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Abstract. A classical deterministic SIR model is modified to take into ac-
count of limited resources for diagnostic confirmation/medical isolation. We

show that this modification leads to four different scenarios (instead of three

scenarios in comparison with the SIR model) for optimal isolation strategies,
and obtain analytic solutions for the optimal control problem that minimize

the outbreak size under the assumption of limited resources for isolation. These

solutions and their corresponding optimal control policies are derived explic-
itly in terms of initial conditions, model parameters and resources for isolation

(such as the number of intensive care units). With sufficient resources, the

optimal control strategy is the normal Bang-Bang control. However, with lim-
ited resources the optimal control strategy requires to switch to time-variant

isolation at an optimal rate proportional to the ratio of isolated cases over the

entire infected population once the maximum capacity is reached.

1. Introduction. Mathematical models are often used to study disease spread,
with the susceptible-infectious-recovered(SIR) model being preferred for disease
spread via droplet and aerosol. For example, the SIR model has been used to study
pandemic flu [6, 9, 11, 12, 17, 19, 25, 26, 27, 28, 36, 38], seasonal flu [7, 10, 15] ,
SARS [24, 30, 34, 35], and smallpox [14, 16, 22, 31]. These studies use SIR models
to simulate the disease outbreak and evaluate the effectiveness of selected control
measures under various predefined scenarios. Optimal control theory approaches
based on deterministic compartmental models can provide valuable information
about how best to control infectious disease outbreaks, and in particular, can de-
termine the optimal distribution of limited resources during epidemics. We refer to
[1, 2, 3, 5, 13, 20, 23, 29, 32, 33, 37] for studies of SIR model based optimal control
that minimizes a prescribed objective function.

Some of the earliest work in this area was by Abakuks. In [1], Abakuks investi-
gated the optimal control of a simple deterministic SIR model, and determined the
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isolation strategy that minimizes the total number of infected individuals, balanced
against a cost associated with using isolation. In [2], Abakuks determined the op-
timal vaccination strategy for the same model and found that the optimal strategy
was to vaccinate N susceptibles at the start of the epidemic, where N depends on
the precise form of the objective function. In [3], Abakuks then determined the
optimal vaccination strategy for the same model but under the assumption that,
at any instant, either all or none of the susceptibles are vaccinated. Shortly after
the publication of [2] and [3], Wickwire and Monton studied the same questions but
with two notable differences [29, 37]. They found that the optimal isolation strategy
was to use either maximal control for the entire epidemic or to use no control at
all and that the optimal vaccination policy is a Bang-Bang control from maximal
vaccination to no vaccination. In 2000, Behncke [?] expanded Wickwire’s results to
models with more general contact rates. Sethi derived optimal closed-form results
for isolation and immunization policies [32, 33] using an SI model. The control is to
either isolate and vaccinate at a maximum rate or do nothing. Clancy [13] studied
the properties of optimal policies for isolation and immunization assuming that all
infectious individuals can be immediately isolated and all susceptible individuals
can be immediately immunized. The policy takes no action when the number of
infectious is below an optimal threshold and immediately isolates and/or immu-
nizes when the number exceeds the threshold. Lin, Muthuraman and Lawley [23]
used an expanded SIR model to develop triggers for NPI implementation to min-
imize expected person-days lost resulting from influenza related deaths and NPI
implementation. NPI policies are derived for the control model using a linear NPI
implementation cost. However, none of these studies provided results for a com-
bined isolation-vaccination model, and no analytical solution for an optimal control
problem of epidemics was discussed. In 2010, Hansen and Day [20] extended that of
[1, 2, 3, 5, 29, 37] by examining the kind of resource constraints mentioned earlier.
Specifically, the simple SIR model with mass action contact is revisited, and the
analytic solutions rather than numerical ones are obtained. For the isolation model
(Problem 2 in [20]), under an assumption of total isolation resources being limited,
the optimal policy is proved to be either maximum isolation or any isolation with
constraint boundary .

