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Abstract. Fano factor is one of the most widely used measures of variability

of spike trains. Its standard estimator is the ratio of sample variance to sample
mean of spike counts observed in a time window and the quality of the estimator

strongly depends on the length of the window. We investigate this dependence

under the assumption that the spike train behaves as an equilibrium renewal
process. It is shown what characteristics of the spike train have large effect

on the estimator bias. Namely, the effect of refractory period is analytically

evaluated. Next, we create an approximate asymptotic formula for the mean
square error of the estimator, which can also be used to find minimum of the

error in estimation from single spike trains. The accuracy of the Fano factor

estimator is compared with the accuracy of the estimator based on the squared
coefficient of variation. All the results are illustrated for spike trains with

gamma and inverse Gaussian probability distributions of interspike intervals.

Finally, we discuss possibilities of how to select a suitable observation window
for the Fano factor estimation.

1. Introduction. One of the most important open questions in neuroscience is
how neurons code transfered information into spike trains. The basic and frequently
considered concept is rate coding [11]. It assumes that the information is coded by
the spike rate, which is mostly calculated as a spike count average. The spike rate,
however, does not fully depend on exact spike times, different spike sequences can
yield the same spike rate. So there is the possibility that there is more information
in a spike train than what can be coded using the spike rate. A natural extension
of the rate coding, which better reflects the specific spike timing, is variability
coding [20]. In that case, it is assumed that the variability in spike trains also
carries information. The question whether the variability coding is used in real
neurons or the variability is caused just by a noise without useful information is
still unanswered. However, this issue increases the importance of suitable variance
measurement and estimation.
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The spike train variability is usually examined based on one of two following
neuronal data types - a single (long) spike train or multiple (short) spike trains.
By a single spike train we understand a relatively long record of spike activity,
often spontaneous, of one neuron. On the other hand, multiple spike trains often
arise from repeated measurements (repeated trials) of the immediate reaction to
a stimulus. The reaction is usually of limited duration therefore there is the demand
on a short observation window.

There are many possibilities how to measure the variability in spike trains. Often
it is assumed that the spike trains satisfy the definition of renewal process and so
a measure of variability of continuous positive random variables, which represent
the length of interspike intervals (ISIs), can be used [14]. Such a typical and basic
measure is coefficient of variation (CV), which is the ratio of the square root of the
variance of the length of the ISIs to their mean. Alternatively, the variability of
numbers of spikes occurred in an observation window is measured. In that case,
mainly the Fano factor (FF), the ratio of the variance of the number of spikes to
the mean, is used. Although CV and FF, as defined, represent different types of
variability, they are closely related for renewal processes - with increasing length of
the observation window FF converges to CV2 [18]. Thus to measure their common
value it is possible to use CV as well as FF.

Modeling of spike trains using renewal processes assumes independent and iden-
tically distributed lengths of ISIs which certainly not always apply to real spike
trains, often the spike rate changes in time or the ISIs are correlated [10]. How-
ever, there are situations when such a description of ISIs can be appropriate. For
instance, when we observe the spike train in a short time window then, even if the
character of the spike train changes in time, the observed part can be approximately
stationary. The second situation where the spike train often seems to be well de-
scribed by a renewal process is during spontaneous activity. Moreover, it is possible
to eliminate rate changes before variability estimation using a time transformation
[18]. Let us notice that also some local measures [22, 24], which are less sensitive to
spike rate changes, and methods for extracting the firing variability and the firing
rate simultaneously [15, 23] were proposed.

Estimation of both CV and FF is not always trivial. For short spike trains
(short observation window) the probability of observation of large ISIs is reduced
and therefore the standard estimator of CV (square root of sample variance of ISIs
divided by sample mean) is biased. In this case, there is a bias also in the standard
estimator of the limit value of FF (sample variance of spike counts divided by sample
mean). It is caused by the fact that we estimate FF for infinite intervals based on
finite, short observation window. In estimation from single spike train, these issues
are usually minor, but there is another complication in FF estimation. To be able
to use the estimator, we need data in form of spike counts. They are naturally
obtained by segmentation of the spike train into intervals of the same length and
the accuracy of the estimator surely depends on this length. However, it is not clear
how to choose the most suitable one.

