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Abstract. Leaky integrate-and-fire neuronal models with reversal potentials

have a number of different diffusion approximations, each depending on the
form of the amplitudes of the postsynaptic potentials. Probability distributions

of the first-passage times of the membrane potential in the original model and

its diffusion approximations are numerically compared in order to find which
of the approximations is the most suitable one. The properties of the random

amplitudes of postsynaptic potentials are discussed. It is shown on a simple

example that the quality of the approximation depends directly on them.

1. Introduction. Detailed conductance-based Hodgkin-Huxley neuron models
([5]) can reproduce electrophysiological measurements to a high degree of accuracy
(for a review, see [1, 6]). Unfortunately, because of their intrinsic complexity, these
models are difficult to analyze and are computationally expensive in numerical im-
plementations. For this reason, simple phenomenological spiking neuron models, for
example, the integrate-and-fire model with reversal potentials introduced by Tuck-
well in [22] are highly popular. This model originates from Stein’s model ([21]),
for which the synaptic transmission is state-independent and in the current form it
reflects the well known fact that the changes in the membrane depolarization due
to incoming action potentials are state-dependent (see e.g. [19]). For biological
reasoning about this type of models see e.g. [3, 7, 16, 18, 22].

The integrate-and-fire model with reversal potentials has discontinuous trajecto-
ries, therefore its mathematical treatment is complicated and the analytical results
are exceptionally rare (see [20, 25]). Thus the diffusion approximation scheme has
been used by Hanson and Tuckwell in [4]. The diffusion models are somewhat more
tractable than the discontinuous process because the discontinuities are smoothed
out. The first approach to the diffusion approximation used in neuronal model-
ing employs analysis of weak and strong convergence of stochastic processes (e.g.
[9, 10]). The second one deals with transition probability densities and infinitesi-
mal moments of stochastic processes (e.g. [14, 23]). The diffusion approximation is
commonly constructed under the assumption of suitably shrinking the magnitude
of the postsynaptic potentials (PSPs) and time intervals between their arrivals (e.g.
[9, 10, 12, 23]). When constructing such a sequence, the discontinuous models have
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the first two infinitesimal moments converging to those of the diffusion model and
infinitesimal moments of higher orders tending to zero (see e.g. [14, 23]). We show
on a simple example that for the integrate-and-fire model with reversal potentials
the feature of vanishing infinitesimal moments of higher orders can be accomplished
only under violation of some natural physical assumptions about the PSP ampli-
tudes.

One of the features of the diffusion model proposed in [4] is that without an
additional boundary condition the membrane potential in the model can fluctuate
without limit. Lansky and Lanska proposed in [10] other diffusion variants in which
the membrane depolarization is limited without imposing any additional conditions.
The aim of this paper is to compare the proposed diffusion models with the original
discontinuous model. As the quality of the stochastic neuronal model is rated by
its power to reproduce first-passage-time (FPT) distributions comparable with the
experimental data, we compare probability distributions of numerically obtained
FPTs.

2. Models and methods. In the modified Stein’s neuronal model in which the
effect of the reversal potentials is considered, the membrane potential, U(t), given
in units of millivolts ([mV]) is described by a one-dimensional stochastic process
which can be expressed in the form

dU(t) = −1

τ
(U(t)− UR) dt+

+AE (UE − U(t)) dN+(t) +AI (UI − U(t)) dN−(t), U(0) = U0, (1)

where τ > 0 is the membrane time constant ([ms]) reflecting decay of the membrane
potential U(t) to the resting (equilibrium) potential UR of the leakage conductance,
UE (UI) is the corresponding excitatory (inhibitory) reversal potential, UI < UR <
UE ([mV]). Furthermore, AE > 0 and AI > 0 are dimensionless random PSP
amplitudes scaling the jump sizes of two mutually independent Poisson processes
N+(t) and N−(t) with intensities λE and λI . Model (1) was discussed in detail
from a theoretical as well as a neurophysiological point of view (see [22, 25]).

The stochastic differential equation (1) describes the membrane potential of a
neuron until it reaches a threshold S > U0. After reaching the threshold the neuron
fires and the membrane potential is reset back to U0 and subsequent inputs may
lead to another discharge. The time course of the action potential is disregarded
in model (1) and only the firing time is recorded. The interspike interval thus
corresponds to the FPT, TS > 0, given by the relationship

TS = inf {t > 0 : U(t) ≥ S} , (2)

where TS is a random variable defined as the time interval from the moment when
the process is reset to its initial value to the moment of the first threshold crossing.
The independent realizations of TS are identified with time intervals between action
potential generations.

Infinitesimal moments of (1) can be calculated,

M1(u) = lim
∆t→0

E (∆U(t)|U(t) = u) /(∆t)

= −1

τ
(u− UR) + λEE(AE) (UE − u) + λIE(AI) (UI − u) (3)
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and

Mk(u) = lim
∆t→0

E
(
∆U(t)k|U(t) = u

)
/(∆t)

= λEE(Ak
E) (UE − u)

k
+ λIE(Ak

I ) (UI − u)
k
, (4)

where ∆U(t) = U(t+ ∆t)− U(t) and k = 2, 3, . . ..
In order to keep the membrane potential U(t) given by (1) in interval [UI , UE ]

the amplitudes of inhibitory and excitatory potentials AE and AI must satisfy,

P (AE ∈ (0, 1)) = P (AI ∈ (0, 1)) = 1, (5)

however, condition (5) can often not be satisfied due to other requirements imposed
on the model (see [10]).