But, it is not the case that all infectious individuals can be immediately isolated
owing to time delay for rapid response and limitation of bed capacity provided by a
hospital, and so the assumption in [20] of total isolation capacity is unreasonable. In
this work, we use an expanded SIR model to minimize infectious size under limited
isolation resources. In this model, we use the variable(D) in the basic SIR model in
[4, 20] to represent bed capacity and modify the constraint condition of the total
isolation capacity in [20] to be time-variant. This can be regarded as a subclass of the
recovery compartment. Changing of constraint conditions complicates the optimal
control problem based on the expanded SIR model. We find, for this new optimal
control problem, that there are four different scenarios (in comparison with three
scenarios in the case of without resource constraints) for optimal isolation treatment
strategies, and we get the analytic solutions for each of the four scenarios.

2. Formulation of the optimal control problem. We consider the optimal
control issue for the following modification of the classical SIR model examined in
[4, 20] to incorporate the class of isolated individuals explicitly
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Ṡ = −βSI,
İ = βSI − (µ+ u)I,

Ḋ = uI − αD,
where, S, I and D are the numbers of susceptible, infected/infectious and isolated
individuals, β is the transmission rate, µ is the removal rate of the infected indi-
viduals due to either mortality or recovery, u is the rate of isolation, and α is the
recovery or mortality rate of isolated individuals. In the model, we do not differ-
entiate infected and infectious individuals, and we assume isolation is effective that
isolated individuals can no longer infect others.

The control is through the time-varying isolation rate u. So, the main difference
from the study of [20] is the isolation rate which is determined by the available
resources such as hospital beds and ICUs instead of total numbers of isolated indi-

viduals in the entire course of an outbreak. So, the condition,
∫ T
t0
u(t)I(t)dt ≤ ω in

[20] must be replaced by the state variable constraint

D(t) ≤ ω,
with ω being the maximum capacity to accommodate the isolated individuals at
any give time. Our objective is also to determine an optimal isolation rate that
minimizes ∫ T

0

β(t)S(t)I(t)dt,

where T is a fixed or free parameter (duration of the control interval). Without loss
of generality, we will always assume, in the remaining part of this paper, that the
initial time t0 = 0.

Since
∫ T

0
βSIdt = S(0) − S(T ), minimizing the objective function is equivalent

to minimizing −S(T ). Therefore, our optimal control problem can be formulated
as follows: 

min J = −S(T ),

Ṡ = −βSI,
İ = βSI − (µ+ u)I,

Ḋ = uI − αD,
S(0) = S0, I(0) = I0, D(0) = D0, u ∈ [0, umax],
D(t) ≤ ω,

(1)

where umax is a maximum isolation rate. We note that in practice the control
is implemented by either controlling the rate u or controlling the total number of
newly treated infected individuals v(t) = u(t)I(t).

3. Optimal isolation strategies. Our main results are as follows:

Theorem 3.1. Depending on the initial conditions, model parameters and con-
straint conditions, we have the following optimal isolation strategies:

(i). If the resource for isolation is unlimited or sufficient in the sense that D(t) ≤ ω
for all possible t ∈ [0, T ], then the optimal control is with maximal effort, i.e.,

u∗(t) = umax for all t ∈ [0, T ];

(ii). Let D(t) be optimal path in (i) (without the constrain D(t) ≤ ω). If D0 = ω,
and there exists a c ∈ (0, T ] such that D(t) ≤ ω for all t ∈ [c, T ], then the
optimal control is given by v∗(t) = αω for 0 ≤ t < c and u∗(t) = umax for
c ≤ t ≤ T .
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(iii). Let D(t) be optimal path in (i) (without the constrain D(t) ≤ ω). If D0 < ω,
then there exists a subinterval [c1, c2] ⊂ [0, T ] such that u∗(t) = umax for
0 ≤ t < c1 and c2 ≤ t ≤ T ;and v∗(t) = αω for c1 ≤ t < c2.

