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Abstract. To elucidate how a biological rhythm is regulated, the extended
(three-dimensional) Bonhoeffer-van der Pol or FitzHugh-Nagumo equations are

employed to investigate the dynamics of a population of neuronal oscillators

globally coupled through a common buffer (mean field). Interesting phenom-
ena, such as extraordinarily slow phase-locked oscillations (compared to the

natural period of each neuronal oscillator) and the death of all oscillations,

are observed. We demonstrate that the slow synchronization is due mainly to
the existence of “fast” oscillators. Additionally, we examine the effect of noise

on the synchronization and variability of the interspike intervals. Peculiar

phenomena, such as noise-induced acceleration and deceleration, are observed.
The results herein suggest that very small noise may significantly influence a

biological rhythm.

1. Introduction. In life, there are many oscillations and various rhythmic phe-
nomena such as cardiac beats and circadian rhythms [10]. The interaction or
coupling of numerous microscopic autonomously oscillatory elements with differing
natural periods determines the macroscopic biological rhythm [20]. For instance,
the sinoatrial node cells (cardiac pacemaker cells), which are located in the right
atrium of the heart, are mutually coupled via electrical synapses called gap junc-
tions and the electrical impulses (action potentials) generated by the pacemaker
cells are propagated throughout the atrium. Abnormal biological rhythms, whether
regular or irregular, cause serious diseases such as cardiac arrhythmia. Because the
biological rhythm plays a crucial role in living organisms, analysis of its modulation
mechanism leads to a deeper understanding of biological phenomena.

Biological phenomena have been frequently analyzed using mathematical mod-
els [1, 3, 8, 16]. In particular, a system of coupled oscillators has been employed
for analysis of the rhythm modulation mechanism in life. These mathematical ap-
proaches are useful for conducting real physiological experiments and for developing
treatment of diseases caused by abnormal rhythms. However, to our knowledge, the
dynamics of a population of neuronal oscillators globally coupled through a com-
mon environment has yet to be investigated, although many studies have examined
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such systems using other nonlinear oscillators (e.g., [15]). A neuronal oscillator has
multiple time scales and is an example of a singularly perturbed system or relax-
ation oscillator. To examine how a biological rhythm is regulated, it is important
to investigate how interactions between such neuronal oscillators generate a macro-
scopic rhythm. In a system of coupled oscillators, various complicated patterns of
synchronous or asynchronous oscillations are observed. Such oscillations depend
mainly on the network topology of the coupled system in general. In this paper, in
order to focus on the effect of time scales of each oscillator, we would like to take
the network topology as simple as possible. Thus, we analyze the dynamics of a
population of neuronal oscillators globally coupled through a common buffer (mean
field).

Hodgkin-Huxley (HH) equations are the typical neuron model to describe the
generation of action potentials phenomenologically [13]. A globally coupled system
of neuronal oscillators has been analyzed using these equations [21]. The system
oscillated in a phase-locked state very slowly compared to the natural period of
each neuronal oscillator or the firings were completely inhibited. These phenomena
have not been observed in a coupled system of normal nonlinear oscillators, e.g.,
phase oscillators [17] and so on. Due to the complex dynamics of the HH equations,
theoretical analysis is difficult, and the generation mechanism of these phenomena
has yet to be clarified. To elucidate their generation mechanisms, these phenomena
must be reproduced using simpler systems.

In this paper, a population of globally coupled neuronal oscillators is analyzed us-
ing the extended (three-dimensional) Bonhoeffer-van der Pol or FitzHugh-Nagumo
equations [14], which are a simpler single neuron model than the HH equations.
Similar to the case using the HH equations, interesting phenomena, such as extraor-
dinarily slow phase-locked oscillations and the death of all oscillations, are observed.
In real systems, internal and external noises fluctuate the biological rhythm. Hence,
we also examine the effect of noise on the synchronization and the variability of the
interspike intervals. Peculiar phenomena, including noise-induced acceleration and
deceleration, are observed.