2.1. Diffusion models. In diffusion models the membrane potential is described
by stochastic diffusion process V (t) given by the stochastic differential equation

dV (t) = µ (V (t)) dt+ σ (V (t)) dW (t), V (0) = V0, (6)

where µ and σ are real-valued functions of their arguments and W (t) is a standard
Wiener process. The infinitesimal moments of process (6) are

M1(v) = µ(v), M2(v) = σ2(v), (7)

and Mk(v) = 0 for k > 2. The simplest way to obtain the diffusion approximation,
V (t), of the discontinuous stochastic model U(t), is to let V (t) have the same
first two infinitesimal moments as U(t). In case of a sequence of discontinuous
models, Un(t), the infinitesimal moments should tend to those of the diffusion model.
Especially, the infinitesimal moments of order higher than two should tend to zero.

Investigation of infinitesimal moments, Mk(u), of higher orders is greatly im-
proved by the Pawula theorem (see e.g. [17]). Pawula proved that if the infini-
tesimal moments Mk(u) exists for all k, vanishing of any even order infinitesimal
moment implies Mk(u) = 0 for k ≥ 3. It means that whenever the process con-
tains a finite number of nonzero infinitesimal moments, its number is always two
(see [14]). Simultaneously it implies that one only needs to find a single nonzero
infinitesimal moment of even order greater than two to prove that the model U(t)
has infinite number of nonzero infinitesimal moments.

2.1.1. Diffusion approximation of neuronal models. The diffusion approximation of
neuronal models is commonly constructed under the assumption that the intensities
of the Poisson processes N+(t) and N−(t) are high, while PSP amplitudes get very
small (see e.g. [9, 10, 23]). Therefore, we will work with sequence of models Un(t)
specified by (1) with PSP amplitudes AE(n), resp. AI(n), and intensities λE(n) > 0,
resp. λI(n) > 0, where n = 1, 2, . . .. We assume

EAE(n) = aE(n)→ 0, EA2
E(n) = σ2

E(n)→ 0, (8)

EAI(n) = aI(n)→ 0, EA2
I(n) = σ2

I (n)→ 0, (9)

and
λE(n)→∞, λI(n)→∞, (10)

for n→∞ in such a way that the sequences of the first two infinitesimal moments,
{M1(u)}n, resp. {M2(u)}n converge to those of the diffusion,

{M1(u)}n → µ(u), {M2(u)}n → σ2(u) > 0, (11)

where |µ(u)| < ∞. According to (5), means of PSP amplitudes must satisfy
0 < aE(n) < 1 and 0 < aI(n) < 1. Furthermore, from the Jensen’s inequality,
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the second moments must satisfy inequalities σ2
E(n) ≥ a2

E(n) and σ2
I (n) ≥ a2

I(n) for
each n.

A sequence of neuronal models, Un(t), tends to a diffusion model V (t) given by
(6) if {Mk(u)}n → 0 for each k ≥ 3 and n→∞. Whether this condition is satisfied
depends on the probability distribution of the random amplitudes AE(n) and AI(n)
and will be studied in Section 3.1.

2.1.2. Specific diffusion models. The sequence of discontinuous models, Un(t), spec-
ified by (1) and introduced in the previous Section can be modified in order to
achieve different diffusion models in its limit by considering various modifications
of stochastic PSPs, see [10]. In these models the PSPs commonly vanish when the
membrane potential approaches the excitatory or inhibitory reversal potential. In
this Section we briefly recall four such modifications and corresponding diffusion
models proposed in [4, 10]. The first infinitesimal moment is the same for all of
them,

µ(v) = −(v − U0)/τ + λE(n)aE(n) (UE − v) + λI(n)aI(n) (UI − v) , (12)

but they differ in the form of the second infinitesimal moment.

1. In the basic model, the sequence of neuronal models is obtained directly from
(1) and has form

dUn(t) = −1

τ
(Un(t)− UR) dt+AE(n) (UE − Un(t)) dN+

n (t) +

+AI(n) (UI − Un(t)) dN−n (t), (13)

where AE(n) and AI(n) are two sequences of random variables describing PSP
amplitudes and satisfying (8) and (9). The corresponding diffusion model is
specified by the infinitesimal variance

σ2(v) = λE(n)σ2
E(n) (UE − v)

2
+ λI(n)σ2

I (n) (UI − v)
2
. (14)

2. Modification of model (13) was introduced in [10],

dUn(t) =− 1

τ
(Un(t)− UR) dt+

+
[
aE(n) (UE − Un(t)) +A′E,n

√
(UE − Un(t)) (Un(t)− UI)