In this article, we explore some problematic aspects of estimation of the limit
value of FF from repeated trials and from a single spike train and show that there
are situations when the estimator of FF is more suitable for estimation of CV
(squared) than its commonly used estimator. Firstly, we describe and illustrate
the dependency of FF on the length of the observation window and investigate the
effect of refractory period on this dependence. In [25], a decrease of FF for short
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observation window caused by refractory period is shown, in [7] it is analytically
explained for a Poisson process with absolute refractory period. We show this
effect analytically also for equilibrium renewal processes with absolute or relative
refractory period. Next, an approximate asymptotic formula for the mean square
error (MSE) of the estimator is derived and its accuracy verified using simulated
spike trains. This formula can be used, among others, to approximate the MSE in
estimation from single spike trains and thus also to choose the suitable length of
intervals into which the spike train is segmented. Finally, we compare the accuracy
of CV and FF estimators based on simulated spike trains and discuss the suitable
choice of the observation window for the FF estimator. For numerical illustrations,
we use gamma and inverse Gaussian probability distributions of ISIs.

2. Theory. Neural spike trains are often described as a renewal process, where
it is assumed that the lengths of ISIs are independent and identically distributed
continuous positive random variables. We denote this random variable by T , its
probability density function (pdf) by f(t) and cumulative distribution function
(cdf) by F (t). The process can also be described as a counting process {Nt, t ≥ 0},
which represents the number of spikes occurred from time zero to a time t. For
the complete description of a spike train, it is also necessary to specify the position
of time zero. Commonly, the observation begins either at the moment of a spike
(ordinary renewal process) or in a random moment, unrelated to the spike train
(equilibrium renewal process).

The coefficient of variation (CV) and the Fano Factor (FF) are defined as

CV =

√
Var(T )

E(T )
, (1)

FF = lim
t→∞

FFt, (2)

where

FFt =
Var(Nt)

E(Nt)
, (3)

E(T ) and E(Nt) denote means of random variables T , and Nt and Var(T ) and
Var(Nt) denote their variances. While CV describes directly the variability of the
random variable T , FF aims at the variability of Nt. Since T represents only ISIs,
not the time up to the first spike, in formula (1), and since t tends to infinity in
definition (2), it is not necessary to specify the condition for selection of time zero (in
other words, the values of CV and FF do not depend on whether the corresponding
renewal process is ordinary or equilibrium).

The estimation of CV is straightforward, its standard estimator is the ratio of
the square root of the sample variance to the sample mean of ISIs, thus

ĈV =

√
s2T
T

=

√
1

n−1
∑n
i=1(Ti − 1

n

∑n
i=1 Ti)

2

1
n

∑n
i=1 Ti

, (4)

where T1, T2, . . . , Tn denote the lengths of ISIs. This estimator is biased, however,
the problem has been dealt with in [8, 14].

Estimate of FF is commonly calculated based on numbers of spikes occurred in
time intervals (in an observation window) of length t. We denote these numbers by
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N1
t , N

2
t , . . . , N

n
t . Then the usual estimator of FF is

F̂F =
s2Nt

N t

=
1

n−1
∑n
i=1(N i

t − 1
n

∑n
i=1N

i
t )

2

1
n

∑n
i=1N

i
t

. (5)

The counts N i
t , i = 1, . . . , n, are mostly obtained from n trials, but also, not so

frequently, by segmentation of a single spike train (of a length τ) into n parts (see
Figure 1). However, even if we assume that both the trials and the single spike
train correspond to the same equilibrium renewal process, these situations are not
completely equivalent from the point of view of properties of N i

t . Later, this issue
will be discussed in more detail.

Nt
1 NtNt Nt

2 3 n

t 2 3 10 (n- )tt t τ 

0 t
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n

Figure 1. Two types of neuronal data for FF estimation, n trials
(left) and segmented single spike train of length τ (right).

There is a clear discrepancy between definition (2) and estimator (5). The value
of t tends to infinity in the definition of FF, but it is finite and often relatively short
in a specific data set. Therefore, formula (5) is more likely an estimator of FFt.

The difference between FFt and FF causes, for short t, relatively strong bias of F̂F

[17]. Thus the behavior of FFt, as a function of t, highly affects the quality of F̂F.
Above all, the rate of convergence to its limit is important. Basic and well known,
[5, 13, 17, 19], properties of FFt which hold for renewal processes are

lim
t→0+

FFt = 1, (6)

lim
t→∞

FFt =
Var(T )

E(T )2
= CV2, (7)

the latter also yields the relationship

FF = CV2. (8)

Formula (6) can be understood using the fact that the probability distribution of
Nt converges, independently of the probability distribution of T , to a Bernoulli
distribution as t→ 0 (just zero or one spike can occur in [0, t]). On the other hand,
the probability distribution of Nt is normal for t → ∞ [5], which can be used to
justify formula (7).

