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Abstract. A method to generate first passage times for a class of stochastic
processes is proposed. It does not require construction of the trajectories as

usually needed in simulation studies, but is based on an integral equation
whose unknown quantity is the probability density function of the studied first

passage times and on the application of the hazard rate method. The proposed

procedure is particularly efficient in the case of the Ornstein-Uhlenbeck process,
which is important for modeling spiking neuronal activity.

1. Introduction. The problem of the first passage time is known as a difficult
task in the theory of stochastic processes and it plays an important role in various
applications, e.g., quantitative finance, theoretical biology, engineering, chemistry,
epidemiology and others.

Here we present it in the context of theoretical neuroscience, namely in modeling
the firing of a single neuron. The membrane potential of a neuron can often be
described by an Ornstein-Uhlenbeck stochastic process whose excursion is limited
from above by an absorbing barrier, called firing threshold. Reaching the threshold
is identified with generation of an action potential (spike). Determination of the
distribution of the inter-spike intervals or at least its statistical properties is an im-
portant task from a neuronal coding point of view. More details on the first passage
time problem for the Ornstein-Uhlenbeck process in computational neuroscience can
be found, for example, in [19].

One approach to the problem is based on simulating trajectories of the membrane
potential by using available numerical methods for stochastic differential equations
(see, for instance, [10]). However, having discretized trajectories, it is necessary to
evaluate the probability that a spike (crossing) occurs within each interval of the
temporal mesh and not being observed, otherwise the actual first passage time is
overestimated. For different methods based on simulations of the trajectory, see [11],
[6], [7], [8] and [17].
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Polo delle Scienze e Tecnologie, Università degli Studi di Napoli Federico II.
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In the present paper we propose a simulation method based on the hazard func-
tion and on the use of the integral equation ([1], [5], [9]), known in the literature as
the singularity removed probability current equation ([4]).

Taking into account that the application of the method of the hazard function
can also lead to the evaluation of the above density for large values of its argument,
the proposed method is particularly operative when the hazard function tends, as
time increases, to a positive constant. We prove that it happens, asymptotically
with respect to the firing threshold, in the case of the leaky integrate-and-fire (LIF)
model ([2]) with constant parameters.

In Sections 2 and 4 we resume the theoretical essentials; in Section 3 the algorithm
with some warnings are provided as well as the main result of the paper; finally, in
Section 5 the proposed method is applied to the stochastic LIF model with constant
parameters.

2. Preliminary remarks. Let I be a non empty subset of R. The transition
probability density function fX(x, t|y, τ) of a diffusion process

{
X(t), t ∈ [0,+∞[

}
with state space I is the solution of the following Fokker-Planck equation

∂

∂t
fX(x, t|y, τ) = − ∂

∂x
[A1(x, t)fX(x, t|y, τ)] +

∂2

∂x2
[A2(x, t)fX(x, t|y, τ)]

(x, y ∈ I; 0 ≤ τ < t),
(1)

in which the coefficients A1(x, t) and A2(x, t) represent drift and infinitesimal vari-
ance of the process, respectively.

For t0 ≥ 0, X(t0) = x0 ∈ I and for a pre-assigned S(t) ∈ C2
−(t0,+∞[, such that

S(t0) > x0, with

TX,S(x0, t0) := inf {t > t0 : X(t) ≥ S(t)}

we denote the random variable first passage time of
{
X(t), t ∈ [t0,+∞[

}
through

the threshold S(t) and with

gX [S(t), t|x0, t0] =
d

dt
P (TX,S(x0, t0) ≤ t) =:

d

dt
GX [S(t), t|x0, t0]. (2)

its probability density function.
The process and the threshold properties ensure that TX,S(x0, t0) is an absolutely

continuous random variable.
In the present paper we consider thresholds and diffusion processes admitting a

space-time transformation in the sense indicated in [14]. In such a case, indeed,
gX [S(t), t|x0, t0] is solution of the following integral equation with non-singular ker-
nel:

gX [S(t), t|x0, t0] =− ψX [S(t), t|x0, t0]

+

∫ t

t0

ψX [S(t), t|S(τ), τ ]gX [S(τ), τ |x0, t0] dτ.
(3)

Such a result obtained in [9] is an extension of the one in [1] for the Wiener and
for the homogeneous Ornstein-Uhlenbeck process and successively proved in [5] for
temporally homogeneous diffusion processes with A2(x) of C1(I) class.