The rest of this paper is organized as follows: Section 2 presents the mathematical
model of a population of globally coupled neuronal oscillators and shows typical
oscillations in the system. Section 3 examines the global bifurcation structure and
studies the relationship between a slow phase-locked oscillation and the proportion
of fast oscillators. Section 4 provides the variability of the interspike intervals in
the presence of noise. Finally, Section 5 is the conclusion of this paper. Numerical
simulations in this paper are performed using the fourth-order Runge-Kutta method
with time step of 0.01.

2. Rhythmic phenomena in globally coupled neuronal oscillators.

2.1. A population of globally coupled neuronal oscillators. Herein we con-
sider a population of three-dimensional Bonhoeffer-van der Pol (BVP) or FitzHugh-
Nagumo (FHN) oscillators [14] globally coupled through a common buffer (mean
field) [7, 21]

dxi
dt

= xi −
xi

3

3
− yi − zi + Iext +D(w − xi) + σξi(t), (1a)

dyi
dt

= η(xi − ayi), (1b)
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dzi
dt

= εi(xi − bzi), εi � 1, (1c)

dw

dt
=
D′

N

N∑
i=1

(xi − w), (i = 1, · · · , N) (1d)

where xi is the membrane potential, yi is the refractory variable, and zi is the
(slow) refractory or inhibitory variable of the ith neuronal oscillator. w denotes the
common buffer. D and D′ represent the coupling strength. The common buffer is
a lowpass filtered mean field with a rate constant set by the coupling strength D′.
Electrically excitable cells such as neurons and cardiac muscle cells usually interact
in pairs through chemical or electrical synapses. The system (1) is considered as
a first-order (rough) approximation of these coupled systems. For simplicity, we
assume D ≡ D′. Iext is the external input current. ξi(t) is the white Gaussian noise
and σ is the noise intensity. All parameters except Iext are positive. Note that the
extended BVP equations are a qualitative neuron model where all variables and
parameters are dimensionless.

When D = 0 in (1), this system becomes a population of uncoupled extended
BVP oscillators. Due to the slow variable z, which is added to the original (two-
dimensional) BVP or FHN equations [9, 19], complicated phenomena such as chaos
and very slow spiking can be observed [6].

In the following, let the system consist of two kinds of oscillators with different
time scales εi where

εi =

{
ε̄1 (i = 1, · · · ,M),

ε̄2 (i = M + 1, · · · , N),
ε̄1 ≥ ε̄2, (2)

and the proportions be p (= M/N) and 1 − p, respectively. εi mainly controls
the natural period of the oscillator because it is the smallest rate constant among
the three variables, although it is difficult to discuss the natural period of such
nonlinear oscillators in general. We assume the heterogeneity of natural periods
and analyze the dynamics of a population of globally coupled neuronal oscillators.
The original (two-dimensional) BVP oscillator with usual parameter values shows
the periodic oscillation whose period is about two or three (dimensionless). The
introduction of the third variable z with the time scale ε may increase the natural
period linearly; for example, when ε = 0.01, it is increased to the order of several
tens. In the coupled system, we expect that phase-locked oscillation whose period
is of the same order as the natural period of the single oscillator occurs as the value
of D is increased, but in the next section, we show that the unexpected phenomena
such as slow phase-locked oscillations and the death of all oscillations are observed.

2.2. Slow phase-locked oscillations and the death of all oscillations. In the
rest of this subsection and the following section, we consider the system (1) in the
absence of noise: σξi(t) ≡ 0. Here we show some typical rhythmic phenomena in
this system. (Detailed dynamics are discussed in the next section.)

Consider the case when the number of oscillators is ten: N = 10. Let a = 3.0, b =
1.0, η = 0.13, and Iext = −0.4. If ε̄1 = 0.1 and ε̄2 = 0.01, each uncoupled neuronal
oscillator shows a simple periodic relaxation oscillation with natural periods of 25
and 168 (dimensionless), respectively. Hereafter, oscillators with εi = ε̄1 and εi = ε̄2
shall be referred to as fast and slow oscillators, respectively.
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Figure 1. (a) Inter-spike intervals (ISIs) vs. coupling strength D.
Following a transient of numerical simulations, the ISIs of all oscil-
lators are plotted during 40, 000 ≤ t ≤ 60, 000 for each of the 1, 000
equally spaced D values at the interval [0, 1]. (b) Magnification of
(a). Scale of the vertical axis is logarithmic. (c), (d) Waveforms of
xi and w when D = 0 and D = 0.2054, respectively. Each panel
denotes the waveforms of x1, x2, · · · , x10, and w from the bottom
to the top. Scale of the horizontal axis changes between (c) and
(d). System consists of nine fast oscillators and one slow oscillator
(p = 0.9).