4. Proof of optimal policies. Firstly, for the sake of convenience, we state the
maximum principle to be used in the sequel and we refer to [8, 18, 21] for more
details. We consider the following optimal control problem with state inequality
conditions: 

min J = ϕ(x(T ), T ) +
∫ T
t0
L(x(t), u(t), t)dt,

ẋ = f(x(t), u(t), t),
x(t0) = x0, u ∈ U,
N(x(T ), T ) = 0,
g(x(t), t) ≤ ω,

(2)

where, x ∈ Rn is the state vector, u ∈ Rm is the control vector, ϕ and L are
scalar functions of corresponding variables, f , N and g are vector functions of their
respective variables, ω is a constant vector with appropriate dimension, U is an
admissible and time-invariant set, ϕ,L, f,N and g are at least once continuously
differentiable with respect to all of their arguments.

Solving an optimal control problem with state constraints is normally achieved by
the so-called “differentiation approach” that converts state constraints into control
constraints. Here, we assume that the state inequality constraint is q-th order
(for an integer q) and so the original state constraint can be replaced by a control
equality constraint g(q) = 0 and a set of point constraints

g(0)|t=c = g(1)|t=c = · · · = g(q−1)|t=c = 0,

where g(0) := g(x(t), t)− ω. For these constraints, three cases must be considered:

• If the optimal path begins with a boundary subarc, the point conditions must
be applied at the initial point, and the prescribed initial conditions must
satisfy these constraints;
• If the optimal path ends with a boundary subarc, the point conditions must

applied at the final point, and the prescribed final conditions must be consis-
tent with these constraints;
• If the boundary subarc occurs between the endpoints, the point conditions

need be applied only at the beginning of the subarc.

To illustrate the approach, we state the technical Lemma for the case where the
boundary subarc occurs between the endpoints.

Lemma 4.1. For optimal control problem (2), we assume that the state constraint
is active in a subinterval [t1, t2] of [t0, T ]. Let H = L+λT f, H̄ = L+λT f +γT g(q).
If u∗(t) is an optimal control with x∗(t) being the corresponding optimal path, then
there exist nontrivial vector functions λ, γ and nontrivial constant vectors µ and ξ
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such that the following conditions are satisfied:

t0 ≤ t ≤ t1 :
ẋ = f,

λ̇ = −∂H∂x , H(x∗(t), u∗(t), t, λ) = minu∈U,t0≤t≤t1 H(x∗(t), u(t), t, λ);
t1 ≤ t ≤ t2 :

ẋ = f, λ̇ = −∂H̄∂x ,
u∗ is determined from g(q)(x, u, t) = 0,

γ is determined from ∂H̄
∂u = 0;

t2 ≤ t ≤ T :
ẋ = f,

λ̇ = −∂H∂x , H(x∗(t), u∗(t), t, λ) = minu∈U,t2≤t≤T H(x∗(t), u(t), t, λ);
t0 :

x(t0) = x0;
t1 :

g(0)(x(t1), t1) = · · · = g(q−1)(x(t1), t1) = 0, H|t=t1− = H|t=t1+ − ∂ϕ̄
∂t1
,

λ(t1−) = λ(t1+) + ∂ϕ̄
∂x(t1) ;

t2 :
H|t=t1− = H|t=t1+, λ(t1−) = λ(t1+);

T :
N(x(T ), T ) = 0, λ(T ) = ∂H

∂x(T ) ,

H|t=T = − ∂ϕ̄
∂T with ϕ̄ = ϕ+ µTN + ξT θ, θ = (g(0), · · · , g(q−1))T .

With the above preparation, we can now give the following

Proof. It is not difficult to see that the optimal control problem (1) admits an
optimal solution (see [8, 18, 21]). So, we need only find the necessary conditions for
the optimal control under the constraints.

This is an optimal control problem with a state inequality constraint. The key is
to determine whether there exist any corner points for the problem (1). From the
third state equation in (1), we have

D(t) = e−αt
(
D0 +

∫ t

0

eατuIdτ

)
→ 0.

Therefore, D(t) is bounded and the state inequality constraint in (1) is inactive if ω
is large enough. In this case, the control control problem (1) is a problem without
any constraint, that is the case (i) in the Theorem 3.1. In what follows, we will show
that the optimal control is to engage the maximal effort for the control without any
constraint.