]
dN+

n (t)+

+
[
aI(n) (UI − Un(t)) +A′I,n

√
(UE − Un(t)) (Un(t)− UI)

]
dN−n (t),

(15)

where A′E,n = AE(n) − aE(n), A′I,n = AI(n) − aI(n) and thus EA′E,n =

EA′I,n = 0. The difference between (13) and (15) is that in the latter the PSPs
have separated random parts which decrease near both boundaries. The diffu-
sion approximation of model (15) is determined by the infinitesimal variance

σ2(v) =
(
λE(n)σ2

E(n) + λI(n)σ2
I (n)

)
(UE − v) (v − UI) . (16)

3. Another modification restricts excitation to its deterministic part only,

dUn(t) = −1

τ
(Un(t)− UR) dt+ aE(n) (UE − Un(t)) dN+

n (t) +

+AI(n) (UI − Un(t)) dN−n (t), (17)
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where all parameters are the same as in (13). In the same way as in the
previous cases we derive the diffusion approximation with second infinitesimal
moment

σ2(v) = λI(n)σ2
I (n) (v − UI)

2
. (18)

4. The last model we show is a combination of (15) and (17),

dUn(t) = −1

τ
(Un(t)− UR) dt+ aE(n) (UE − Un(t)) dN+

n (t)

+
[
aI(n) (UI − Un(t)) +A′I,n

√
(Un(t)− UI)

]
dN−n (t). (19)

In this model the excitation is again restricted to its deterministic part and
the random part of inhibition decreases near the inhibitory reversal potential.
The corresponding diffusion model (6) is specified by

σ2(v) = λI(n)σ2
I (n) (v − UI) (20)

and commonly known as the Feller model.

3. Results.

3.1. PSP amplitudes. It was shown that in the case of Stein’s model with state
independent PSPs the corresponding sequence of discontinuous models tends to
an Ornstein-Uhlenbeck process even for deterministic PSPs, see e.g. [9, 15, 23].
In the integrate-and-fire model with reversal potentials (1) the situation is more
complex and random PSP amplitudes are essential (see [10]). We show that in this
case the sequence Un(t) specified by (1) may not tend to diffusion (6) in terms
of infinitesimal moments of orders higher than two. We investigate properties of
AE(n) only, extension to AI(n) is analogous. From now on we assume that aE(n) =
O(1/ns), σ2

E(n) = O(1/ns) and λE(n) = O(ns) such that (11) is satisfied and s > 0
to ensure convergence of the first two moments of AE(n) to zero.

The simplest and natural way how to introduce noise in excitatory PSPs is to
assume that AE(n) follows a Gaussian probability distribution,

AE(n) ∼ N
(
aE(n), σ2

E(n)− a2
E(n)

)
, (21)

where the choice of coefficients ensures that AE(n) satisfy requirements (8). If we
construct AI(n) analogously it can be easily verified that sequence of infinitesimal
moments {Mk(u)}n specified by (4) tends to zero with increasing n for each k ≥ 3
and therefore convergence to diffusion (6) is confirmed, see Appendix A. However,
it holds

P (AE(n) ≤ 0) = Φ

(
− aE(n)√

σ2
E(n)− a2

E(n)

)
−→ 1

2
(22)

for n → ∞, where Φ(.) is the cumulative distribution function of the standardized
Gaussian distribution. It means that for n large the random variable AE(n), which
should be strictly positive from a physical point of view, takes negative values with
probability approaching 1/2.

By taking probability distributions of PSP amplitudes defined on the positive
real axis, for example Beta or Gamma, and satisfying requirements (8) and (9),
the infinitesimal moments {Mk(u)}n do not tend to zero with increasing n for each
k ≥ 3, see Appendix A. To verify the existence of a positive probability distribution
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that allows convergence of sequence Un(t) to a diffusion process we focus on a simple
discrete probability distribution. Let us assume that

P (AE(n) = aE(n) + ε1(n)) = p(n), P (AE(n) = aE(n)− ε2(n)) = r(n), (23)

where p(n) ≥ 0 and r(n) ≥ 0 are probabilities that AE(n) take one of the two
possible values, p(n) + r(n) = 1, ε1(n) > 0 and ε2(n) > 0. Imposing condition (8)
on the amplitudes AE(n) defined by (23) we obtain

ε1(n) =

√
1− p(n)

p(n)
(σ2

E(n)− a2
E(n)), (24)

ε2(n) =

√
p(n)

1− p(n)
(σ2

E(n)− a2
E(n)). (25)

It can be seen that the properties of AE(n) are fully determined by the properties of
probability p(n). To achieve positive values of AE(n) we must assume ε2(n) ≤ aE(n)
which implies

p(n) ≤ a2
E(n)

σ2
E(n)

= O

(
1

ns

)
. (26)

Simultaneously, to keep AE(n) ≤ 1 it must hold ε1(n) ≤ 1− aE(n), which implies

p(n) ≥ a2
E(n)− σ2

E(n)

2aE(n)− σ2
E(n)− 1

= O

(
1

ns

)
. (27)

Thus, if we are able to construct a sequence of probabilities p(n) between boundaries
(26) and (27) then amplitudes AE(n) satisfy (5). It can be seen that for such
sequence it holds p(n) = O(1/ns).