In Eq. (3) the free term and the kernel can be evaluated by means of the following:
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ψX [S(t), t|z, s] :=

dS(t)

dt
+

3

4

∂A2(x, t)

∂x

∣∣∣∣∣
x=S(t)

−A1[S(t), t]

 fX [S(t), t|z, s]

+A2(x, t)
∂fX [x, t|z, s]

∂x

∣∣∣∣∣
x=S(t)

(z ∈ I, s ≥ t0).

(4)

In particular, for the kernel of Eq. (3) one has

lim
τ→t−

ψX [S(t), t|S(τ), τ ] = 0,

and this allows, for example, to apply explicit composed quadrature formulas in
order to obtain approximations of the first passage time probability density func-
tion (see, for instance, [1] and [3]) on a suitable mesh {tn = t0 + n∆t}n∈N. Note
that, such formulas, although easy to implement, have computational complexity
of O(n2). Furthermore, via a suitable numerical procedure one can obtain an ap-
proximation for the first passage time distribution function GX [S(t), t|x0, t0].

3. The algorithm. Thereafter, at least in principle, the Hazard Rate Method
(HRM) can be applied in order to have a generator for TX,S(x0, t0) (see, for instance,
[15]):

HRM-Algorithm

1. determine an upper bound Λ of λX(t) :=
gX [S(t), t|x0, t0]

1−GX [S(t), t|x0, t0]
(t ≥ t0);

2. make sure that
∫ +∞
t0

λX(t) dt =∞;
3. set T = 0, n = 0, Y0 = 1, U0 = 1;
4. n← n+ 1;

5. get Yn
d
= Exp(Λ) independent from σ(Y0, . . . , Yn−1);

6. T ← T + Yn;

7. get Un
d
= U(0, 1) independent from Yn and σ(U0, . . . , Un−1);

8. if
λX(T )

Λ
< Un return to step 4;

9. save TX,S(x0, t0) = T .

The symbols
d
=, Exp(·) and σ(·) indicate the equality in distribution, the exponential

distribution and the generated σ-algebra, respectively.
The implementation of HRM-Algorithm can be quite affected by the following

arguments:

Warnings for the HRM-Algorithm

(A) the function fX(x, t|y, τ) should be evaluated via a numerical procedure
by means of Eq. (1);

(B) a numerical method is also required in order to obtain the first derivative
of fX(x, t|y, τ) with respect to x;

(C) the functions gX [S(t), t|x0, t0] and GX [S(t), t|x0, t0] have to be calculated
via a numerical procedure by means of Eq. (3);

(D) it could be required to evaluate the function λX(t) for large values of its
argument.
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Furthermore, since λX(t) is evaluated for less than an error δ, ∆t-dependent,
when we apply the HRM-Algorithm we have to consider the case in which Uk is in
the interval (

λ(T )

Λ
− δ

2
,
λ(T )

Λ
+
δ

2

)
. (5)

Such a situation occurs with probability δ and therefore the generated first passage
time is exact with probability (1−δ)N at least, whereN is the number of the required
iterations to terminate the HRM-Algorithm. On the other hand, the Wald’s equality
provides E(N) = E[TX,S(x0, t0)] · Λ and, in the majority of circumstances, the
two factors have reciprocal magnitude. However, whenever Uk is in the interval
given in (5), in the reported calculations (Tables 1–3), we reject the instance of the
algorithm.