Initially we consider a system that consists of nine fast oscillators and one slow
oscillator (p = 0.9). Figure 1(a) illustrates the interspike-intervals (ISIs) as a func-
tion of coupling strength D. Following a transient of numerical simulations, the
ISIs of all oscillators are plotted during 40, 000 ≤ t ≤ 60, 000 for each 1, 000 equally
spaced D values at an interval of [0, 1]. For D values with a few plotted points,
oscillators show an almost periodic oscillation, but for D values with many plotted
points, they oscillate chaotically. The magnification of this ISIs bifurcation diagram
is shown in Fig. 1(b). The ISI value grows up drastically as the value of D increases.
Figure 1(c) shows the waveforms of xi and w when the oscillators are uncoupled
(D = 0). Each panel denotes the waveforms of x1, x2, · · · , x10, and w from the
bottom to the top. When the coupling strength is weak, the ISI or the period of
such synchronized oscillations is close to a single oscillator’s natural period. A slow
phase-locked (synchronized) oscillation appears when D is near 0.2 (Fig. 1(d)), and
the value of ISI becomes extraordinarily large (greater than 104). If the value of D
is further increased, the (unique) equilibrium point of the globally coupled system
is stabilized and all firings are completely inhibited. Because the period of periodic
orbits generated from the Hopf bifurcation is generally small, the slow phase-locked
oscillation is an unexpected phenomenon.
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Figure 2. (a) Inter-spike intervals (ISIs) vs. coupling strength D.
Following a transient of numerical simulations, the ISIs of all oscil-
lators are plotted during 40, 000 ≤ t ≤ 60, 000 for each of the 5, 000
equally spaced D values at the interval [0, 5]. (b), (c) Waveforms
of xi and w when D = 0 and D = 2.0, respectively. Each panel
denotes the waveforms of x1, x2, · · · , x10, and w from the bottom
to the top. System consists of one fast oscillator and nine slow
oscillators (p = 0.1).

On the other hand, in a system consisting of one fast oscillator and nine slow
oscillators (p = 0.1), the value of ISI remains fairly constant with coupling strength
(Fig. 2(a)). Figure 2(b) shows the waveforms of xi and w when D = 0. Even if the
value of the coupling strength is changed, slow synchronization or oscillation death
is not observed (Fig. 2(c)).

3. Relationship between the slow phase-locked oscillation and the pro-
portion of fast oscillators. In this section, we analyze the local stability of the
equilibrium point and the bifurcation structure in the (p,D) plane. Then we exam-
ine the relationship between the slow phase-locked oscillation and the proportion of
fast oscillators.

3.1. Local stability of the equilibrium point. Suppose that a single BVP os-
cillator has a unique equilibrium point for any value of Iext. If the equilibrium point
is (x̄, ȳ, z̄), then x̄ satisfies the following equation,

x̄3

3
+

(
1

a
+

1

b
− 1

)
x̄− Iext = 0. (3)

The condition for the uniqueness can be written as

1

a
+

1

b
≥ 1. (4)
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From this uniqueness of the equilibrium point of a single oscillator,

(xi, yi, zi) = (x̄, ȳ, z̄), (i = 1, · · · , N)

w = x̄,
(5)

comes the unique equilibrium point of the coupled system regardless of the value of
D. The characteristic polynomial Ψ(λ) of the Jacobian matrix at this equilibrium
point is

Ψ(λ)=det



A1 dT

. . . O
...

A1 dT

A2 dT

O
. . .