To study the relationship between properties of AE(n) and the possibility to ap-
proximate the discontinuous model by the diffusion model we assume only positivity
of PSP amplitudes. The sequence of probabilities p(n) must therefore satisfy (26)
only and thus p(n) = O(1/nd), where d ≥ s, and r(n) = 1 − p(n) = O(1). Then,
the asymptotic properties of the fourth moment of AE(n) can be calculated,

EA4
E(n) = O

(
nd−2s

)
, (28)

see Appendix B. Inserting (28) into the definition of the sequence of the fourth
infinitesimal moments {M4(u)}n specified by (4) with k = 4, and under the as-
sumption of equal probability distributions for both excitatory and inhibitory PSP
amplitudes, we obtain

{M4(u)}n = O(nd−s), (29)

see Appendix B. The fourth infinitesimal moments (29) are not zero and it can be
seen that they cannot tend to zero with increasing n as d ≥ s. Due to the Pawula
theorem (see Section 2.1) the sequence of discontinuous models Un(t) specified by
(1) has infinite number of infinitesimal moments of orders higher than two which
do not converge to zero with increasing n. It means that the sequence Un(t) never
converges to diffusion model (6) when its PSP amplitudes are strictly positive.

However, if we allow 0 < d < s, the fourth infinitesimal moments (29) tend to
zero with increasing n and due to Pawula all infinitesimal moments of orders higher
than two tend to zero in the sequence of discontinuous models. This implies that
Un(t) specified by (1) tend to diffusion model (6) but the probability of AE(n) being
negative is approaching one,

P (AE(n) < 0) −→ 1 (30)
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Figure 1. Sample paths of the integrate-and-fire model (13) with all pa-

rameters specified in Section 3.2, λE = 8τ−1, λI = 4τ−1, and with random
PSP amplitudes (A) strictly positive, (B) allowing negative realizations. The

probability distribution of amplitudes is given by (23) and specified by (37),

resp. (38).

for n → ∞, see Appendix C. This result gives us a hint of how to construct PSP
amplitudes ensuring that the sequence of discontinuous models Un(t) is tending to
diffusion model (6) with the probability of its amplitudes being negative tending to
zero with increasing n. To achieve that we just set r(n) = O(1/nc) where 0 < c < s
and p(n) = 1− r(n) = O(1). It can be then verified that

P (AE(n) < 0) −→ 0 (31)

for n → ∞. Similarly to the previous case it can be calculated that EAE(n)4 =
O(nc−2s) and {M4(u)}n = O(nc−s). As we have set 0 < c < s, the fourth infinitesi-
mal moments tend to zero with increasing n and, according to Pawula, the sequence
Un(t) tends to diffusion model (6). Nevertheless, in this case negative realizations
of PSP amplitudes appear for n finite which implies that the discontinuous model
fluctuates across reversal potentials when close to them. If we take d = 0, resp.
c = 0 in the previous cases, the infinitesimal moments of orders higher than two
always tend to zero in the discontinuous model. However, the probability of AE(n)
being negative remains constant and positive and therefore we do not take this case
into account.

Two sample paths of Un(t) given by (13) for n = 100 are plotted in Figure
1. Parameters of the models are exactly the same in both cases and taken from
Section 3.2. The only difference is in the form of the probability distribution of PSP
amplitudes.

3.2. Numerical results. In this Section we illustrate how the properties of random
PSP amplitudes studied in the previous Section influence the rate of convergence
of the discontinuous models to their diffusion counterparts and investigate compu-
tationally if any of the diffusion models presented in Section 2.1 is more suitable to
approximate the discontinuous model (1). The quality of a diffusion model is rated
by its power to produce FPT distributions comparable with experimental data for
parameters from a physically acceptable range and we compare the probability dis-
tributions of FPTs directly. For this purpose we employ the integrated square error
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(ISE),

ISE(FU , FV ) =

∫
R

(FU (x)− FV (x))
2

dx, (32)

where FU (x), resp. FV (x) are empirical cumulative distribution functions calculated
from numerically obtained FPTs.

Combination of parameter values used in previous studies on model (1) performed
in [8, 13, 22, 25] have been applied here. We set UE = 35mV, UI = −75mV and
UR = −65mV, the initial value of all processes is set to U(0) = U0 = V (0) = −65mV
and the threshold is set to S = −55mV. The parameter of spontaneous decay was
chosen to be τ = 5.8ms. We set

aE(n) = aE/n, aI(n) = aI/n, (33)

where aE = 0.02 and aI = 0.2 which ensures that the means of the PSP amplitudes
are equal at the resting level. The second moments of PSP amplitudes are

σ2
E(n) = σ2

E/n, σ2
I (n) = σ2

I/n, (34)

where σ2
E ≥ a2

E and σ2
I ≥ a2

I are constants. Intensities of the input processes satisfy

λE(n) = λEn, λI(n) = λIn, (35)

where λE > 0 and λI > 0 are constants taken in units of τ−1 provided that their
sum does not exceed 20τ−1 in any case. Selected dependency on n implies that the
first two infinitesimal moments of the models shown in Section 2.1.2 are independent
of n.

