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Abstract. In a chemostat, several species compete for the same nutrient,
while in an epidemic, several strains of the same pathogen may compete for

the same susceptible hosts. As winner, chemostat models predict the species
with the lowest break-even concentration, while epidemic models predict the

strain with the largest basic reproduction number. We show that these predic-

tions amount to the same if the per capita functional responses of consumer
species to the nutrient concentration or of infective individuals to the density

of susceptibles are proportional to each other but that they are different if

the functional responses are nonproportional. In the second case, the correct
prediction is given by the break-even concentrations. In the case of nonpro-

portional functional responses, we add a class for which the prediction does

not only rely on local stability and instability of one-species (strain) equilibria
but on the global outcome of the competition. We also review some results for

nonautonomous models.

1. Introduction. The system

S′ =Λ−DS −
n∑
j=1

fj(S)Ij ,

I ′j =fj(S)Ij −DjIj , j = 1, . . . , n,

(1.1)

can be interpreted as a chemostat model with n species of consumers Ij that compete
for a limiting substrate S or as an epidemic model for the spread of an infectious
pathogen that comes in n different strains and converts susceptible hosts S into
hosts Ij infected with strain j. The epidemic model can also be understood as a
competition model where various pathogen strains compete for the host as only
resource [53].

In the chemostat setting, D > 0 is the dilution or washout rate of substrate, while
in the epidemics setting it is the natural per capita death rate of the host. Λ is the
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rate at which fresh substrate is pumped into the chemostat or new susceptibles are
being recruited into the host population, respectively.

S� = Λ/D (1.2)

is the equilibrium concentration of the substrate without consumers or the equilib-
rium population size of the host population without the disease. In a chemostat,
the rates Dj > 0 are the removal rates of the jth species. If the jth species is subject
to a death rate, Dj > D. If a filter slows the washout of the jth species but not the
substrate, Dj < D.

In an epidemic model, typically Dj > D and Dj −D are the per capita removal
rates of strain j infectives by disease death, isolation, or recovery from the disease.
Chemostat models typically also have yield constants for every species, but these
can be made 1 by appropriate scaling if they are constant.

The functions fj are the substrate uptake rates by species j or the per capita rate
at which strain j infectives transfer the disease to susceptible hosts. For chemostat
models, they are often taken in Michaelis-Menten form,

fj(S) =
κjS

1 + bjS
, S ≥ 0, (1.3)

with κj > 0 and bj ≥ 0. The special case bj = 0 provides the so-called density-
dependent (or mass action) incidence for epidemic models. Next to frequency-

dependent (alias standard) incidence
κjSIj

S+
∑n
j=1 Ij

, it is the most commonly used inci-

dence in epidemic models though incidences with a nonlinear dependence on S (like
Sα with 0 < α < 1) have also been proposed early on in the history of epidemic
modeling [16, 73] (see [15, Ch.3] and [40, 41] for surveys).

More generally we assume that fj : R+ → R+ are locally Lipschitz and

fj(0) = 0, fj(S) > 0, S > 0, j = 1, . . . , n. (1.4)

The assumptions guarantee that solutions of initial value problems with nonnegative
initial data remain nonnegative, exist for all t ≥ 0, and are bounded. The latter
follows since S +

∑
j Ij satisfies a simple linear differential inequality.

Aside from chemostats or epidemics, the model represents the indirect compe-
tition between a collection of agents for a common resource, available in limited
quantity, wherein each agent, having no direct interaction with its competitors,
merely consumes the common resource so that it may reproduce and offset losses
due to removal or mortality. It is the simplest form of competition, and as such it
is crucially important to understand its dynamics.

For the chemostat model, it is obvious that substrate that has been consumed by
one species can no longer be consumed by any other. For the epidemic model, the
form of our system involves two assumptions that are not self-evident at all, namely
absolute cross-protection and cross-immunity: Infection with one strain excludes
infection by others (no superinfection and no coinfection), and it conveys complete
and permanent immunity to all strains after recovery.