It follows from relationships (6) and (7) that FFt goes from one to CV2 (= FF) as
t goes from zero to infinity, but the behavior of FFt between these two values is not
obvious. The simplest situation is for the exponential distribution of T (Nt is the
Poisson process), in this case FFt = 1 for all t > 0. For more complex probability
distributions of T (e.g., gamma, inverse Gaussian or log-normal) it is possible to
approximate FFt for large t, [5],

FFt ≈ CV2 +
1

t

[
E(T )

2

(
1 +

Var(T )

E2(T )

)2

− 1

3

E(T 3)

E2(T )

]
, for t→∞, (9)
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however, FFt itself cannot be exactly expressed in a closed form.
Relationship (8) is an important property of renewal processes, which may be

used in various ways. One possibility is estimation of CV2 instead of FF. However, it
is not obvious which estimator is more accurate. Later, we examine this issue using
simulated spike trains. Another way how to apply equation (8) is joint analysis
of CV2 and FF estimates, as in [18]. Using this method we can for example test
whether the spike train corresponds to a renewal process.

Let us notice that the function FFt can behave significantly different for non-
renewal processes. Mainly, it can diverge for t → ∞. In [25] there is shown a sit-
uation when FFt increases as a power-law function. One of the reasons which
can cause such a behavior is ISIs correlation. For example, for equilibrium point
processes with correlated ISIs it holds, [17],

lim
t→∞

FFt = CV2

(
1 + 2

∞∑
i=1

ξi

)
, (10)

where ξi is the linear correlation coefficient of ith order of the ISIs. Thus FF is
not in general equal to CV2, however, these situations are out of the scope of this
article.

3. Results. In this section, we present some new properties of FFt and F̂F under
the condition that Nt is an equilibrium renewal process.

3.1. Properties of FFt. Firstly, we derive a formula which can be used for nu-
merical calculation of FFt. Let us rewrite definition (3), using the formula, [5],

E(Nt) =
t

E(T )
, (11)

into the form

FFt =
E(T )

t
E(N2

t )− t

E(T )
. (12)

There is not a formula similar to equation (11) for E(N2
t ) so we use its Laplace

transform, [13],

L{E(N2
t )}(s) =

1 + f̃(s)

E(T )s2[1− f̃(s)]
, (13)

where f̃(s) is the Laplace transform of pdf f(t). Then from equations (12) and (13)
we get

FFt =
1

t
L−1

{
1 + f̃(s)

s2[1− f̃(s)]

}
(t)− t

E(T )
, (14)

where L−1 denotes the inverse Laplace transform. Formula (14) allows us to calcu-
late FFt for any t and any probability distribution of T .

Next, we will specify the behavior of FFt near zero for a certain situation.
Namely, if for pdf f(t) it holds that

f(t) ≈ at, a ≥ 0, for t→ 0+, (15)

then (see Appendix A)

lim
t→0+

dFFt
dt

= − 1

E(T )
. (16)
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Condition (15) corresponds to the concept of relative refractory period (very low
probability of short ISIs), thus this result can be formulated so that the relative
refractory period causes an initial decrease of FFt independently of the value of FF.

The presence of an absolute refractory period leads to a similar effect. Instead
of ISIs of length T we now assume ISIs of length T + r, where r > 0 represents the
length of the absolute refractory period. Then (see Appendix A)

FFt = 1− t

E(T ) + r
, for 0 < t ≤ r. (17)

Thus FFt is just a line with slope −1/(E(T ) + r) in (0, r]. Further, it follows from
equation (7) that

FF =
Var(T )

(E(T ) + r)2
, (18)

so the value of FF is lower than in the situation without a refractory period (because
the mean of ISIs is now larger and the variance does not change).

3.2. Mean square error of F̂F. A suitable and often used measure of accuracy of
an estimator is the mean square error (MSE). It includes both bias and variance so it
is useful in situations when we deal with bias-variance tradeoff. Here we present an

approximate asymptotic formula for the MSE of F̂F under the assumption that the
random variables N i

t , i = 1, . . . , n, describe independent and identical equilibrium
renewal processes.