For sake of comparison we require the second infinitesimal moment to be the
same at the resting level for all diffusion models described in Section 2 and for fixed
combination of intensities λE and λI . Thus we consider parameters σ2

E and σ2
I in

the form

σ2
E = wa2

E , σ2
I = wa2

I , (36)

where w ≥ 1 must be satisfied due to Jensen’s inequality. Parameter w is calculated
separately for each diffusion model and values λE and λI to achieve the same second
infinitesimal moment at the resting level such that w ≥ 1 is always satisfied. For
example, if λE = 8τ−1 and λI = 4τ−1 we set w = 3.625, w = 1.0662, w = 10.875
and w = 108.75 in the sequence of models (13), (15), (17) and (19) in order to
achieve M2(U0) = 30 for all of them.

The probability distribution of amplitudes AE(n) and AI(n) is always the same
and given by (23). For AE(n) probabilities p(n), resp. r(n) are taken to achieve

i) strictly positive realizations of the amplitudes,

p(n) =
a2
E

nσ2
E + 1

, r(n) = 1− p(n), (37)

ii) sequence of neuronal models tending to diffusion (6) with probability of ampli-
tudes being negative tending to zero with increasing n,

r(n) =
1

3 3
√
n
, p(n) = 1− r(n), (38)

and ε1(n) and ε2(n) are specified by (24) and (25) to ensure that AE(n) satisfy (8).
For AI(n) the probability distribution is constructed similarly. Finally, if we work
with the discontinuous model (1) its PSP amplitudes and intensities equal those of
model (13) for n = 1 under the same conditions.
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Figure 2. Average ISE between FPT cumulative distribution function es-
timated from simulated discontinuous model (13) (solid, 4), (15) (dashed, �),

(17) (dash-dotted, ◦) and (19) (dotted,?), and corresponding diffusion model.

Intensities of input processes are fixed and taken to be λE = 8/τ ≈ 1.3793ms−1

and λI = 4/τ ≈ 0.6897ms−1. Parameter w in (36) is taken to achieve

M2(U0) = 30 for each model and PSP amplitudes (A) allow negative real-

izations, (B) are strictly positive.

All the models are numerically simulated in the mathematical software Matlab.
For simulation of diffusion models we use standard method described, for example,
in [24] with time step ∆t = 10−4 ms. Empirical cumulative distribution functions
FU (x), resp. FV (x), are calculated from 1000 numerically obtained FPTs. Integral
(32) is then calculated numerically. This procedure is N = 200 times repeated and
an average, ISE, and sample standard deviation, SD, are calculated. The FPT
distributions are also compared via Kolmogorov-Smirnov test for equality of one-
dimensional cumulative distribution functions in Section 3.2.2. In this case, method
kstest2 implemented in Matlab is employed.

3.2.1. Rate of convergence. In this Section we illustrate how properties of random
PSP amplitudes studied in Section 3.1 influence rate of convergence of the sequence
of discontinuous models Un(t) to the corresponding diffusion model, both presented
in Section 2.1.2. We compare empirical FPT cumulative distribution functions via
ISE with increasing n. In Figure 2 A are shown errors between distributions when
negative realizations of PSP amplitudes are allowed in the discontinuous models.
Decreasing tendency of errors with increasing n can be seen for each sequence. In
Figure 2 B are plotted ISEs between empirical FPT cumulative distribution func-
tions in the case when PSP amplitudes are strictly positive and n is increasing.
Despite some of the models exhibit decreasing tendency of errors with increasing
n, it can be seen that the errors are still significantly larger in contrast to the case
when negative realizations of PSP amplitudes are allowed. Discontinuous models
(19) do not even reach the threshold for n > 10 and therefore the errors are not
shown.

3.2.2. Comparison of diffusion models. In this Section we compare the discontin-
uous model (1) with the diffusion models described in Section 2.1.2 in order to
identify the most suitable approximation of (1) in terms of FPTs. The average
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ISEs between the empirical FPT cumulative distribution functions with the corre-
sponding standard deviations are shown in Table 1 (negative realizations of PSP
amplitudes are allowed) and Table 2 (PSP amplitudes are strictly positive). In the
first Table it can be seen that the best results (smallest average error) are commonly
obtained for diffusion models specified by (14) followed by the model specified by
(16). However, intervals ISE ± SD often overlap for a given combination of the
input intensities, which holds for diffusion models specified by (14) and (16) and
also for the diffusion specified by (20) which commonly provides error between FPT
distributions close to the actual minimum. On the other hand, the diffusion model
specified by (18) seems not to be suitable for approximation of the discontinuous
model (1) having, with a few exceptions, always worse results than the others. If we
require strictly positive realizations of PSP amplitudes then results shown in Table
2 identify the most suitable diffusion model similarly but with errors significantly
larger than those obtained under assumption of allowed negative realizations of PSP
amplitudes.

