington et al. (2011)) that STDP alone does not produce the desired ar-
chitecture. Therefore besides biologically justified STDP the models assume rather
drastic artificial constraints. Here are a few recent examples.

Fiete et al. (2010) use an assumption that the sum of all outgoing (incoming)
synaptic weights at the neuron almost does not exceed a certain limit. However,
this seemingly “soft” rule transforms in the course of analysis presented by Fiete
et al. (2010) into a very strong competitive constraint on synapses, resulting in a
chain of single neurons. This reduces the whole complexity of the initial problem
to random permutations naturally associated with ordering of the neurons into
one chain. (Arguably) Fiete et al. (2010) deduce from this oversimplified model
bounds on the length of the synfire chains which are claimed to be in agreement
with experiments on song-birds.

Waddington et al. (2011) take another approach, what they call topological
constraints. Namely, to achieve stability in developing a desired structure, a total
suppression of spontaneous activity is imposed on a neuron as soon as it is recruited
to the chain (Waddington et al. (2011)).

Furthermore, Kunkel et al. (2011) came up with an explanation of why weight-
dependent STDP in a cortical-scale balanced random network architecture fails to
produce the growth of synfire chain structures. They argue that an unstable fixed
point in the dynamics prevents the stable propagation of structure in recurrent net-
works with weight-dependent STDP. Kunkel et al. (2011) use a statistical physics
approach which enables them to treat biologically reasonable parameters of a net-
work: each neuron receives a biologically realistic number of inputs (6000) and the
network exhibits a biologically realistic degree of sparseness (dilution) (connection
probability of 0.06).

We found another explanation for the observed instability with the help of the
theory of bootstrap percolation on random graphs (Turova (2012)). Interestingly,
to some extent it also relies on the fact that a dynamical system associated with
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the accumulation of activity in a recurrent network of integrate-and-fire units (of
a simplest version) has only unstable fixed points (in the space of reasonable pa-
rameters). As Kunkel et al. (2011) observed also, it is the fan-out tendency that
underlies the instability of the fixed point in their work.

1.2. Methods of statistical physics for finite systems. Use of percolation
models in neuronal science was predicted already by Harris (1963). However, de-
spite a growing number of studies of related models (Kozma et. al. (2005), Puljic
and Kozma (2005), Eckmann et. al. (2010)), the recent theoretical achievements
in bootstrap percolation have not yet been fully incorporated into analysis by neu-
roscientists.

We would like to point out one trivial but an essential problem with use of random
graph theory, or for that matter, any theory which describes a system in the limit.
In our case we want to make use of the theoretical results proved when the number
of model neurons goes to infinity. To be able to test theoretical results on finite
systems one has to have enough data, which may be difficult in neuroscience. Here
is a typical example. The results on random graphs, and in particular on bootstrap
percolation on random graphs, exhibit different scalings in the limit. This means
that the statements of the results are given as functions (e.g., nα) of the number n
of vertices (number of neurons in our case). Thus it is typically assumed (Kunkel et
al. (2011), Rolls (2008)) that in (fully weakly interconnected) cortex each of 100000
neurons with n = 10000 connections onto each neuron requires on average C = 100
synaptic connection active to fire a neuron. Then C = 0.01n as well as C =

√
n

if n = 10000. However, when n → ∞ it makes a huge difference which scaling is
assumed.

However, one may believe that it is only a matter of time to gain sufficient
experimental evidence to test the theory, the advantage of which is a complete
description of all possible scalings.

We study here a stochastic model for a network of integrate-and-fire neurons.
Turova and Villa (2007) suggested a model for the evolution of random graphs for
investigating networks with embedded spike timing-dependent plasticity. We found
in [24] that under special choice of parameters such a model can exhibit a sustained
level of activity. Here we continue study of the model from [24], and more precisely
a biologically justified modification of it.

Although the model is too crude to be called a neuronal network, it captures
the essential feature of propagation of impulses in a more realistic model than is
considered in almost all of the work cited above. A natural question could be:
how do we control the instability around a fixed point observed in all previous
simulations of such networks? We use an accurate description of the stochastic
process on a random graph given by the theory of bootstrap percolation (Janson
et. al. 2012) to choose a proper balance for the inhibition in the system. Observe
that the global inhibition in our model acts on each (excitatory) neuron depending
only on the potential of the neuron itself, and does not use any knowledge on the
topology, i.e., on the position of a neuron in a current structure. We conclude
therefore that even without drastic constraints a stable feed-forward structure may
grow in a self-organized regime of criticality. Properly tuned inhibition forces the
system to stay in the vicinity of a fixed though unstable point, i.e., criticality.