MSE of F̂F is defined as

MSE(F̂F) = E(F̂F− FF)2 (19)

and it can be rewritten into the form

MSE(F̂F) = [E(F̂F)− FF]2 + E[F̂F− E(F̂F)]2

= Bias2(F̂F) + Var(F̂F). (20)

For large t and n it is possible to approximate MSE(F̂F) using formula (see Appen-
dix B)

MSE(F̂F) ≈
[

1

t
E(T )G(T )

]2
+

E2(T )

t2

[
2

n− 1
+

E2(T )

nt2

(
G(T ) +

FF

E(T )
t

)]
·
[
G(T ) +

FF

E(T )
t

]2
, for t→∞, n→∞, (21)

where

G(T ) =
1

2
(1 + FF)2 − 1

3

E(T 3)

E3(T )
. (22)

The first summand in formula (21) represents the squared bias and the second one

corresponds to the variance of MSE(F̂F).
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4. Examples. In this section we aim to illustrate properties of FFt and F̂F in some
specific situations by using numerical calculations and simulations. As probability
distributions of T , we use gamma and inverse Gaussian (IG) distributions. They
are probably the most widely used distributions for modeling of lengths of ISIs
[8, 17, 19].

The pdf of the gamma distribution is

fG(t;λ, k) =
λktk−1e−λt

Γ(k)
, t ≥ 0, λ > 0, k > 0, (23)

where Γ denotes the Gamma function, and the pdf of the IG distribution is

fI(t;µ, ν) =

√
ν

2πt3
exp

{
−ν(t− µ)2

2µ2t

}
, t ≥ 0, µ > 0, ν > 0. (24)

An advantage of these pdfs is that it is possible to calculate analytically their Laplace
transforms, which are necessary for application of formula (14). Note that the pdf
(23) with k = 1 is the exponential distribution and the corresponding counting
process Nt is a Poisson process.

Both of these probability distributions (gamma and IG) have two parameters,
and their values can be uniquely related to E(T ) and FF. It holds that

λ =
1

E(T )FF
, k =

1

FF
(25)

for the gamma distribution and

µ = E(T ), ν =
E(T )

FF
(26)

for the IG distribution.

4.1. Behavior of FFt. Here we illustrate the dependency of FFt on t, calculating
(approximating) their values using formula (14).

In Fig. 2, there are displayed the graphs of FFt and corresponding probability
densities for various values of FF. We see that FFt goes from one to CV2 and also its
initial behavior corresponds to relationship (16), FFt starts with a decrease at zero
if pdf of T satisfies condition (15). This causes relatively large difference between
FFt curves for gamma and IG probability distributions even with the same FF and
E(T ) - for IG probability distribution, they can be nonmonotonic and, for FF > 1,
the convergence to FF is evidently slower than for gamma distribution. It is caused
by the presence of relative refractory period for all values of FF. On the other hand,
there is no refractory period for gamma distribution with FF > 1 so FFt is, in this
case, always monotonic.

Next, we illustrate the effect of the absolute refractory period. We calculate FFt
for the same situations as in Fig. 2 with the difference that we add a refractory
period of length r = 0.1 to T (see Fig. 3). The graph of FFt is now initially a line,
which slope does not depend on the value of FF. Evident consequence is also slower
convergence of FFt to its limit value for FF > 1.

Finally, in Fig. 4, there is shown the accuracy of the approximation (9). We see
that it is always better for low values of FF and, if FF > 1, it is also substantially
better for gamma probability distribution of T than for IG distribution.



112 KAMIL RAJDL AND PETR LANSKY

0 1 2 3 4 5 6

1

0.5

0.25

2

4

FFt, Gamma

t

F
F
t

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
Gamma pdf

t

f
(t
)

0 1 2 3 4 5 6

1

0.25

0.5

2

4

FFt, IG

t

F
F
t

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
IG pdf

t

f
(t
)

FF = 4

FF = 2

FF = 1 FF = 0.5
FF = 0.25

FF = 4

FF = 2

FF = 1
FF = 0.5 FF = 0.25

Figure 2. Left: Graphs of FFt for gamma and IG probability
distributions of T . Mean of T is always one, values of FF are
0.25, 0.5, 1, 2, 4 (from bottom to top). FFt-axis is logarithmically
scaled. Values of FFt are calculated numerically using formula (14).
Right: Probability density functions of gamma and IG distributions
corresponding to the curves on the left.

4.2. Numerical experiments. There are some questions we are not able to an-
swer using the analytical results. For example, we do not know the accuracy of
asymptotic the approximation (21) or which estimator, (4) or (5), is more suitable
to estimate FF. Therefore, these and some other issues are examined here using
simulated spike trains.

For measuring the error of the estimators we use sample mean square error which
is given by

M̂SE(θ̂) =
1

m

m∑
i=1

(θ̂i − θ)2, (27)

where θ̂ is an estimator of θ and θ̂1, θ̂2, . . . , θ̂m are calculated realizations of θ̂.
Definition (27) is a sample analogy (estimator) of formula (19), if it is not confusing
we refer to both as MSE only. Their relative square roots in percents are shown in
figures.