Under these assumptions, the principle of competitive exclusion should hold that
only one competitor can survive on a single resource. So only one consumer species
or one pathogen strain should persist, and all others die out. However, epidemic and
chemostat modelers have suggested different threshold parameters that determine
the winner.
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The biomass production number of species j or disease reproduction number of
strain j at substrate/host level S is given by

Rj(S) =
fj(S)

Dj
, (1.5)

with 1/Dj being the time available and fj(S) being the per unit rate at which
biomass can be acquired at substrate level S or secondary infections can be gener-
ated from S susceptibles.

The basic (re)production number for species or strain j is given by

R�j = Rj(S�), S� = Λ/D, (1.6)

because S� is the equilibrium level to which the substrate or host population dy-
namics tend when there are no consumers or no pathogens. The break even concen-
trations Sj are defined as those concentration where

Rj(Sj) = 1, (1.7)

i.e.,

fj(Sj) = Dj . (1.8)

We will not generally assume in this paper that a break even concentration Sj is
well-defined or is unique except for j = 1. For the sake of exposition, we assume in
this introduction and in Section 2 that we have break even concentrations Sj < S�

for all j and also assume

fj(S) < fj(Sj), S ∈ [0, Sj), fj(S) > fj(Sj), S ∈ (Sj , S
�). (1.9)

This last condition is tacitly assumed whenever we mention a break even concen-
tration for species or strain j.

Our assumption that Sj < S� is motivated by the fact that if fj(S) < Dj , 0 <
S < S�, then species (strain) j would die out even without competition (Proposition
4.2).

As early as 1977, Hsu, Hubbell, and Waltman showed that the species with the
smallest break-even constant outcompetes the others if Dj = D for all j = 1, . . . ,m,
and the functional responses fj are of Michaelis-Menton form [33]. This result was
extended to differential Dj > 0 and Michalis-Menten form in 1978 by Hsu [32].
Arbitrary increasing functional responses andDj = D were dealt with by Armstrong
and McGehee also in 1980 [6], while more general functional responses and Dj = D
were treated by Butler and Wolkowicz in 1985 [14]. See [67] for a comprehensive
presentation of these works. Further progress was made for arbitrary functional
responses and differential Dj > 0 by various authors [45, 76, 77] in the nineties,
but seems to have stalled after 2000 such that a definitive answer seems still to
be missing. In particular, it is remarkable that competitive exclusion has not been
proved in the case of monotone functional response and differential Dj > 0!

For density-dependent incidence, i.e., fj(S) = κjS, Anderson and May [4] argued
in the early eighties that evolution would maximize the basic reproduction number,
i.e., in model (1.1), the strain with the largest basic reproductive number outcom-
petes the others. Apparently, this seemed so evident to them that no mathematical
proof was given, but it would have followed from Hsu’s 1978 paper [32].
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2. Break-even concentrations or R0? Basic reproduction numbers and break-
even constants predict the same winners if fj(S) = κjg(S) with the same monotone
increasing function g : R+ → R+. By (1.5) and (1.6),

R�j =g(S�)R̃j , R̃j =
κj
Dj

, (2.1)

and, by (1.8),

Sj = g−1(1/R̃j). (2.2)

The basic reproduction number is the largest and the break-even constant the small-
est if R̃j is the largest.

We now construct an example with general Michaelis-Menten functions (1.3) and
Dj = D where the break-even concentrations give the correct prediction and the
basic reproduction numbers the wrong one.

We first consider equation (1.8),

κjSj
1 + bjSj

= D, 0 < Sj < S�, (2.3)

and then also consider (1.5) and (1.6),

1 < R�j =
κjS

�

1 + bjS�
1

D
.

We set

xj =
Sj
S�
.

Then the equations become

(κj/D)S�xj
1 + bjS�xj

= 1, 0 < xj < 1,

and

1 < R�j =
(κj/D)S�

1 + bjS�
.

We introduce the dimensionless parameters

αj =
κjS

�

D
, βj = bjS

�.

Then
αxj

1 + βjxj
= 1, 0 < xj < 1,

and

1 < R�j =
αj

1 + βj
.