Recalling that f1(t) ∼ f2(t), in the neighborhood of +∞, means that lim
t→+∞

f1(t)

f2(t)
= 1, for the first passage time hazard rate function λX(t) the following result holds.

Proposition 3.1. We set

ψ(t) := ψX [S(t), t|x0, t0], ψ(t, τ) := ψX [S(t), t|S(τ), τ ]

ψ := lim
t→+∞

ψ(t), ε(t, τ) := ψ(t, τ)− ψ, (6)

g(t) := gX [S(t), t|x0, t0], G(t) := GX [S(t), t|x0, t0].

Now, (i) if ψ 6= 0 and, (ii) if for all t > t0 a constant d > 0 such that the function
ε(t, τ) does not change its sign within the interval (t0, t− d) exists, then

λX(t) ∼ −ψ + ε [t, t− (1− ξt)d]

1−
∫ t−d
t0

ε(t, τ) dτ
, (7)

where ξt and ηt are real numbers in (0, 1).

Proof. The following holds:

g(t) ∼ −ψ +

∫ t

t0

ψg(τ) dτ +

∫ t

t0

ε(t, τ)g(τ) dτ

∼ −ψ[1−G(t)] +

∫ t−d

t0

ε(t, τ)g(τ) dτ +

∫ t

t−d
ε(t, τ)g(τ) dτ.

By applying the mean value theorem for integration to both integrals at right hand-
side one has:

g(t) ∼ −ψ[1−G(t)] + g(t)
g[t0 + (t− d− t0)ηt]

g(t)

∫ t−d

t0

ε(t, τ) dτ

+ ε(t, t− d+ dξt)
[
G(t)−G(t− d)

]
.

The result follows by dividing both sides of the above relation for 1−G(t) and by
considering the following:

lim
t→+∞

g[t0 + (t− d− t0)ηt]

g(t)
= 1, lim

t→+∞

G(t)−G(t− d)

1−G(t)
= 1.

The last limit is obtained dividing by d both the numerator and the denominator,
substituting 1 with G(t+ d) and making use of Eq. (2).
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4. The Ornstein-Uhlenbeck processes. Here we consider the class of stochastic
processes, largely used in neuronal modelling, having

A1(x, t) = xa(t) + b(t) and A2(x, t) ≡ A2(t) = σ2(t),

so that the Warnings (A) and (B) for the application of HRM-Algorithm are im-
mediately overcome, since the transition probability density function fX(x, t|y, τ)
of the process

{
X(t), t ∈ [t0,+∞[

}
is Gaussian with mean and variance, given

respectively by:

MX(t|y, τ) = mX(t) +
vX(t)

vX(τ)
[y −mX(τ)], (8)

(t0 ≤ τ < t)

D2
X(t|τ) =

vX(t)

vX(τ)
[uX(t)vX(τ)− uX(τ)vX(t)]. (9)

It is convenient to note that it is easy to obtain the derivative of fX(x, t|y, τ) with
respect to x.

In Eqs. (8) and (9) mX(t), uX(t) and vX(t) represent, respectively, the mean

mX(t) = e
∫ t
t0
a(s) ds

[
x0 +

∫ t

t0

b(ξ)e
−

∫ ξ
t0
a(s) ds

dξ

]
(t0 ≤ t), (10)

and the two covariance factors

cX(τ, t) = uX(τ)vX(t)

=

[
e
∫ τ
t0
a(s) ds

∫ τ

t0

σ2(ξ)e
−2

∫ ξ
t0
a(s) ds

dξ

]
e
∫ t
t0
a(s) ds

(t0 ≤ τ ≤ t),
(11)

of the process
{
X(t), t ∈ [t0,+∞[

}
.

The above functions can be obtained in closed form or via quadrature formulas
by means of the infinitesimal coefficients.

In the following, we show that the difficulties in the application of the HRM-
Algorithm (Warnings (C) and (D) ) are greatly reduced in the case of Ornstein-
Uhlenbeck with constant coefficients.