4.2.1. MSE(F̂F) in estimation from independent trials. Here we wish to clarify the
question for what t and n it is possible to use relationship (21) as a reliable approx-

imation of MSE(F̂F) in estimation from repeated trials. To that end, we calculate
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Figure 3. Graphs of FFt for gamma (left) and IG (right) prob-
ability distributions of T with absolute refractory period. Mean
of T is always 1.1 (of which 0.1 is the absolute refractory period),
values of FF are 0.25, 0.5, 1, 2, 4 (from bottom to top). FFt-axis
is logarithmically scaled. Values of FFt are calculated numerically
using formula (14).
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Figure 4. Graphs of FFt (dash-dotted line) and their approxima-
tions calculated using formula (9) (solid line) for gamma (left) and
IG (right) probability distributions of T . Mean of T is always one,
values of FF are 0.25, 0.5, 1, 2, 4 (from bottom to top). FFt-axis
is logarithmically scaled.

MSE based on estimates from simulated spike trains and compare it with values of
MSE obtained using approximation (21). This comparison is shown in Fig. 5. We
see that the differences between approximated and simulated values of MSE are in
considered situations relatively small. It seems that if FF < 2 then formula (21) is
a sufficiently accurate approximation of MSE for t about four means of ISIs and n
about 25. Moreover, the accuracy quickly improves with decreasing value of FF.

4.2.2. MSE(F̂F) in estimation from single spike train. In FF estimation from a sin-
gle spike train it is necessary to segment the spike train into n parts (intervals) of
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Figure 5. Relative
√

MSE of F̂F in percents obtained using simu-
lations (solid line) and using formula (21) (dashed line). ISIs have
gamma (upper panels) and IG (lower panels) probability distri-
butions with mean one and FF = 0.5, 1, 2. Simulated values are
calculated based on 1000 estimates of FF.

a length t to obtain the spike counts for application of F̂F and it is not obvious what
t to use. For short intervals, the estimator is strongly biased, but with increasing t
the number of intervals decreases (because of fixed length of the spike train) and that

leads to an increase of variance of F̂F. Therefore, here we examine the dependency

of MSE(F̂F) on t and try to applicate formula (21) to its approximation. However,
this formula was derived under the assumption that the spike counts are obtained
from independent identical equilibrium renewal processes, which is different situa-
tion from one equilibrium renewal process segmented into n parts. For example,
the spike counts are not completely independent (except for the Poisson process).
However, following simulations indicate that violation of these assumptions does
not play any role.

We obtain every estimate of FF based on one simulated spike train, which is
segmented into intervals of length t. The length of the whole spike train is always
τ = 1000 (mean of ISIs is one), thus n = [1000/t] (integer part of 1000/t). In

this way, we obtain the dependency of MSE of F̂F on t and compare it with values
obtained using approximation (21) (see Fig. 6). We can conclude that there is
a minimum of MSE for a certain value of t. However, if FF = 1, this minimum
occurs for t = 0 (more precisely, MSE → 0 for t → 0). This is obvious because
FFt → 1 for t → 0. Moreover, for the IG distribution with FF = 1, there is
another (local) minimum, which is caused by the nonmonocity of FFt. We also see
that the values of MSE and especially their minima are in all situations relatively
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Figure 6. Relative
√

MSE of F̂F in percents in dependence on
window size t calculated using formula (21) (dash-dotted line) and
using simulations (solid line) in estimation from single spike train.
ISIs follow gamma (upper panels) and IG (lower panels) distribu-
tions with mean one and FF = 0.5, 1, 2. The length of the spike
trains is always τ = 1000. Simulated values are calculated based
on 1000 estimates of FF, corresponding curves are smoothed using
moving average method.

well approximated by formula (21). One exception is the situation with for the IG
distribution with FF = 1, where only the local minimum is approximated.

4.2.3. Comparison of F̂F and ĈV
2
. Due to relationship (8), there is the possibility

of estimating FF using estimator of CV and vice versa, therefore, the question
which of them is more precise arises. To clarify this issue we calculate and compare
their MSE based on simulated spike trains in various situations, short repeated
trials and single spike train are distinguished. In the first case, estimation using

both estimators is problematic. Mainly, ĈV is, as well as F̂F, strongly biased. We
cannot observe ISIs longer than the length of the observation window and thus the
variability in ISIs seems to be lower than it is. This problem almost vanishes in
estimation from a single spike train, but on the other hand, there is the problem

with the spike train segmentation for F̂F. As was shown, its MSE depends on used
length of intervals t and therefore, to obtain “the best possible estimate”, we use
t which minimizes formula (21). However, it is necessary to avoid situations when
this minimum is very low for FF near one (see Fig. 6), thus the minimal t we use is
3 (in mean ISI units). The results of these simulations are in Fig. 7.