Observe, however, that there is no requirement for inhibitory input to impose
stability. Other mechanisms, as e.g., refractory period, can also control the level of
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excitation. In the latter case a perturbation by brief changes of input may return
the system into a steady state (consult Freeman [7]).

We show here that the architecture of syn-fire chains, or, rather “braids”, can be
seen in our model as a temporary (but stable for macro-times, as to be explained
below) self-organized structure. We provide scaling limits (in terms of the size of
the network) for the topological parameters of the established braids: the length,
the width, and the in- and out- degrees.

This approach offers a broad spectra of interpretations. However, this will be
narrowed, as soon as we gain enough empirical evidence to make a proper choice of
scaling for a finite network as we discussed above.

1.3. Model. Let us consider a set of excitatory neurons enumerated by vertices v
of Λ = {1, . . . , n}. Assume that with a probability p = p(n) there is a directed
connection between any pair of excitatory neurons (vertices in Λ). We assume that
p(n)→ 0 as n→∞. We shall write u ∼ v if there is a link from u to v.

The inhibitory neurons are modelled as one inhibitory unit connected to each
of the excitatory ones. Such modelling of inhibition is rather common (e.g., Rolls
(2008)). This does not change qualitatively the behaviour of the excitatory popu-
lation, but it simplifies the analysis of a network.

Assume that each neuron v, v ∈ Λ, has a potential Xv(t) ≥ 0 at time t ∈
{0, 1, . . .}. When Xv(t) ≥ 1 we say that the neuron v fires or is active at time t.

Let us set up the initial conditions. Fix a subset A(0) ⊂ Λ. Let Xv(0) = 1 for
all v ∈ A(0), and Xv(0) = 0, v 6∈ A(0). Then A(0) ⊂ Λ is the set of active neurons
at time 0.

For all t ≥ 0 given Xv(t), v ∈ Λ, define

A(t) = {v : Xv(t) ≥ 1, Xv(t− 1) < 1, v ∈ Λ},

this is the set of neurons which became active at time t. The dynamics of activation
is defined recurrently as follows. Given Xv(t), v ∈ Λ, define

Xv(t+ 1) =
Xv(t)e

−θ +
∑
u∈A(t):u∼v ωuv(t)

1 + ω−Θ
(∑

s≤t |A(s)| − athr
) , if Xv(t) < 1, (1)

Xv(t+ s) = 0, s = 1, . . . , R, if Xv(t) ≥ 1, (2)

where

Θ(x) =

{
0, if x < 0,
1, if x ≥ 0.

Here parameter athr > 0 is the threshold value for the total activity in the network to
trigger the inhibitory unit, while parameter ω− ≥ 0 is the strength of the inhibition.
Parameter 0 ≤ θ ≤ ∞ is responsible for holding once achieved value of the potential
till next incoming impulse. We assume that the synaptic connections ωuv(t) are
subjects to the synaptic facilitation, so that

ωuv(t) = ωu(t) = ω + ωa

(∑
s<t

e−κ(t−s)1 {Xu(s) ≥ 1}

)
, (3)

where ω > 0, and parameters ωa ≥ 0 and κ > 0 regulate the strength and the
duration of the facilitation, correspondingly. Form (3) is similar to that of Mongillo
et. al. (2008). Notice also that assumption (2) models a refractory period, i.e., if
neuron fires then at the next R time units it cannot be active.
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By the definition (1) conditionally on
∑
s≤t |A(s)| < athr, neuron v fires for the

first time at t+ 1 if Xv(s) < 1, s ≤ t, and

Xv(t+1) = Xv(t)e
−θ+

∑
u∈A(t):u∼v

ωuv(t) =
∑
s≤t

∑
u∈A(s):u∼v

ωuv(t)e
−θ(t−s) ≥ 1, (4)

where by the definition (3)

ω ≤ ωuv(t) ≤ ω + ωa
∑
s<t

e−κ(t−s) = ω + ωa
1− e−κt

κ
< ω + ωa/κ. (5)

Hence, as long as
∑
s≤t |A(s)| < athr, we have the following bounds∑

u∈A(t):u∼v

ω ≤
∑

u∈A(t):u∼v

ωuv(t) ≤ Xv(t+ 1) ≤
∑
s≤t

∑
u∈A(s):u∼v

(ω + ωa/κ). (6)

We point out that in this model the memory of the transmitted impulses is stored
by the synapses, as well as by the potentials Xv(t), which accumulate the impulses
coming at different moments of time.