In addition, we compared empirical cumulative distribution functions calculated
from 200 simulated FPTs via two-sided Kolmogorov-Smirnov test on significance
level α = 0.05. Percentage of success (hypothesis is not rejected) in 1000 tests is
shown in Table 3. In this Table, the simulations were performed allowing negative
realizations of PSP amplitudes in model (1). The results are in relative agreement
with those based on ISE and presented in Table 1. The best results (highest per-
centage of success) are again achieved for diffusion models specified by (14) followed
by the diffusion specified by (16). The diffusion model specified by (18) has again
the worst results. If strictly positive PSP amplitudes are required then the hypothe-
ses are almost always rejected, with a few exceptions when intensities of excitatory
postsynaptic potentials are high, and therefore the Table is not shown.

4. Discussion. Requirements (5) and (8) - (11) are imposed on the PSP ampli-
tudes in papers devoted to the diffusion approximation of the discontinuous model
(1), see e.g. [8, 10]. These requirements are physically acceptable and can be eas-
ily satisfied by taking, for example, the Beta probability distribution and therefore
they are formally correct. However, we have shown that the convergence of the dis-
continuous models to the diffusion is not possible if all these requirements are taken
into account simultaneously. Condition (5) must be violated and negative values
of PSP amplitudes must be taken into account in order to achieve the diffusion
approximation of the discontinuous model (1). This behavior is not just asymptotic
as we have seen in Section 3.2.2 and therefore the choice of probability distribution
of PSP amplitudes always influences the possibility to approximate model (1). In
this paper the simplest possible discrete probability distribution is considered, nev-
ertheless, the author believes that the diffusion approximation cannot be achieved
even for more complex discrete or continuous probability distributions defined on
the positive real axis. However, rigorous verification and further study on this topic
are needed.

Another aim of this work was to identify the most suitable diffusion approxima-
tion of the discontinuous model (1) from a FPT point of view. Similar comparisons
were already performed on both Stein’s model and the integrate-and-fire model with
reversal potentials (1) (see [2, 8, 11, 13, 22, 25]). Parameters used and discussed
in these papers were employed here. In contrast to these papers, not only the first
two FPT moments but entire cumulative distribution functions were compared.
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Table 1. Mean, ISE, and sample standard deviation, SD, of errors between

FPT distribution functions of the discontinuous model (1) and the diffusion

model (6) specified by second infinitesimal moments (14), (16), (18) and (20).
The errors are calculated for various intensities of excitation and inhibition

which are given in units of τ−1. Negative realizations of PSP amplitudes are

allowed. Minimal values in each row are indicated.

Diffusion (14) Diffusion (16) Diffusion (18) Diffusion (20)
λI λE ISE(SD) ISE(SD) ISE(SD) ISE(SD)

2 2 1.13 (0.29) 0.64 (0.20) 1.51 (0.30) 0.79 (0.22)
4 0.27 (0.09) 0.27 (0.09) 0.62 (0.13) 0.32 (0.10)
6 0.12 (0.05) 0.17 (0.06) 0.35 (0.09) 0.19 (0.05)
8 0.07 (0.03) 0.12 (0.04) 0.23 (0.05) 0.13 (0.04)
10 0.05 (0.02) 0.08 (0.03) 0.16 (0.04) 0.09 (0.03)
12 0.03 (0.02) 0.05 (0.02) 0.10 (0.02) 0.06 (0.02)
14 0.02 (0.01) 0.04 (0.01) 0.08 (0.02) 0.05 (0.02)
16 0.02 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.01)
18 0.02 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01)

4 4 0.44 (0.12) 0.25 (0.09) 0.39 (0.12) 0.27 (0.10)
6 0.20 (0.06) 0.14 (0.05) 0.25 (0.08) 0.17 (0.06)
8 0.10 (0.04) 0.10 (0.03) 0.17 (0.05) 0.10 (0.04)
10 0.06 (0.03) 0.07 (0.03) 0.13 (0.03) 0.08 (0.03)
12 0.04 (0.02) 0.05 (0.02) 0.09 (0.03) 0.06 (0.02)
14 0.03 (0.01) 0.04 (0.01) 0.08 (0.02) 0.05 (0.02)
16 0.03 (0.01) 0.04 (0.01) 0.07 (0.02) 0.05 (0.01)

6 6 0.27 (0.08) 0.14 (0.06) 0.18 (0.06) 0.16 (0.06)
8 0.16 (0.05) 0.10 (0.04) 0.15 (0.05) 0.11 (0.04)
10 0.09 (0.03) 0.07 (0.03) 0.12 (0.04) 0.08 (0.03)
12 0.06 (0.03) 0.06 (0.02) 0.09 (0.03) 0.06 (0.02)
14 0.05 (0.02) 0.04 (0.02) 0.08 (0.02) 0.05 (0.02)

8 8 0.19 (0.05) 0.09 (0.04) 0.12 (0.05) 0.10 (0.04)
10 0.14 (0.04) 0.08 (0.04) 0.11 (0.04) 0.08 (0.03)
12 0.08 (0.03) 0.06 (0.03) 0.09 (0.03) 0.07 (0.03)