5. The LIF model with constant parameters. We consider the homogeneous
Ornstein-Uhlenbeck process

{
U(t), t ∈ [t0,+∞[

}
for which

A1(x, t) = −x
θ

+
ρ+ µθ

θ
and A2(t) = σ2,

largely known playing a key rule in the LIF stochastic model for the membrane
potential dynamics of some kind of neurons (see, for instance, [12] and [16]). In
such a context θ, ρ and µ represent the time constant of the membrane potential,
the resting potential and a constant current, respectively. The quantity µ, although
indicated as current, it actually is a current divided by the membrane potential
capacitance.

For
{
U(t), t ∈ [t0,+∞[

}
it results

mU (t) = x0e
−(t−t0)/θ + (ρ+ µθ)

[
1− e−(t−t0)/θ

]
,

uU (t) =
σθ

2

[
e(t−t0)/θ − e−(t−t0)/θ

]
,

vU (t) = σe−(t−t0)/θ,
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for which, by using (4), (8), (9) and for a constant threshold S, one obtains:

ψU [S, t|y, τ ] =

{
S − (ρ+ µθ)

θ
− 2

θ

S − (ρ+ µθ)[1− e−(t−τ)/θ]− ye−(t−τ)/θ

1− e−2(t−τ)/θ

}

× 1√
πσ2θ[1− e−2(t−τ)/θ]

e
−{S − (ρ+ µθ)[1− e−(t−τ)/θ]− ye−(t−τ)/θ}2

σ2θ[1− e−2(t−τ)/θ] .

(12)

Now, it can be proved that, for any assigned setting of parameters S, x0, θ, ρ, µ
and σ2:

lim
t→+∞

λU (t) = λU . (13)

Indeed, in the case in which the membrane potential evolves in a subthreshold
regime, i.e. limt→+∞mU (t) = ρ+ µθ < S, it first results:

ψ = lim
t→+∞

ψU [S, t|x0, t0] = −S − (ρ+ µθ)

θ

1√
πσ2θ

e
− [S − (ρ+ µθ)]2

σ2θ < 0,

so that the (i) of Proposition 3.1 is satisfied. With reference to the function

ε(t, τ) ≡ ε(t− τ) = ψU [S, t|S, τ ]− ψ
introduced in Eq. (6), a value S∗ of the firing threshold exists such that, for S < S∗ it
is positive for all t0 < τ ≤ t; while, for S ≥ S∗, ε(t, τ) > 0 for τ in the neighborhood
of t and negative otherwise. Therefore, the (ii) of Proposition 3.1 is also satisfied
and Eq. (7) holds. However, in this specific case, the function ε(s) is a continuous
function such that in the neighborhood of +∞ is O

(
e−s/θ

)
, by which

lim
t→+∞

∫ t−d

t0

ε(t, τ) dτ = lim
t→+∞

∫ t−d

t0

ε(t− τ) dτ = lim
t→+∞

∫ t−t0

d

ε(s) ds

=

∫ +∞

d

ε(s) ds = const.

(14)

The Eq. (13) follows from Proposition 3.1 taking in account (14) and noting that
the ξt value in Eq. (7) does not depend on t:∫ t

t−d
ε(t, τ)g(τ) dτ =

∫ d

0

ε(s)g(t− s) ds = ε(ξd)

∫ d

0

g(t− s) ds

= ε(ξd)

∫ t

t−d
g(τ) dτ, ξ ∈ (0, d).