We solve for xj ,

xj =
1

αj − βj
, 0 < xj < 1,

1 < R�j =
αj

1 + βj
.

The basic reproduction numbers would falsely predict that the second species
(strain) wins while the break-even concentrations would correctly predict that the
first species (strain) wins if

1 < R�1 < R�2, x1 < x2.
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This is equivalent to

1 + β1 < α1,

α1
1 + β2
1 + β1

< α2 < α1 − β1 + β2.

The following can now be easily shown.

Theorem 2.1. Let 1 + β1 < α1 and β1 > β2. Then

α1
1 + β2
1 + β1

< α1 − β1 + β2.

Choose α2 strictly between those two numbers. Then the basic reproduction numbers
wrongly predict that the second species (strain) wins while the break-even concentra-
tions correctly predict that the first species wins.

That the break-even concentrations correctly predict the winner follows from the
result of [32].

3. Proportional functional responses. If the functional responses are propor-
tional to each other, competitive exclusion can be shown under nonautonomous
time regimes. This is based on the following rather elementary results.

Lemma 3.1. For j = 1, 2, let κj > 0 and let xj : R+ → R+ be positive solutions of

x′j = [κjg(t) + hj(t)]xj , (3.1)

where g, hj : R+ → R are continuous. Assume that

1

κ2

∫ t

0

h2(s)ds− 1

κ1

∫ t

0

h1(s)ds→ −∞, t→∞.

Then the following hold:
(a) If x1 is bounded on R+, then x2(t)→ 0 as t→∞.
(b) If lim inft→∞ x1(t) <∞, then lim inft→∞ x2(t) = 0.

Notice that if the equations (3.1) are part of a larger system, g and hj are allowed
to depend not only on the independent variable t but also on the dependent variables
x1 and x2 and any other dependent variables of the system.

Proof. Notice that

1

κj

x′j
xj
− 1

κj
hj = g.

We integrate from 0 to t and find that

1

κj
ln
xj(t)

xj(0)
− 1

κj

∫ t

0

hj(s)ds

does not depend on j. We exponentiate,(
x2(t)

x2(0)

)1/κ2

=

(
x1(t)

x1(0)

)1/κ1

exp

(
1

κ2

∫ t

0

h2(s)ds− 1

κ1

∫ t

0

h1(s)ds

)
,

and the assertion follows.
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This proof is the time-heterogeneous version of the one given in [13] and [17].

Alternatively [1, 2], one can derive a differential equation for φ = Iξ22 I
−ξ1
1 with

arbitrary ξj and then discover that ξj = 1/κj is a good choice to get rid of g.
We consider the following time-heterogeneous version of a system considered in

[17],

I = (I1, . . . , In), R = (R1, . . . , Rn), P = (S, I,R),

S′ = Λ(t, P )−D(t)S − g(t, P )

n∑
j=1

κjIj +

n∑
j=1

ρj(t, P )Rj ,

I ′j = g(t, P )κjIj − [D(t) + µj(t) + γj(t)]Ij

R′j = γj(t)Ij − [D(t) + ρj(t, P )]Rj

}
j = 1, . . . , n.

(3.2)

In an infectious disease model, Rj represents the individuals that have recovered
from a strain-j-infection, γj is the per capita rate at which strain-j-infectious in-
dividuals recover, and ρj is the per capita rate at which they lose their protection
against a reinfection and become susceptible again. In a chemostat model, Rj is
the part of the dead consumer biomass that can be recycled into substrate, µj + γj
is the death rate with γj/(µj + γj) be the portion of the dead biomass that can
be recycled into nutrient substrate with ρj being the rate at which this actually
happens. (For related chemostat models with nutrient recycling see [25, 64].)

A possible chemostat choice for the function g is the Beddington functional re-
sponse

g(t, S, I, R) =
S

1 + b0(t)S +
∑n
k=1 bj(t)Ij +

∑n
j=1 aj(t)Rj

; (3.3)

as for epidemics, standard or frequency dependent incidence is included by

g(t, S, I, R) =
S

S +
∑n
j=1(Ij +Rj)

. (3.4)

To apply Lemma 3.1, set g(t) = g(t, P (t)) and

hj(t) = D(t) + µj(t) + γj(t).