...
A2 dT

d/N · · · d/N d/N · · · d/N −D − λ


={det(A1)}Np−1 · {det(A2)}N(1−p)−1 · det(H), (6)

where

d =
(
D 0 0

)
, (7)

Ai =

1− x̄2 −D − λ −1 −1
η −aη − λ 0
ε̄i 0 −ε̄ib− λ

 , (8)

H =

A1 O dT

O A2 dT

pd (1− p)d −D − λ

 . (9)

Although the Jacobian matrix of this system at the equilibrium point is a (3N +
1)× (3N + 1) matrix, the analysis of its eigenvalues can be reduced to that of lower
dimensional matrices Ai and H [7]. From (6)–(9), it follows that the local stability
of the equilibrium point depends on p, ε̄i, and D, but not on N .

At first, we consider the stability of det(Ai):

det(Ai) = −λ3 − (aη + bε̄i + x̄2 − 1 +D)λ2

−
{
abηε̄i + η + ε̄i + (aη + bε̄i)(x̄

2 − 1 +D)
}
λ

− ηε̄i
{
a+ b+ ab(x̄2 − 1 +D)

}
. (10)

Denoting the coefficients of λ2, λ1, and λ0 by −S1, −S2, and −S3, respectively, the
condition so that det(Ai) is stable is given by

S1 > 0 and S1S2 − S3 > 0, (11)

or

S2 > 0 and S1S2 − S3 > 0, (12)

since, from (4) we have

S3 = abηε̄i

(
1

a
+

1

b
− 1 + x̄2 +D

)
> 0. (13)

When the coupling strength is sufficiently large, S1 > 0 and S2 > 0 hold. Letting
f(D) := S1S2 − S3, f(D) is a quadratic polynomial in D. Since the values of all
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parameters except Iext are positive,

f(D) = (aη + bε̄i)D
2(1 +O(1/D)) > 0. (14)

Thus det(Ai) is stable for D � 1. On the other hand, if det(Ai) is unstable at
D = 0, it is also unstable for D � 1.

Now we consider the solution of f(D) = 0. Calculating the discriminant ∆ of
f(D), we obtain

∆ = η2(a2η − 1)2 + 2ηε̄i(a
2η + 1) +O(ε̄2i ) > 0. (15)

Therefore, f(D) = 0 has two distinct real solutions and we define them as D− and
D+ (D− < D+).

Solving S1 > 0, S2 > 0, and f(D) > 0 gives

D > D1 := −{aη + bε̄i + x̄2 − 1}, (16)

D > D2 := −abηε̄i + η + ε̄i + (aη + bε̄i)(x̄
2 − 1)

aη + bε̄i
, (17)

D < D−, D+ < D. (18)

From (11), (12), (16)–(18), the condition so that det(Ai) is stable becomes

D > D+ :=
−[η{a2η + 1 + 2a(x̄2 − 1)}+O(ε̄i)] +

√
∆

2aη +O(ε̄i)
,

because D− < D1 (D2) < D+. Furthermore, in the singular limit (ε̄i = 0), this
condition becomes

1. The case of 1− a2η > 0.

D > −{1 + a(x̄2 − 1)}
a

. (19)

2. The case of 1− a2η < 0.

D > −(aη + x̄2 − 1). (20)

Next, let us consider the stability of det(H). Because the matrix is 7 × 7, it is
difficult to analytically calculate the region where det(H) is stable. In the following,
the stability of det(H) is numerically analyzed.

Figure 3 illustrates the region of (p,D) where the equilibrium point is stable. The
curves l1, l2, and l3 denote the boundaries of the region where det(A1), det(A2), and
det(H) are stable respectively. det(A1) (det(A2)) is stable above l1 (l2) and unstable
below. det(H) is stable inside l3 and unstable outside. The region where det(Ai)
is stable includes the region where det(H) is stable, thus the region where the
equilibrium point is stable depends on det(H), but not on det(Ai). The equilibrium
point is stabilized not through the saddle-node bifurcation but through the Hopf
bifurcation, because it is unique for any value of Iext by the assumption (4). The
(bold) solid curve l3 is the Hopf bifurcation curve of the system (1) that denotes
the loci of the Hopf bifurcation.