(15)

We note that the asymptotic firing rate λU does not depend from reset value x0.
Figure 1 shows the behavior of λU (t) for some values of S while Figure 2 shows

the behavior of λU (t) for some values of x0. The other parameters are chosen as
in [12], in which the authors consider experimental recordings of cortical neurons
membrane potential of Guinea pigs subject to a spontaneous activity. In the above
described model, the authors take ρ equal to x0. They determine estimators of 1/θ,
µ and σ2 based on each experimental recording, to which an initial (about 10 ms)
and a final part (about 10 ms) are eliminated. The initial one (final one) is used to
obtain an empirical estimation of x0 (S). The median of the estimation obtained
from recording is taken as estimator of each parameter. The estimated values are
the following: θ = 38.7534 ms, µ = 0.2846 mV/ms and σ2 = 0.1824 mV2/ms; while
S results 13 mV over ρ. In the present paper we prefer to keep different x0 and ρ, in
order to preserve their specific physiological significance, and to rescale the values
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Figure 1. Plot of λU (t) (in ms−1), in which the time is given in θ
units, for some values of S specified by the corresponding labels and with
x0 = 7.5 mV. The instantaneous firing rate decreases when the threshold
increases and after few time units it reaches the asymptotic value. Other
parameters are: θ = 38.7534 ms, ρ = 0 mV, µ = 0.2846 mV/ms and

σ2 = 0.1824 mV2/ms.

of the membrane potential with respect to ρ = −65 mV; furthermore, we consider
either x0 or S to be variable.

From Figure 2 we argue that when x0 is less than the asymptotic mean membrane
potential ρ + µθ, a rather few iterations in the HRM-Algorithm will be sufficient
in order to obtain λU (T )/Λ next to 1, so that the stop criterion will be quickly
satisfied. Instead, when x0 is greater than ρ + µθ, the plot of the instantaneous
firing rate shows a maximum value considerably larger than the asymptotic firing
rate λU so that, for large T , a greater number of iterations in the HRM-Algorithm
will be required (the stop criterion will be satisfied with probability λU/Λ).

In Tables 1, 2 and 3 we set Λ as the maximum of 1.01 ·λU (t) evaluated until 20θ.
Here, with “Euler’s method” we denote the first passage time generation by means
of trajectories simulated using the Euler stochastic discretization of the Langevin
equation, i.e.

x(tn+1) = x(tn) + [a(tn)x(tn) + b(tn)]h+ σ(tn)z
√
h,

where h > 0, tn = t0 + nh and z is a standard gaussian number. Instead, with
“Quadrature” we refer to a numerical method, having time step ∆t, for solving the
integral equation (3) for the homogeneous Ornstein-Uhlenbeck process

{
U(t), t ∈

[t0,+∞[
}

and constant threshold S, in order to obtain an approximation for the
instantaneous firing rate λU (t).

Referring again to the experimental setting of parameters as in [12], in Tables 1–2
we give the relative errors of the estimations of some moments firing time obtained
by HRM-Algorithm (Euler’s method) with respect to the values obtained by means
of a series expansions given in [13].
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Figure 2. As in Figure 1 for the x0 values specified by the correspond-
ing labels and S = 15.5 mV. Note that the asymptotic firing rate does
not depend on x0.

Quadrature (∆t = θ/100) Trajectories (h = θ/1000) Run
S Hazard rate method Euler’s method time

(mV) mean st.dev skew mean st.dev skew ratio

13 −2.50E−3 3.13E−3 8.99E−3 3.13E−2 4.69E−2 1.15E−2 0.66
14 −3.64E−3 1.78E−3 2.06E−2 4.12E−2 3.84E−2 −3.77E−2 0.99
15 −4.39E−3 7.49E−3 2.67E−2 4.80E−2 6.01E−2 −2.59E−2 2.54

15.5 6.09E−5 9.40E−3 2.85E−2 5.74E−2 7.71E−2 −2.35E−2 4.87
16 1.69E−3 9.96E−3 2.99E−2 7.64E−2 8.69E−2 1.39E−2 5.10
17 −1.75E−4 5.39E−3 2.34E−2 6.49E−2 6.85E−2 4.45E−2 11.47

Table 1. Relative errors for the mean, standard deviation and skew-
ness of TU,S(x0, t0), obtained by means of the methods specified on top,
are listed for the S values as indicated in the first column. Reference
values, not shown, are obtained by means the series expansions given in
[13]. Other parameters as in Figure 1. Times are given in θ units and
the samples are both of size 10000. The last column shows the ratio
between the run time of the Euler’s method and the Hazard rate method.