We, now, suppose that D(t) is the optimal path in (i) of the Theorem 3.1. As

D(t) = e−αt
(
D0 +

∫ t
0
eατuIdτ

)
, the optimal control problem (1) must fall into one

of following four cases:
Case I. D(t) ≤ ω for all t ∈ [0, T ], problem (1) is equivalent to an optimal control
problem without any constraint. This case is illustrated by the numerical simulation
shown in the top-left panel of Figure 1, where the parameters in (1) are taken as
β = 0.1, µ = 0.3, α = 0.2, S(0) = 5, I(0) = 3, D(0) = 1, ω = 3, T = 12, and
umax = 0.7.
Case II. There exists a c ∈ (0, T ] such that D(t) ≤ ω does hold for all t ∈ [c, T ],
and D0 = ω is satisfied. This case is shown in top-right panel Figure 1, where
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Figure 1. Four different cases corresponding to different param-
eter values

the parameters in (1) are taken as β = 0.1, µ = 0.3, α = 0.3, S(0) = 5, I(0) =
3, D(0) = 1, ω = 1, T = 12, and umax = 0.7.
Case III. There exist t1 and t2 with 0 < t1 < t2 < T such that D(t) ≤ ω hold only
for all t ∈ [0, t1] and t ∈ [t2, T ]. The case occurs with the following parameters and
is shown in the bottom-left panel of Figure 1: β = 0.1, µ = 0.4, α = 0.2, S(0) =
5, I(0) = 3, D(0) = 1, ω = 2, T = 12, and umax = 0.7.
Case IV. There exists a c ∈ (0, T ] such that D(t) ≤ ω holds only for all t ∈ [0, c].
This can take place with the following parameter values and is shown in the bottom-
right panel of Figure 1.: β = 0.1, µ = 0.1, α = 0.2, S(0) = 5, I(0) = 3, D(0) =
1, ω = 1.5, T = 7, and umax = 0.3.

To complete the proof for each of the four scenarios, we set g(x(t)) = D(t)−ω with
x = (S, I,D)T (the superscript T denotes transpose). Then we have the constrain
g(x(t)) ≤ 0. Also, we have ġ = uI − αD, i.e, the state inequality constraint in (1)
is a 1-order inequality constraint. In what follows, we also denote that

ϕ̄(x(T ), r) = −S(T ) + r(D(c)− ω), c ∈ [0, T ],
Hamiltonian: H = −λSβSI + λIβSI − λI(µ+ u)I + λDuI − λDαD,
Expended Hamiltonian: H̄ = H + γ(uI − αD).

For Case I, the maximum principle implies that
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(I1). H(x∗(t), u∗(t), λ) = minuH(x∗(t), u, λ) and so

u∗(t) =

 umax, λI > λD,
to be determined, λI = λD,
0, λI < λD;

(I2). Ṡ = −βSI, İ = βSI − (µ+ u)I, Ḋ = uI − αD;

(I3). λ̇S = βI(λS − λI), λ̇I = βS(λS − λI) + (µ+ u)λI − uλD, λ̇D = αλD;
(I4). S(0) = S0, I(0) = I0, D(0) = D0;
(I5). λS(T ) = −1, λI(T ) = 0, λD(T ) = 0.

Obviously, from (I3) and (I5), we have that λD(t) ≡ 0. We now prove that the
optimal control for Case I is with the maximal effort, i.e, u∗(t) = umax.

First of all, we note that if there exists a c ∈ (0, T ] such that u∗(t) = 0 for all
t ∈ [c, T ], or λI < 0 for all t ∈ [c, T ], then the costate equations with regard to λI
and λS become

λ̇S = βI(λS − λI),
λ̇I = βS(λS − λI) + µλI .

By continuity, λS(T ) = −1 < 0 = λI(T ) implies that there exists an ε > 0, such

that λI > λS for all T − ε < t ≤ T , thus λ̇I < 0, for all T − ε < t ≤ T , and so,
λI(t) > λI(T ) = 0, for all T − ε < t ≤ T , which is a contradiction. This implies
that there exists a c ∈ (0, T ] such that λI ≥ 0 for all t ∈ [c, T ].