Although there are some exceptions, it can be concluded the FF estimator is more
suitable for estimation from short repeated trials and CV estimator for estimation
from single spike trains. The exception in the first case is for spike trains with low
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Figure 7. Relative
√

MSE of F̂F (solid line) and of ĈV
2

(dash-
dotted line) in percents in estimating from repeated trials (upper
panels) and in estimating from single spike train (lower panels).
ISIs follow gamma (left) and IG (right) distributions with mean
one and with various values of FF. In estimation from repeated
trials, every error is calculated based on 1000 estimates, obtained
from 1000 trials. In estimation from a single spike train, the values
of the errors are calculated based on 1000 estimates.

variability (approximately for FF < 0.25), when ĈV
2

seems to be more accurate

than F̂F. In the second case, MSE of F̂F is rarely lower than MSE of ĈV
2
. However,

this occurs mainly for small τ and FF around one, when the used lower limit for t
(3 means of ISIs, which in practice is still too low) is applied.

4.2.4. Influence of refractory period on F̂F. We have shown that both relative and
absolute refractory periods have strong influence on the behavior of the function
FFt. Here we explore the practical consequence in FF estimation. We compare

MSE of F̂F for gamma distribution of T and for IG distribution of T with added
absolute refractory period in dependence on the length of the observation window t.
These probability distributions are very different from the point of view of refractory
period - the first one has no absolute refractory period and, for FF > 1, also no
relative refractory period and the second one has always both types of refractory
periods. However, their mean and FF (including the refractory period in the case
of IG distribution) are set to be the same. The MSE comparison is in Fig. 8. The
error is lower for T with “larger” refractory period for FF = 0.5 and vice versa
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Figure 8. Relative
√

MSE of F̂F in percents for gamma distribu-
tion of T without absolute refractory period (dashed) and for IG
distribution of T with absolute refractory period (dash-dotted) in
dependence on the length of the observation window t. Mean of
T is always one and the value of FF is 0.5 (left) and 2 (right) (all
including the refractory period of length 0.1 in the case of IG dis-

tribution). The errors are calculated based on 1000 values of F̂F,
each estimated from 1000 generated spike trains of relevant length.

for FF = 2. Moreover, in the latter situation, the difference in error is very large.
This can be easily understood, refractory period causes an initial decrease of FFt,
thus the convergence to FF is accelerated if FF < 1 (approximately, for FF slightly
below one the decrease may be too large) and reduced if FF > 1.

5. Choice of the observation window.

5.1. Estimation from independent trials. Repeated trials are used mainly in
measuring the response to a stimulus. The stimulus causes a change of the character
of the spike train, including its variability, which we want to measure. However,
this change lasts only for a short time so there is the demand of short observation
windows. It of course contradicts with the demand of sufficiently large observation
window which is important from the point of view of the accuracy of the FF es-
timator. Thus, we aim mainly to answer the question how short the observation
window can be so that the estimator is still sufficiently accurate.

In this situation, the problem of the estimator is its strong bias for short window
length t. It may be approximately expressed as the difference FFt − FF, therefore
the behavior of the function FFt is crucial. A theoretical possibility how to measure
the bias and select a suitable t is to use the bias approximation from formula (21).
However, in practice we do not have the necessary information about the spike
trains (e.g., E(T 3) and of course FF) and thus the observation window must be
chosen only heuristically based on general knowledge of FFt.

From presented illustrations of FFt, it is obvious that very short trials (e.g.,
shorter than the mean of the ISIs) are clearly almost always inappropriate. However,
this problem complicates in the presence of a refractory period. As was shown, both
relative and absolute refractory periods causes the FFt to be initially lower than one
independently of FF. Moreover, if FF > 1 then, even for relatively large observation
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windows, presence of the refractory period, while preserving the value of FF, causes

a very large increase of the error of F̂F (see Fig. 8). Thus, in selection of window
size, absence or presence of the refractory period should be taken into account.