In Table 3 we compare the estimation provided by HRM-Algorithm (Euler’s
method) to the mean firing time values given in [18]. In such a paper, a com-
parison between the discrete Stein model and its diffusion approximation has been
performed; we recall that fe and fi (ae and ai) represent the frequencies (the am-
plitudes) of excitatory and inhibitory current pulses.

The results reported in the previous tables make evident that the main advantage
of the proposed method is that, on the contrary of methods involving trajectories
of the process, it does not show a systematic bias (overestimation). Furthermore,
the HRM-Algorithm run time results quite independent from the value of the firing
threshold even if it increases when x0 is placed near to the firing threshold S.
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Quadrature (∆t = θ/100) Trajectories (h = θ/1000) Run
x0 Hazard rate method Euler’s method time

(mV) mean st.dev skew mean st.dev skew ratio

14 −1.32E−2 −1.91E−2 −4.53E−2 6.63E−2 6.81E−2 −2.80E−2 0.56
13 −1.74E−2 −2.73E−2 −6.92E−2 6.01E−2 7.16E−2 −2.64E−2 1.95

12.5 −6.95E−3 −1.06E−2 −9.07E−3 5.63E−2 7.56E−2 −2.17E−2 2.72
12 9.12E−3 1.56E−2 2.20E−2 5.54E−2 7.58E−2 −1.56E−2 3.51
10 1.85E−2 1.03E−2 3.27E−2 5.72E−2 7.62E−2 −2.57E−2 4.80

7.5 6.09E−5 9.40E−3 2.85E−2 5.74E−2 7.71E−2 −2.35E−2 4.87
5 −2.00E−3 8.97E−3 2.65E−2 5.77E−2 7.58E−2 −2.73E−2 4.82

2.5 −4.06E−3 8.24E−3 2.54E−2 5.68E−2 7.65E−2 −2.66E−2 5.11
0 −3.64E−3 8.22E−3 2.55E−2 5.35E−2 7.55E−2 −2.62E−2 5.10

Table 2. As in Table 1 for the x0 values as indicated in the first
column. Other parameters as in Figure 2.

Reference Quadrature Trajectories
fe fi µ σ2 values (∆t = θ/100) (h = θ/1000) run time

(1/ms) (1/ms) (mV/ms) (mV2/ms) (ms) Hazard rate Euler’s ratio
method method

2 2 0 4 56.70 2.37E−3 6.83E−2 6.62
3 2 1 5 9.39 7.50E−4 4.75E−2 0.78
4 2 2 6 3.69 −5.42E−3 3.94E−2 0.49
5 2 3 7 2.10 2.00E−4 3.11E−2 0.43
3 6 −3 9 195.00 −1.49E−2 6.84E−2 21.87
4 6 −2 10 38.50 −7.92E−3 8.37E−2 2.50
5 6 −1 11 12.50 1.42E−2 5.63E−2 0.73
6 6 0 12 5.69 −3.08E−4 5.41E−2 0.49
7 6 1 13 3.21 −9.81E−4 4.86E−2 0.46
8 6 2 14 2.09 −4.50E−3 4.07E−2 0.45

Table 3. Relative errors for the mean of TU,S(x0, t0) obtained by
means of the method specified on top are listed for fe and fi values
indicated in the first and second columns. Reference values are those
given in Table 1 of [18]. The last column shows the ratio between the
run time of the Euler’s method and the Hazard rate method. Values of
µ and σ2 are listed for convenience. Here S = 4 mV, x0 = 0 mV, ae = 1
mV, ai = 1 mV and θ = 1 msec.
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