10 10 0.15 (0.04) 0.07 (0.03) 0.08 (0.03) 0.08 (0.03)

Furthermore, random PSP amplitudes are used in order to achieve equal second
infinitesimal moment at the resting level for all diffusion models via modification of
variability of PSP amplitudes. Different values of second infinitesimal moments at
the resting level were applied for each combination of intensities λE and λI . One
would wish to achieve the same value of second infinitesimal moment for all the in-
tensities, however, in this case the variability of PSP amplitudes is often extremely
large if compared with the mean. Using these settings, the most suitable diffusion
model for approximation of the integrate-and-fire model with reversal potentials
(1) was not clearly identified. The best results were in general obtained for models
specified by second infinitesimal moments (14) and (16), however, the differences
were relatively small between all diffusion models except the one specified by (18)
and we cannot distinguish whether the differences were not caused by statistical
errors only. The results can also be influenced, for example, by the fact that the
inhibitory reversal potential is set closer to threshold.
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Table 2. Mean, ISE, and sample standard deviation, SD, of errors between

FPT distribution functions obtained from the discontinuous model (1) and the

diffusion model (6) specified by second infinitesimal moments (14), (16), (18)
and (20). The errors are calculated for various intensities of excitation and

inhibition which are given in units of τ−1. PSP amplitudes are strictly positive.

Minimal values in each row are indicated.

Diffusion (14) Diffusion (16) Diffusion (18) Diffusion (20)
λI λE ISE(SD) ISE(SD) ISE(SD) ISE(SD)

2 2 908.97 (30.77) 906.98 (35.10) 911.74 (34.52) 906.33 (30.79)
4 24.52 (1.33) 24.37 (1.40) 26.30 (1.34) 24.76 (1.44)
6 2.66 (0.24) 2.83 (0.25) 3.46 (0.28) 2.92 (0.28)
8 0.58 (0.08) 0.70 (0.09) 0.95 (0.09) 0.72 (0.10)
10 0.19 (0.04) 0.26 (0.04) 0.38 (0.06) 0.28 (0.05)
12 0.08 (0.02) 0.12 (0.03) 0.20 (0.03) 0.13 (0.03)
14 0.04 (0.01) 0.07 (0.02) 0.12 (0.02) 0.07 (0.02)
16 0.02 (0.01) 0.04 (0.01) 0.07 (0.01) 0.04 (0.01)
18 0.02 (0.01) 0.03 (0.01) 0.05 (0.01) 0.03 (0.01)

4 4 103.89 (4.22) 101.99 (4.12) 103.48 (4.01) 102.58 (4.49)
6 12.46 (0.76) 12.03 (0.75) 12.73 (0.71) 12.23 (0.73)
8 2.90 (0.24) 2.86 (0.22) 3.20 (0.26) 2.93 (0.21)
10 0.99 (0.11) 1.02 (0.11) 1.19 (0.12) 1.03 (0.12)
12 0.43 (0.06) 0.46 (0.06) 0.57 (0.07) 0.48 (0.06)
14 0.21 (0.04) 0.24 (0.03) 0.32 (0.04) 0.26 (0.04)
16 0.12 (0.02) 0.15 (0.03) 0.20 (0.03) 0.15 (0.03)

6 6 34.95 (1.78) 33.95 (1.57) 34.14 (1.74) 33.94 (1.56)
8 8.19 (0.45) 7.81 (0.49) 8.15 (0.50) 7.85 (0.50)
10 2.77 (0.22) 2.63 (0.22) 2.81 (0.22) 2.66 (0.20)
12 1.18 (0.11) 1.11 (0.11) 1.27 (0.12) 1.15 (0.12)
14 0.57 (0.07) 0.57 (0.07) 0.67 (0.07) 0.59 (0.06)

8 8 18.30 (0.86) 17.51 (0.96) 17.62 (0.88) 17.61 (0.81)
10 6.11 (0.37) 5.72 (0.39) 5.83 (0.35) 5.76 (0.38)
12 2.51 (0.20) 2.35 (0.19) 2.48 (0.21) 2.40 (0.19)

10 10 11.76 (0.63) 11.07 (0.64) 11.06 (0.60) 11.13 (0.60)

Appendix A.

1. If AE(n) follow the Gaussian distribution then the fourth moment satisfies

EA4
E(n) = 3σ4

E(n)− 2a4
E(n) = O(n−2s), (39)

where s > 0. If AI(n) follow the same distribution as AE(n) then inserting
them into (4) for k = 4 implies that {M4(u)}n = O(n−s). According to
the Pawula theorem (see Section 2.1) this result means that all infinitesimal
moments of Un(t) of orders higher than two tend to zero with increasing n
and therefore the sequence Un(t) tends to the diffusion (6).