Observe also that if θ = 0, ωa = 0 and ω− = 0, then system (1) describes the so-
called bootstrap percolation process on a random graph Gn.p (which is a graph on n
vertices with random edges, each of which is present independently with probability
p). This model was studied by Janson et. al. (2012) whose results we shall use
here.

1.4. Accumulation of activation level before triggering inhibition. Con-
sider the dynamics of activation in the network until the first time τ when∑

s≤τ

|A(s)| ≥ athr.

Let us first consider a simple case when both ωa = 0 and θ = 0. This means
that we do not assume a facilitation of synapses, but on the other hand we allow a
potential of a neuron to accumulate impulses coming at different times. Then for
all t < τ we derive from (5)

Xv(t+ 1) =
∑
s≤t

∑
u∈A(s):u∼v

ω = ω#{u ∼ v : u ∈ ∪s≤tA(s)}, if Xv(t) < 1. (7)

This is an intermediate case with respect to the bounds in (6), and hence analysis of
this case should be instructive for understanding the behaviour for a more general
set of parameters.

Let us consider first the set of neurons which were activated at least once. Denote

U(t) = ∪s≤tA(s)

the set of neurons which were activated at least once up to time t, and let

A(t) = |U(t)|.

As long as A(t) < athr the inhibition does not play a role, and therefore the system
follows the dynamics (7). In other words, a new neuron becomes active at time t
if it has at least [1/ω] connections to the set U(t). This is a bootstrap percolation
process analyzed by Janson et. al. (2012).
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To study the dynamics of A(t) let us introduce auxiliary independent identical
Bernoulli random variables ξi, i ≥ 1, which take value 1 with probability p. Then
for all t > 1 we can compute according to (7)

E{A(t+ 1) | A(t)} = (n−A(t))P


A(t)∑
i=1

ξi ≥ 1/ω |
A(t−1)∑
i=1

ξi < 1

 . (8)

Denote here

r :=

[
1

ω

]
+ 1.

One can show (consult Janson et. al. (2012)) that as long as A(t) ≤ 3tc (tc = o(n)
as defined below) the dynamics of A(t) follows closely

A(t+ 1) ≈ S(A(t)),

where

S(t) = A(0) + n
pr

r!
tr. (9)

Thus, a stable point of a system

tk+1 = S(tk) (10)

with initial state t0 = A(0) is critical for our original system as well.
Observe that if r > 1 then there exists a unique critical value

ac =

(
1− 1

r

)(
(r − 1)!

npr

)1/(1−r)

, (11)

such that if A(0) = ac there is a unique solution tc to (9), i.e., to

ac + n
pr

r!
tr = t,

and hence the dynamical system (10) has a fixed point tc.
We shall explore the following fact proved by Janson et. al. (2012). If the initial

state is slightly above the critical value ac then (depending on other parameters)
the original system A(t) has a slow dynamics of propagation in the vicinity of the
critical point tc. Let us state this result more precisely.

Fix arbitrarily 1
r < α < 1, 1

2 < β < 1, and set p = 1
nα . Then by (11)

ac + aβc ∼ nγ0 ,
where

γ0 :=
αr − 1

r − 1
< 1.

Assume now that

A(0) = ac + aβc .

Fix K ≥ 2 arbitrarily and consider the first time when the activation from the initial
A(0) neurons spread to (K − 1)A(0) other neurons; denote this time

τ1 := min{t : A(t) ≥ KA(0)}.
Janson et. al. (2012) proved that for any constant K ≥ 2

τ1 ∼ C(K, r)nγ , (12)

where

γ =
1− β

2

rα− 1

r − 1
=

1− β
2

γ0 < γ0 < 1.
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(For the details we refer to Janson et. al. (2012).) Asymptotics (12) tells us that
a system needs of order nγ steps to increase K times the number of firing neurons.
Hence, the system exhibits slow dynamics while passing through the “bottleneck”
in the vicinity of the critical value ac. Notice, however, that after this phase the
activation (without inhibition) very rapidly propagates through the network. More
precisely, within a period of time of the same order nγ almost all, i.e., n − o(n)
neurons will become active. (Again, see Janson et. al. (2012) for the details.)