The second characteristic of the spike trains which has large influence on FFt
is the value of FF itself. For FF ≤ 1, the length of the observation window about
5 − 10 means of ISIs, as suggested in [18], can be mostly appropriate. The same
value of t seems to be sufficient for FF > 1, if there is no refractory period (as for
the gamma distribution, see Fig. 2). The most problematic situation is for FF > 1
in presence of a refractory period. The observation window should be larger than
in the previous cases. However, its length cannot be specified more precisely.

5.2. Estimation from single spike train. In this situation, the selection of
a suitable t for spike train segmentation is the compromise between larger bias

and larger variance of F̂F. We have shown that there is some t which minimizes

MSE(F̂F) (we denote it by to) and this minimum can be approximated using for-
mula (21). For illustration, we approximate to for spike trains with various length
τ and various values of FF (see Fig. 9).

Again, we see that some values of to are too small for practical use. It is caused
by the fact that MSE is minimized just for a specific value of FF. In practice,
we do not know, of course, the value of FF and thus it is not possible to use
direct minimization of relationship (21). However, we can find such a window

that MSE(F̂F) is acceptable for a range of possible values of FF. This range may
be deduced from a preliminary estimate of FF obtained using estimator (5) with
a heuristically chosen value of t. We also do not know the values of E(T ) and E(T 3)
for formula (21), but it is now possible to estimate them.

Let us illustrate the described procedure on an example. Suppose that we have

a spike train with the following estimates: Ê(T ) = 1, Ê(T 3) = 6 and F̂F = 1 and
we want to find t which would provide more precise estimate of FF (more precise

estimator). It should hold that MSE(F̂F) is low for FF = 1 and also for sufficiently
wide range of values around one (e.g. for interval [0.5, 2]). We plot this situation
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MSE of F̂F in percents in dependence on
FF in estimation from single spike train with fixed length τ for
various window length t, calculated using (21) (E(T ) = 1, E(T 3) =
6, τ = 500 (left) and 3000 (right)). Every curve corresponds to
a value of t, these values are displayed in the figures. FF-axis is
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for two values of τ , and various values of t (see Fig. 10). The choice of a suitable t

now depends on what properties of the estimator F̂F we expect. For example, for
τ = 500 and t < 5, MSE is for many values of FF too large. On the other hand,
MSE is unnecessarily large for most likely values of FF (around one) when t > 10.
Thus, t about 7.5 seems to be a suitable compromise. Analogously, a good choice
for τ = 3000 could be t = 15.

6. Conclusions. We have focused on Fano factor estimation using the standard
estimator under the assumption that the spike train satisfies the definition of equi-
librium renewal process. Two usual types of neuronal data, repeated trials and
single spike train, were considered. In both situations, the accuracy of the esti-
mator strongly depends on the length of the observation window t and so its right
choice is important.

In estimating from independent trials, the main problem is the bias of the es-
timator for short t. We have shown that, beside the value of FF, also refractory
period has crucial effect on its value. To be able to avoid the bias, it is important
to know the behavior of the function FFt. However, this information is in practice
limited, so it is necessary at least to assume a range of possible values of FF and
whether or not the refractory period plays a role. In estimating from a single spike
train, we have to take into account also the variance, thus there is a window size t
which is optimal from the point of view of the mean square error. This optimal t
can be approximated using derived MSE formula.

Because of the property CV2 = FF, which holds for renewal processes, we have
also compared the accuracy of the estimator of FF with the standard estimator
of CV2. There is no systematic preference, however, in estimation from repeated

trials, F̂F is mostly more precise than ĈV
2

and vice versa in estimation from single
spike trains.
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There is still a possibility to extend this work using different models of spike
train, more general or realistic than a renewal process. For example, correlation of
ISIs, which is not included in renewal processes, is often observed in experiments
[10] and, as was shown in [1, 2], it has a large effect on the dependency of the FF
estimate on the length of the observation window.

Appendix A. Proof of properties (16) and (17).

Proof. Here we prove properties (16) and (17). To that end, we modify formula
(12), using (11), into the form

FFt = 1 +
E(T )

t
E[Nt(Nt − 1)]− t

E(T )

= 1 +
E(T )

t

∞∑
n=2

n(n− 1)Pn(t)− t

E(T )
, (28)

where Pn(t) denotes the probability that n spikes occur in an interval of length t.
Then

dFFt
dt

= −E(T )

t2

∞∑
n=2

n(n− 1)Pn(t)

+
E(T )

t

∞∑
n=2

n(n− 1)
dPn(t)

dt
− 1

E(T )
(29)

=
E(T )

t

∞∑
n=2

n(n− 1)

(
dPn(t)

dt
− Pn(t)

t

)
− 1

E(T )
. (30)

Next we use the Laplace transform. It holds, [13],

L{Pn}(s) =
(1− f̃(s))2(f̃(s))n−1

s2E(T )
(31)

and

L
{

dPn(t)

dt

}
(s) = sL{Pn}(s), (32)

where equation (32) can be directly derived from the definition of the Laplace
transform.