We introduce the time averages,

h̄j(t) =
1

t

∫ t

0

hj(s)ds. (3.5)

Assume that the time averages have positive limits h̄∞j = limt→∞ h̄j(t). This is the
case, e.g., if D, µj , and γj are almost periodic. We define the relative reproduction
numbers,

R̃j =
κj
h̄∞j

. (3.6)

If R̃2 < R̃1, the assumptions of Lemma 3.1 are satisfied. Of course, the same
argument applies for j = 2, . . . , n in system (3.2).

Theorem 3.2. Assume that I1 : R+ → R+ is positive and bounded and R̃j < R̃1

for j = 2, . . . , n. Then Ij(t)→ 0 as t→∞ for j = 2, . . . , n.
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4. Nonproportional response functions and Lyapunov functions. The sys-
tem (1.1) always has the consumer (disease) free equilibrium x� = (S�, 0, . . . , 0).
Throughout this section, we assume that the first species persists if it is on its own,

f1(S�) > D1. (4.1)

The following result is similar to results in [5, 76].

Theorem 4.1. For all solutions of (1.1) with I1(0) > 0 there exists some r ≥ 0
such that S(t) < S� for all t ≥ r.

Proof. Since S′ ≤ D(S� − S), lim supt→∞ S(t) ≤ S�. Assume that S(t) ≥ S� for
all t ≥ 0. Then S is decreasing and S(t)→ S� as t→∞ and, by (4.1), there exists
some s ≥ 0 such that I ′1(t) ≥ 0 for all t ≥ s. Since I1(0) > 0, I1(t) > 0 for all t ≥ 0
and I1(t) ≥ I1(s) > 0 for t ≥ s. This implies that

lim sup
t→∞

S′(t) ≤ −f1(S�)I1(s) < 0

and S(t) → −∞ as t → ∞. Thus there exists some r ≥ 0 such that S(r) < S�.
Since S′(t) < 0 for any t ≥ r such that S(t) = S�, we conclude that S(t) < S� for
all t ≥ r.

The next result is also known in similar form [67, 76]; since it is fundamental, we
include the short proof.

Proposition 4.2. If j 6= 1 and fj(S) < Dj for all S ∈ (0, S�), then Ij(t) → 0 as
t→∞ for all solutions of (1.1) with I1(0) > 0.

Proof. By Theorem 4.1, after a shift in time, we can assume that S(t) < S� for all
t ≥ 0. This implies that Ij is decreasing and has a limit I∞j . By the fluctuation
lemma ([31], [69, Prop.A.22]), there exists a sequence tj → ∞, S(tj) → S∞ =
lim supt→∞ S(t), S′(tj)→ 0 as j →∞. So

0 ≤ Λ−DS∞ − fj(S∞)I∞j .

Assume that I∞j > 0. Then S∞ < S� and supS(R+) < S�. This implies that
supt≥0 fj(S(t)) < Dj and Ij(t)→ 0, a contradiction.

In addition to (4.1), we assume that the first species has a break-even concen-
tration S1 ∈ (0, S�) in the sense that

f1(S) < f1(S1) = D1, S < S1, f1(S) > f1(S1), S1 < S < S�. (4.2)

Then there is at least one more equilibrium x1 = (S1, I
∗
1 , 0, . . . , 0) with

I∗1 =
D(S� − S1)

D1
, (4.3)

and it is the only one of this form.
Finally, we assume that

fj(S) < Dj , 0 < S ≤ S1. (4.4)

Under the extra condition that f1 is differentiable at S1 and f ′1(S1) > 0, (4.4)
implies that the equilibrium (S1, I

∗
1 , 0, . . . , 0) is locally asymptotically stable.