Next, we consider the relationship between the slow phase-locked oscillation and
the local stability of the equilibrium point. In Fig. 3, the maximum values of D
where a slow phase-locked oscillation occurs are plotted as a cross for each value of
p when N = 25 (N = 10 is too small to analyze the effect of p, thus we increase
the number N of the oscillators from 10 to 25). When p > 0.5, a slow synchronized
oscillation occurs near the Hopf bifurcation. Even in a system that consists only
of fast oscillators (p = 1), the system oscillates very slowly near D = 0.2 and the
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Figure 3. Global bifurcation structure in the (p,D) plane. The
curves l1, l2, and l3 denote the boundaries of the region where
det(A1), det(A2), and det(H) are stable respectively. Bold solid
curve is the Hopf bifurcation curve of the system (1). Broken curve
is the period-doubling bifurcation curve of a reduced system (23).
Cross denotes the maximum values of D for each value of p when
N = 25 where slow phase-locked oscillation occurs.

value of the ISI becomes extraordinarily large (Fig. 4(a)). On the other hand, when
p < 0.22, the equilibrium point is unstable, and slow synchronization does not
appear even if the coupling strength is changed.

When 0.38 < p < 0.5, slow synchronization does not occur though the Hopf bi-
furcation occurs in the globally coupled system. We consider a system that consists
of four fast oscillators and six slow oscillators (p = 0.4). Figure 4(b) shows the ISIs
as a function of coupling strength D. If the value of D increases, the population
of the oscillators synchronizes or exhibits phase-locked oscillations even though the
change in the ISI is negligible. Further increasing the D value completely inhibits
the firings.

When 0.22 < p < 0.38, slow firings occur, but not near the Hopf bifurcation. In
particular, when 0.22 < p < 0.27, the equilibrium point is unstable, and the Hopf
bifurcation does not occur even if the D value is changed. In a system that consists
of three fast oscillators and seven slow oscillators (p = 0.3), a slow synchronized
oscillation appears when D is near 0.366 (Figs. 4(c), 4(d)). The range where the ISI
value exceeds 103 is 0.36596 < D < 0.36603. In contrast, when p = 0.9 (Fig. 1(a)),
the range is 0.202 < D < 0.2055. Thus, for 0.22 < p < 0.38, a slow phase-locked
oscillation occurs in a narrow range compared to p > 0.5.

3.2. The global bifurcation structure. To analyze the detailed dynamics of
globally coupled neuronal oscillators, we examine their bifurcation structure. Here
we assume that the system (1) perfectly synchronizes among the same kind of
oscillators in the sense that

(xi, yi, zi) = (X1, Y1, Z1) (i = 1, · · · ,M), (21)

(xi, yi, zi) = (X2, Y2, Z2) (i = M + 1, · · · , N). (22)
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Figure 4. Inter-spike intervals (ISIs) vs. coupling strength D. (a)
System consists of ten fast oscillators (p = 1). (b) System consists
of four fast oscillators and six slow oscillators (p = 0.4). (c) System
consists of three fast oscillators and seven slow oscillators (p = 0.3).
(d) Magnification of (c). Scale of the vertical axis is logarithmic.

If w = W , equation (1) can be reduced to

dX1

dt
= X1 −

X1
3

3
− Y1 − Z1 + Iext +D(W −X1), (23a)

dY1
dt

= η(X1 − aY1), (23b)

dZ1

dt
= ε̄1(X1 − bZ1), (23c)

dX2

dt
= X2 −

X2
3

3
− Y2 − Z2 + Iext +D(W −X2), (23d)

dY2
dt

= η(X2 − aY2), (23e)

dZ2

dt
= ε̄2(X2 − bZ2), (23f)

dW

dt
= D{pX1 + (1− p)X2 −W}, (23g)

where all parameters are the same as those in (1). This assumption is satisfied when
a slow synchronized oscillation appears. The bifurcation diagram of the reduced
model (23) is sufficient for our purpose.