Next, we show that λI > 0 for all t ∈ [0, T ). In fact, if this is not so, then there
exists a c ∈ [0, T ) such that λI(c) = 0. By the costate equation with regard to λI ,
we have(

e
∫ t
c

(µ(τ)+u(τ)−β(τ)S(τ))dτλI(t)
)′

= e
∫ t
c

(µ(τ)+u(τ)−β(τ)S(τ))dτβ(t)S(t)λS(t).

Integrating the above equation over [c, T ], we get∫ T

c

e
∫ t
c

(µ(τ)+u(τ)−β(τ)S(τ))dτβ(t)S(t)λS(t)dt

=
[
e
∫ t
c

(µ(τ)+u(τ)−β(τ)S(τ))dτλI(t)
]T
c

= 0.

On the other hand, it is impossible that the left-hand side of above equation is 0
owing to S being non-negative and strictly monotonically decreasing, and so we
obtain a contradiction. Therefore, the optimal control in Case I must be given by
u∗(t) = umax.

For Case II, the control is made up of the following two parts (II1) and (II2):

(II1). On [0, c](γ > 0), u is determined by ġ = 0, and so, u∗ = αD∗

I∗ = αω
I∗ . Also, γ

is determined by 0 = ∂H̄
∂u = −λII + λDI + γI, and so, γ = λI − λD. Thus the

state equations and the costate equations become

Ṡ = −βSI,
İ = βSI − µI − αω,
Ḋ = 0,

λ̇S = βI(λS − λI),
λ̇I = βS(λS − λI) + µλI ,

λ̇D = 2αλD − αλI .

We can then get the optimal control u∗ by solving the above equations.
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(II2). Using a similar argument as utilized in the proof of Case I, we know that the
optimal control is u∗ = umax on [c, T ].

For Case III and Case IV, the discussions are similar. In other words, the con-
straint boundary must be in the middle of the defined interval, that is, there exist
c1 and c2 so that 0 < c1 < c2 < T and that the constrain boundary [c1, c2] ⊂ [0, T ].

Again, D0 < ω implies that the optimal control u∗ 6= 0 at the beginning of the
disease outbreak. In fact, if there exists a c > 0 such that u(t) = 0 for all t ∈ [0, c],
then D(t) = D0e

−αt is deceasing on [0, c](see also below the state equation on
[0, c1]), and so D(t) cannot take the number ω again, for otherwise we would obtain
a contradiction to the continuity of the state variable D(noted that D(c1) = ω).
Therefore, on [0, c1], the optimal control u∗ is umax or undetermined.

We now complete the detailed analyses on the optimal solutions for Case III and
Case IV. By Lemma 1, we have the following results:

A: When t ∈ [0, c1], we have

u∗(t) =

{
umax, λI > λD,
to be determined, λI = λD,

Ṡ = −βSI, İ = βSI − (µ+ u)I, Ḋ = uI − αD,
λ̇S = βI(λS − λI), λ̇I = βS(λS − λI) + (µ+ u)λI − uλD,
λ̇D = αλD;

B: When t ∈ [c1, c2], using the proof for Case II, we can conclude that u∗ = αω
I∗ ,

γ is determined by ∂H̄
∂u = 0 which implies that γ = λI − λD, and

Ṡ = −βSI,
İ = βSI − µI − αD,
Ḋ = 0,

as well as

λ̇S = βI(λS − λI),
λ̇I = βS(λS − λI) + (µ+ u)λI − uλD − δu,
λ̇D = αλD − αγ;

C: When t ∈ [c2, T ], by Case I, we have : u∗ = umax, and

Ṡ = −βSI,
İ = βSI − (µ+ u)I,

Ḋ = uI − αD,

as well as

λ̇S = βI(λS − λI),
λ̇I = βS(λS − λI) + (µ+ umax)λI − umaxλD,
λ̇D = αλD;