Easy contradiction arguments show that

lim inf
t→∞

S(t) ≤ S1 ≤ lim sup
t→∞

S(t) if I1(0) > 0. (4.5)
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For almost all (D1, . . . , Dn), all other equilibria of the system (1.1) are of the
form (Sj , 0, . . . , 0, I

∗
j , 0, . . . , 0), j = 2, . . . , n, with f(Sj) = Dj and appropriate I∗j .

By (4.4), we have Sj > S1, and these equilibria are unstable by (4.5).
In order to show that (S1, I

∗
1 , 0, . . . , 0) attracts all solutions of (1.1), Lyapunov

functions have played a central role in the analysis of chemostat models from an
early stage [32, 45, 64, 65, 67, 76]. See [35] for a synopsis. Lyapunov functions
have also been used to study invasions in chemostat foodwebs [74], competition for
multiple resources [8, 9], and predation-mediated persistence in chemostats [75].

Compared with this, the successful use of Lyapunov functions on a large scale
in epidemic models has started relatively late, mainly in the last decade ([10, 26],
[39]–[44], [54, 60, 62, 68]. See [24] for an excellent survey. Recently, even large
epidemic systems have been successfully treated by Volterra Lyapunov functions,
first systems with an arbitrary number of disease stages, both finite [3, 28, 36, 37, 55]
and distributed [50, 51] [56]-[59], and then systems with an arbitrary, but finite
number of subpopulations [24, 29, 30, 46, 47], and finally combinations of both [48],
and with infinite-dimensional population structure [70].

The Lyapunov functions used in both chemostat and epidemic models are mainly
adaptations of the classical Lyapunov function V (x) = x − a ln(x/a) which has
worked so well for Lotka-Volterra systems [27]. This function has been discovered
by Volterra himself [72, p.15] who shows that a linear combination of functions of
this form is constant along the solutions of the Lotka-Volterra predator prey system.

We consider the following candidate for a Lyapunov function,

V =

∫ S

S1

f1(s)− f1(S1)

f(s)
ds+

(
I1 − I∗1 ln

I1
I∗1

)
+

n∑
j=2

cjIj , (4.6)

with a function f : [0, S�) → (0,∞) and nonnegative constants c2, . . . , cn. The
orbital derivative is

V̇ =
f1(S)− f1(S1)

f(S)

(
Λ−DS −

n∑
j=1

fj(S)Ij

)
+ (I1 − I∗1 )(f1(S)−D1) +

n∑
j=2

cj [fj(S)−Dj ]Ij .

We substitute the equilibrium equations for the equilibrium (S1, I
∗
1 , 0, . . . , 0),

V̇ =
f1(S)− f1(S1)

f(S)

(
DS1 + f1(S1)I∗1 −DS −

n∑
j=1

fj(S)Ij

)
+ (I1 − I∗1 )(f1(S)− f1(S1)) +

n∑
j=2

cj [fj(S)−Dj ]Ij .

We regroup,

V̇ =
f1(S)− f1(S1)

f(S)

[
D(S1 − S) + f1(S1)I∗1 − f1(S)I1 + f(S)(I1 − I∗1 )

]
+

n∑
j=2

(
cj [fj(S)−Dj)]−

f1(S)− f1(S1)

f(S)
fj(S)

)
Ij .

(4.7)

An obvious choice to make the first term on the right hand side nonpositive is
f = f1. An analogous choice, in a more general model with variable yields, is made



CHEMOSTATS AND EPIDEMICS 1643

in [65]. Alternatively, one can observe that f1(S1)I∗1 = D(S� − S1). So the term in
brackets becomes

[·] = D(S� − S)− f1(S)I1 + f(S)I1 − f(S)I∗1 . (4.8)

This suggests to choose f as in [76] such that the first and last term eliminate each
other,

f(S) =
D

I∗1
(S� − S) = f1(S1)

S� − S
S� − S1

. (4.9)

Then

[·] = I1f1(S1)
( S� − S
S� − S1

− f1(S)

f1(S1)

)
. (4.10)

If 0 ≤ S < S1, S�−S
S�−S1

> 1 > f1(S)
f1(S1)

and if S1 < S ≤ S�, the inequalities are reversed.