From relationships (15), (31), (32) and using one of Abel and Tauber theorems,
which expresses the similarity of behavior of

h(t)

tm
, for t→ 0+

and
sm+1L{h}(s)

m!
, for s→∞, m ∈ N0,

[13, 21], where as the function h(t) we use Pn(t) and f(t), we further obtain

lim
t→0+

E(T )

t

∞∑
n=2

n(n− 1)

(
dPn(t)

dt
− Pn(t)

t

)
= 0,

which with formula (30) yields (16).
Finally, in presence of a refractory period of length r > 0, it holds Pn(t) = 0 for

t ≤ r, n ≥ 2, thus using (28) we get (17).
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Appendix B. Proof of relationship (21).

Proof. In this appendix we derive relationship (21). We use formula (20) and de-
rive firstly formulas for the bias and the variance. We start with bias, thus we

need a formula for E(F̂F). Estimators s2Nt
and N t in definition (5) are unbiased

estimators of Var(Nt) and E(Nt), thus

E(s2Nt
) = Var(Nt), E(N t) = E(Nt) (33)

and using the law of large numbers

s2Nt
→ Var(Nt), N t → E(Nt), for n→∞. (34)

That implies

E(F̂F) ≈ FFt, for n→∞. (35)

Then from formulas (9) and (35) we get

Bias(F̂F) ≈ 1

t

[
E(T )

2

(
1 +

Var(T )

E2(T )

)2

− 1

3

E(T 3)

E2(T )

]
, for t→∞, n→∞. (36)

Formula for the variance of F̂F we find assuming normality of Nt, which holds
for t→∞. Then, [16],

n− 1

Var(Nt)
s2Nt
∼ χ2(n− 1), N t ∼ N

(
E(Nt),

Var(Nt)

n

)
,

where N(E(Nt),Var(Nt)/n) denotes the Gaussian (normal) distribution with mean
E(Nt) and variance Var(Nt)/n and χ2(n− 1) denotes the Chi-squared distribution
with n− 1 degrees of freedom. Therefore

Var(N t) =
Var(Nt)

n
, Var(s2Nt

) =
2Var2(Nt)

n− 1
. (37)

Next, from relationships (33), (37) and from independence of s2Nt
and Nt (from

normality of Nt) we get

Var(F̂F) = Var

(
s2Nt

N t

)
≈ E2(s2Nt

)

E2(Nt)

[
Var(s2Nt

)

E2(s2Nt
)

+
Var(N t)

E2(N t)

]
=

=
Var2(Nt)

E2(Nt)

[
2

n− 1
+

Var(Nt)

nE2(Nt)

]
, for t→∞, n→∞, (38)

where we used approximation (first order Taylor expansion)

Var

(
R

S

)
≈ E2(R)

E2(S)

[
Var(R)

E2(R)
− 2(Cov(R,S))

E(R)E(S)
+

Var(S)

E2(S)

]
, (39)

where S and R are arbitrary positive continuous random variables.
Now we have formulas for both bias (36) and variance (38) and thus we can put

them into relationship (20),

MSE(F̂F) ≈ 1

t2

[
E(T )

2

(
1 +

Var(T )

E2(T )

)2

− 1

3

E(T 3)

E2(T )

]2

+
Var2(Nt)

E2(Nt)

[
2

n− 1
+

Var(Nt)

nE2(Nt)

]
, for t→∞, n→∞. (40)
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Further, E(Nt) we replace with (11) and for Var(Nt) we use another asymptotic
relationship, [5],

Var(Nt) ≈
Var(T )

E3(T )
t+

1

2

(
1 +

Var(T )

E2(T )

)2

− 1

3

E(T 3)

E3(T )
, for t→∞. (41)

So we obtain the final formula (instead of Var(T )/E2(T ) = CV2 we write FF)

MSE(F̂F) ≈
[

1

t
E(T )G(T )

]2
+

E2(T )

t2

[
2

n− 1
+

E2(T )

nt2

(
G(T ) +

FF

E(T )
t

)]
·
[
G(T ) +

FF

E(T )
t

]2
, for t→∞, n→∞, (42)

where

G(T ) =
1

2
(1 + FF)2 − 1

3

E(T 3)

E3(T )
. (43)
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