1.5. Tuning the inhibition. We shall argue that properly tuned inhibition leads
to a self-organized criticality. More precisely, inhibition will keep the system for a
long time in the vicinity of an unstable point of the dynamics.

Let us set the threshold for the total activation in the inhibition term to be

athr = KA(0)

with A(0) defined above. Then we choose the constants K ≥ 2 and ω− to satisfy

∑
v

P

{
Xv(τ1) +

∑
u∼v:u∈A(τ1)

ω

1 + ω−
≥ 1

}
=

1

K
EA(τ1). (13)

Notice, that for any K > 1 this equation has a solution ω− > 0. Indeed, the
function on the left hand side of (13) is monotone decreasing in ω−: for ω− = 0 we
have ∑

v

P {Xv(τ1) ≥ 1} = EA(τ1),

where the last inequality is due to the definition of τ1, while when ω− →∞ the left
part in (13) goes to zero.

Then with the above choice of ω−

E#{v : Xv(τ1 + 1) ≥ 1} =
∑
v

P

{
Xv(τ1) +

∑
u∼v:u∈A(τ1)

ω

1 + ω−
≥ 1

}
=EA(τ1) ≈ A(0),

where the approximation is valid for large n: at the first moment of exceeding
threshold KA(0) the value of the total excitation is approximately KA(0). This
means that from the moment τ1 + 1 we restart a process of accumulation excitation
until next moment

τ1 + min{t : |A(τ1 + t)| ≥ athr}

of triggering inhibition. Since we restart again with about A(0) active excitatory
neurons, we have on the average a cycle of activity.

Observe, however, that the process restarted at time τ1 + 1 will differ from the
initial process due to the fact that we used alreadyKA(0) neurons. Hence, the cycles
will exhibit on the average similar behaviour only as long as the total number of
neurons ever activated remains to be o(n). This gives us an upper bound for the
number of similar cycles:

Nc = o(n)/A(0) = o(n1−γ0).
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1.6. STDP implementation for molding the braid structure. Consider the
sets of neurons which start to fire at the same moment of time, these are A(t),
t ≥ 1. They naturally form a wave of firings passing through a network.

As we discussed above, the number of consecutive firings in a cycle is of order τ1,
while the number of cycles is about Nc = o(n1−γ0). This together with (12) gives
us an approximate total number of the layers of firing neurons:

Nl ≈ Ncτ1 = o(n1−γ0+γ) = o(n1−γ0
1+β
2 ).

Recall that we can choose any 1/2 < β < 1 and 0 < γ0 < 1. Therefore we can
have any polynomial Nl = nq with 0 < q < 1.

Hence, by the construction we have

|A(t)| < KA(0) = O(nγ0), for all t ≤ Nl.

Since γ0 < 1 number Nl still can grow with n. Hence, we may assume that the
process runs for a long enough time to evoke the STDP. After

T := n1−γ0
1+β
3

steps, which is o(n1−γ0+γ), we increase all the excitatory connections from the
neurons which were firing at least once up to time T to the neurons which were
firing at least once up to time T , and weaken all the other connections from the
same neurons. Some evidence that the synaptic weights may follow a discrete
distribution was reported by Montgomery and Madison (2004). One can also argue
that even pruning of weak connections may take place (Iglesias and Villa (2007)).

As a result we will get the following braid structure of strong synapses (embedded
into the pool of other not yet modified synapses):

i) to every neuron in A(t), t < T, there is a connection from at least one of
neurons in A(t− 1),

ii) to every neuron in A(t), t < T, there are at most r − 1 connections from the
sets A(s), s ≤ t− 2,

iii) to every neuron in A(t), t < T, there are at least r total connections from all
the preceding sets A(s), s ≤ t− 1.

We call this structure “braids” rather than chains simply due to the feature that
strong connections may exist not only between the consecutive layers of neurons.

The parameters of this structure are the following: the width is bounded by nγ0

and the length of the chain (or braid) is about n1−γ0
1+β
3 .

1.7. Conclusions. We describe a process of establishing feed-forward braid struc-
tures (syn-fire chains) in a network of integrate-and-fire neurons. It has been repeat-
edly reported that such systems usually fail to produce stable long syn-fire chains;
instead either a convergent or a divergent regime is most probable. We show that
properly tuned inhibition may help to keep a system in the near critical regime
when the system has an almost sustained activity level. We provide quantitative
bounds for the parameters of the established braids.
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