Figure 5 shows the bifurcation diagram of the reduced model (23) as a function
of D where the value of X1 in the steady state is plotted for each value of D.
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Figure 5. One-parameter bifurcation diagram of the reduced
model (23) as a function of D. Thin solid and broken curves repre-
sent the stable and unstable equilibrium points, respectively. Bold
solid and broken curves represent the maximum values of X1 of
the stable and unstable periodic orbits, respectively. HB, PD, and
DC (with a number) denote the Hopf bifurcation, period-doubling
bifurcation, and double-cycle bifurcation (or saddle-node bifurca-
tion of periodic orbits), respectively. (a) p = 0.9. (b) p = 0.4. (c)
p = 0.3. (d) p = 0.25.

These diagrams are obtained using the bifurcation analysis software AUTO [4]. The
thin solid and broken curves represent the stable and unstable equilibrium points,
respectively. The bold solid and broken curves represent the maximum values of
X1 of the stable and unstable periodic orbits, respectively. HB, PD, and DC (with
a number) denote the Hopf bifurcation, period-doubling bifurcation, and double-
cycle bifurcation (or saddle-node bifurcation of periodic orbits), respectively. When
p = 0.9 (Fig. 5(a)), a stable periodic orbit is born at the Hopf bifurcation and
becomes unstable through the period-doubling bifurcation. Slow synchronization
occurs on the left side of PD1. The absence of such simple stable solutions as the
equilibrium point or the simple periodic orbit shown in the bifurcation diagram is
at least necessary for the occurrence of slow synchronization.

When p = 0.4 (Fig. 5(b)), a stable periodic orbit is generated from the Hopf
bifurcation. Unlike the case of p = 0.9, a double-cycle bifurcation occurs twice.
In the range between DC1 and DC2, the system possesses two coexisting stable
periodic orbits (one is the periodic orbits with small amplitude between DC1 and
HB1, and the other is the periodic orbit with large amplitude on the left side of DC2)
at the same parameter value and is bistable. Slow synchronization does not occur
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in this case. When p = 0.3 (Fig. 5(c)), the global bifurcation structure is similar
to Fig. 5(b), but the stable periodic orbit becomes unstable through the period-
doubling bifurcation. Slow synchronization appears in the range between PD2 and
DC2. When p = 0.25 (Fig. 5(d)), the stability of the equilibrium point does not
change (data not shown). However, the bifurcation structure of the periodic orbit is
similar to Fig. 5(c). Thus, slow firings appear in the range between PD2 and DC2.

The above analyses indicate that the period-doubling bifurcation is important
to generate a slow synchronization for 0.22 < p < 0.38, although we could not
clarify how the period-doubling bifurcations affect the slow synchronization. Fig-
ure 3 shows the bifurcation curve of PD2 in the (p,D) plane, which is obtained by
AUTO. A slow synchronized oscillation occurs near the period-doubling bifurcation
for 0.22 < p < 0.38.

4. Effect of noise on the synchronization and variability of the interspike
intervals. There have been much work regarding how noise affects the period or
frequency of intrinsically oscillating neurobiological systems. The phase oscillator
is often employed for examining the noisy nonlinear system analytically [2]. Noise-
induced changes in the rhythmic firing activity of the simplest version of a type I
neuron or single Hodgkin-Huxley neurons have also been investigated [11, 12, 18].
In particular, the single three-dimensional BVP neuron model indicates various
phenomena such as noise-induced acceleration and deceleration [5]. Noise-induced
acceleration (deceleration) is the phenomenon that by the introduction of noise neu-
rons come to fire rapidly (slowly) and the ISIs become short (long). In this section,
we consider the effect of noise on the synchronization in a population of neuronal
oscillators globally coupled through a common buffer and study the variability of
the ISIs.

The coefficient of variation (CV) for a random variable T is defined as

CV :=

√
Var[T ]

E[T ]
, (24)

where E[T ] and Var[T ] are the expectation (mean) and the variance, respectively.
CV is dimensionless, and is often used as a measure of the spike train irregularity.
If a spike train is regular, CV ≈ 0. For a completely irregular spike train like the
Poisson process, CV = 1.