D: We have the following boundary conditions:

t = 0 : S(0) = S0, I(0) = I0, D(0) = D0;
t = T : λS(T ) = −1, λI(T ) = 0, λD(T ) = 0;

t = c1 : D(c1) = ω, H|t=c1+ = H|t=c1− + ∂ϕ̄
∂t

∣∣∣
t=c1

,
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λS(c1+) = λS(c1−)− ∂ϕ̄
∂S

∣∣∣
t=c1

= λS(c1−),

λI(c1+) = λI(c1−)− ∂ϕ̄
∂I

∣∣∣
t=c1

= λI(c1−),

λD(c1+) = λD(c1−)− ∂ϕ̄
∂D

∣∣∣
t=c1

= λD(c1−)− r;

t = c2 : D(c2) = ω, H|t=c2+ = H|t=c2−,
λS(c2+) = λS(c2−), λI(c2+) = λI(c2−), λD(c2+) = λD(c2−).

Now, we can determine the optimal control strategies if we can judge whether
λI = λD on [0, c1]. The analysis is as follows:

If λI = λD, then the state equations and costate equations become

Ṡ = −βSI, İ = βSI − (µ+ u)I, Ḋ = uI − αD,

and

λ̇S = βI(λS − λI), λ̇I = βS(λS − λI) + µλI , λ̇D = αλD.

It follows that

λ̇I = αλI , αλI = βS(λS − λI) + µλI ,

thus,

(α− µ+ βS)λI = βSλS .

Taking derivative on both sides of the above equation and rearranging them, we get

α(α− µ+ βS)λI = 0,

which implies that either (a). λI = 0⇒ λD = 0: again, (α−µ+βS)λI = βSλS , so,
λS = 0, it is not possible; or (b). S = constant⇒ 0 = −βSI, it is also impossible.

In summary, the optimal control u∗ on [0, c1] must be with the maximal effort,
while the optimal policy, on the whole interval [0, T ], is the same as expressed in
Theorem 3.1.

This completes the proof.

5. Conclusion. We have modified the classical deterministic SIR model to address
the issue of of limited resources for diagnostic confirmation/medical isolation. In our
model, the D-class (of medically confirmed and isolated individuals) would be the
same as the recovered with immunity class in the classical SIR model but the size of
the D-class is restricted due to the limited resources, and the optimal control issue is
how to control the rate at which infected individuals are isolated within the limited
resources to minimize the accumulated number of infectives. The relative simple
formulation of the modified SIR model permitted us to obtain analytic solutions
for the optimal control problem, and to derive the relevant optimal control policies
explicitly in terms of initial conditions, model parameters and resources for isolation
(such as the number of intensive care units). How to extend this result to more
general model templates which include more disease components and compartments
remains an open problem for future studies.

Acknowledgments. Research partially supported by the Canada Research Chairs
Program, the Natural Sciences and Engineering Research Council of Canada, and
International Development Research Centre. This work was also partially supported
by a project in collaboration with the NUDT’s College of Information Management.



1700 YINGGAO ZHOU, JIANHONG WU AND MIN WU

REFERENCES

[1] A. Abakuks, “Optimal Policies for Epidemics,” D. Phil. Thesis, Univ. Of Sussex, 1972.

[2] A. Abakuks, An optimal isolation policy for an epidemic, J. Appl. Probability, 10 (1973),
247–262.

[3] A. Abakuks, Optimal immunization policies for epidemics, Adv. Appl. Probability, 6 (1974),
494–511.

[4] R. M. Anderson and R. M. May, “Infectious Diseases of Humans: Dynamics and Control,”

Oxford Science Publications, Oxford, 1991.
[5] H. Behncke, Optimal control of deterministic epidemics, Opt. Control Appl. Methods, 21

(2000), 269–285.

[6] M. C. J. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918
influenza pandemic in U.S. cities, PNAS, 104 (2007), 7588–7593.

[7] C. B. Bridges, M. J. Kuehnert and C. B. Hall, Transmission of influenza: Implications for

control in health care settings, Clin. Infect. Dis., 37 (2003), 1094–1101.
[8] E. Bryson and Y. Ho, “Applied Optimal Control-Optimization, Estimation, and Control,”

Taylor & Francis, New York, London, 1975.
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