2. The Beta probability distribution was proposed for PSP amplitudes e.g. in
[8] as the distribution satisfies condition (5). In this case, the fourth moment
has the form

EA4
E(n) =

4∏
i=0

α+ i

α+ β + i
, (40)
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Table 3. Percentage of non-rejected null hypotheses in 1000 two-sided
Kolmogorov-Smirnov tests on significance level α = 0.05. Each test is based

on two samples of 200 simulated FPTs of the discontinuous model (1) with PSP

amplitudes allowing negative realizations, and the diffusion model (6) specified
by second infinitesimal moments (14), (16), (18) and (20). The intensities of

excitation and inhibition given are in units of τ−1. Maximum values each in

row are indicated.

λI λE Diffusion (14) Diffusion (16) Diffusion (18) Diffusion (20)
2 2 12.33 % 39.11 % 3.89 % 26.33 %

4 43.00 % 41.44 % 5.44 % 35.00 %
6 54.89 % 38.00 % 5.33 % 31.44 %
8 54.33 % 32.00 % 3.11 % 25.00 %
10 57.44 % 31.67 % 4.11 % 26.11 %
12 61.11 % 36.56 % 6.00 % 30.11 %
14 61.22 % 33.67 % 4.33 % 26.56 %
16 57.33 % 27.89 % 3.56 % 24.67 %
18 58.00 % 24.56 % 3.44 % 24.67 %

4 4 21.22 % 46.33 % 19.67 % 41.56 %
6 34.33 % 48.22 % 18.67 % 43.11 %
8 51.00 % 54.22 % 21.56 % 46.56 %
10 57.00 % 52.78 % 18.22 % 47.56 %
12 61.11 % 54.89 % 18.89 % 45.44 %
14 61.56 % 46.78 % 14.11 % 44.56 %
16 53.00 % 32.22 % 7.22 % 30.00 %

6 6 25.67 % 52.56 % 30.22 % 45.67 %
8 34.44 % 51.44 % 22.22 % 48.89 %
10 44.22 % 52.67 % 23.11 % 50.56 %
12 54.44 % 53.78 % 25.00 % 48.00 %
14 56.89 % 54.56 % 22.56 % 48.00 %

8 8 26.78 % 57.89 % 31.56 % 50.67 %
10 29.33 % 47.33 % 27.44 % 48.11 %
12 43.11 % 54.67 % 28.33 % 51.22 %

10 10 31.67 % 57.56 % 39.44 % 53.33 %

where

α =
aE(n)(aE(n)− σ2

E(n))

σ2
E(n)− a2

E(n)
, β =

(aE(n)− σ2
E(n))(1− aE(n))

σ2
E(n)− a2

E(n)
, (41)

which gives

EA4
E(n) = O

(
1

ns

)
. (42)

If the inhibitory PSP amplitudes AI(n) have the same probability distribution
as AE(n), the fourth infinitesimal moments (4) with k = 4 satisfy {M4(u)}n =
O(1) and always remain non-zero.

3. If we require only positivity of PSP amplitudes, the Gamma probability dis-
tribution can be a good example. In this case, the fourth moment is

EA4
E(n) = k4θ4 + 6k3θ4 + 11k2θ4 + 6kθ4, (43)
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where

k =
a2
E(n)

σ2
E(n)− a2

E(n)
, θ =

σ2
E(n)− a2

E(n)

aE(n)
, (44)

which gives

EA4
E(n) = O

(
1

ns

)
. (45)

It means that under assumption of the same probability distribution of in-
hibitory and excitatory PSP amplitudes the fourth infinitesimal moments (4)
for k = 4 satisfy {M4(u)}n = O(1) and always remain non-zero.

Appendix B. The fourth moment of AE(n) satisfies

EA4
E(n) = p(n) (aE(n) + ε1(n))

4
+ r(n) (aE(n)− ε2(n))

4
, (46)

where p(n) + r(n) = 1. It holds that p(n) = O(1/nd) where d ≥ s and r(n) = O(1).

It can be calculated that ε1(n) = O(
√
nd−s) and ε2(n) = O(

√
n−d−s). We obtain

aE(n)−ε2(n) = O(1/ns) and aE(n)+ε1(n) = O(ε1(n)) = O(
√
nd−s). As p(n)ε4

1(n)
has the highest order in the sum of expanded fourth power then assuming p(n)
simple we obtain

EA4
E(n) = O

(
p(n) (aE(n) + ε1(n))

4
+O(1/n4s)

)
= O(p(n)ε1(n)4) = O

(
nd−2s

)
.

(47)
Now, if we assume AI(n) having the same distribution as AE(n), we get due to
equation λE(n) = O(λI(n)) = O(ns) that

{M4(u)}n = λE(n)EA4
E(n)(UE − u)4 + λI(n)EA4

I(n)(u− UI)4 = O(nd−s), (48)

and as d ≥ s the fourth infinitesimal moment will never tend to zero.

Appendix C. The probability distribution of AE(n) is given by (23) and p(n) =
O(1/nd) where 0 < d < s. It means that there exists n0 > 0 such that for each
n > n0 the inequality (26) does not hold. Thus aE(n) − ε2(n) < 0 for n > n0 and
as p(n)→ 0, we obtain

P (AE(n) < 0) = P (AE(n) = aE/n− ε2(n)) = r(n) = 1− p(n) −→ 1 (49)

for n→∞.
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