In the following, in order to examine the effects of the internal noise, i.e., the
fluctuation of ion channels in the membrane of neurons, let the membrane potential
xi be corrupted by noise, as is shown in (1). We consider the case where the
system consists of nine fast oscillators and one slow oscillator (p = 0.9) and set
D = 0.205. Figure 6 shows the effect of noise on the slow synchronized firings
in the system. Figures 6(a) and 6(b) plot the mean and the CV of the ISIs as
a function of noise intensity σ, respectively. Even in the noiseless case (σ = 0),
the value of the ISI is very large and slow synchronization occurs (Fig. 6(c)). As
the noise intensity increases, the mean ISI increases drastically and the CV also
increases near σ = 0.004 (Fig. 6(d)). A very small noise decelerates the firing rate
of globally coupled neuronal oscillators (noise-induced deceleration). Increasing the
noise intensity decreases the mean ISI and reduces the variability (Fig. 6(e)). It
should be noted that the noise intensity is not so strong. (See that the waveforms
in Fig. 6(f) is not so corrupted by noise.) Further increasing the noise intensity
accelerates the firing rate (noise-induced acceleration). The presence of noise leads
to non-monotonic (average) period or frequency as the noise intensity increases.
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Figure 6. Effect of noise on the slow phase-locked oscillation. Sys-
tem consists of nine fast oscillators and one slow oscillator (p = 0.9).
D = 0.205. (a) Mean ISI vs. noise intensity σ. (b) CV vs. noise
intensity σ. (c), (d), (e) Waveforms of xi and w when σ = 0,
σ = 0.004, and σ = 0.01, respectively. (f) Magnification of (e).
Each panel denotes the waveforms of x1, x2, · · · , x10, and w from
the bottom to the top.

These phenomena can be observed in the single BVP oscillator and its dynamics in
the presence of noise is quite similar to the coupled system. More detailed analyses
on the coupled system in the presence of noise are necessary to clarify whether
noise-induced phenomena peculiar to the coupled system exist or not.

5. Conclusion. A population of extended BVP or FHN oscillators globally coupled
through a common buffer (mean field) exhibits interesting phenomena, such as
a very slow synchronization and the death of all oscillations. To determine the
detailed dynamics of a globally coupled system, we examined the global bifurcation
structure. The dynamics can be classified into four groups by the proportion of fast
oscillators (Fig. 3).
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• p > 0.5: Slow synchronization occurs near the Hopf bifurcation of the globally
coupled system (Figs. 1 and 5(a)). It appears even in a system with only fast
oscillators (Fig. 4(a)).

• 0.38 < p < 0.5: Although slow synchronization does not occur, the Hopf
bifurcation does (Figs. 4(b) and 5(b)).

• 0.22 < p < 0.38: Slow synchronization occurs not near the Hopf bifurcation
but near the period-doubling bifurcation (Figs. 4(c), 4(d), 5(c), and 5(d)).

• 0 < p < 0.22: Slow synchronization does not occur, and the equilibrium point
is unstable even if the coupling strength is changed (Fig. 2).

Slow synchronization appears when p > 0.5 and 0.22 < p < 0.38. However, the
generation mechanisms differ because the bifurcation structures are different and for
0.22 < p < 0.38 the range where slow firings can occur is much narrower compared
to p > 0.5. The slow phase-locked oscillation is an unexpected phenomenon because
the period of periodic orbits generated from the Hopf bifurcation is usually small.
This suggests the existence of a global bifurcation such as the homoclinic bifurcation
(note that the equilibrium point of the coupled system is unique for all values of
parameters, thus the homoclinic orbit is not the usual one of a saddle equilibrium
point, but maybe the Shilnikov-type one or the homoclinic orbit to a saddle-type
periodic orbit), or some kind of period-doubling cascade. In particular, when 0.22 <
p < 0.38, it seems that the period-doubling cascade leads to the extraordinarily
slow oscillation because it occurs near the period-doubling bifurcation. However,
the detailed mechanism is not clear and this is a future subject.

In addition, we examined the effect of noise on the synchronization and the vari-
ability of the interspike intervals. Similar to the single extended BVP oscillator,
peculiar phenomena such as noise-induced acceleration and deceleration are ob-
served. This indicates that a very small noise may greatly influence the biological
rhythm and seems related to stochastic resonance in the period. However, it seems
difficult to clarify this mechanism even for the reduced model (23), and thus more
elaborated studies are necessary.
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