This implies that the first term on the right hand side of (4.7) is always nonpositive
and zero only if S = S1 or I1 = 0.

Recall that for all solutions with I1(0) > 0 there exists some r > 0 such that
S(t) < S� for all t ≥ r. Thus, focusing on the second term on the right side of (4.7),
we try to find cj > 0 such that

cj [fj(S)−Dj ]f(S)− [f1(S)− f1(S1)]fj(S) < 0, S ∈ (0, S�). (4.11)

As already observed in [65] for increasing f1, the choice (4.9) will give more general
conditions than the choice f = f1 because it provides a function that is strictly
decreasing on [0, S�]. It gives competitive exclusion for certain functional responses
of sigmoidal or inhibitory type (see [76] for details).

The choice f = f1 has a nice symmetry, though, and we will stick with that
one. In this case, the sign of the second term on the right side of (4.7) is negative
provided:

cj [fj(S)−Dj ]f1(S)− [f1(S)− f1(S1)]fj(S) < 0, S ∈ (0, S�). (4.12)

A more natural way to write (4.12) is to divide through by f1(S)fj(S) to get:

cj

(
1− 1

Rj(S)

)
−
(

1− 1

R1(S)

)
< 0, S ∈ (0, S�).

We note that in case it is assumed that the break-even concentrations Sj exist and
that fj satisfies (1.9), then the inequality above holds for any cj > 0 on [S1, Sj ].

The first species (strain) out-competes the others if it has larger reproduction
numbers at all relevant substrate levels S.

Theorem 4.3. Let Rj(S) < R1(S) for all S ∈ (0, S�). Then all solutions with
I1(0) > 0 go to the equilibrium (S1, I

∗
1 , 0, . . . , 0).

Proof. (4.12), with cj = 1, may be written as:

Rj(S)−R1(S) < 0, 0 < S < S�.

Theorem 4.3 gives another proof that competitive exclusion holds in the case of
proportional functional response fj(S) = κjg(S), j ≥ 1 satisfying (4.2) and (4.4).
In this case, fj(S1) < Dj is equivalent to Rj(S) < R1(S) for all S ∈ (0, S�).

We consider functional responses that are of generalized Michaelis-Menten type.
While it is nice to formulate results in terms of break-even concentrations, this
concept is only needed for the winning species.
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Theorem 4.4. Let

fj(S) =
κjg(S)

1 + bjg(S)
, j = 1, . . . , n, (4.13)

with a function g : R+ → R, g(0) = 0, g(S) > 0 for S > 0. Assume that there is
some S1 ∈ (0, S�) such that

f1(S1) = D1, fj(S1) < Dj , j = 2, . . . , n,

and

g(S) < g(S1), 0 ≤ S < S1, g(S) > g(S1), S1 < S < S�. (4.14)

Then all solutions to (1.1) with I1(0) > 0 converge to (S1, I
∗
1 , 0, . . . , 0).

Proof. Define

hj(x) =
κjx

1 + bjx
, x ≥ 0.

We will verify that suitable cj > 0 may be found satisfying (4.12). Our hypotheses
imply that fj(S) < Dj for 0 ≤ S ≤ S1, so if fj(S) < Dj for S1 < S < S� then we
may satisfy (4.12) by taking cj suitably large.

Otherwise, we may suppose then that there exists Sj ∈ (S1, S
�) such that

fj(Sj) = Dj . Since Sj > S1, our hypotheses imply that g(S1) < g(Sj). Now

fj(S)−Dj =
κj

1 + bjg(Sj)

g(S)− g(Sj)

1 + bjg(S)
=

1

1 + bjg(Sj)

g(S)− g(Sj)

g(S)
fj(S).

So, to verify (4.12), our task is equivalent to finding cj > 0 such that

cj
1 + bjg(Sj)

g(S)− g(Sj)

g(S)
− 1

1 + b1g(S1)

g(S)− g(S1)

g(S)
< 0, 0 < S < S�.

With the choice of cj =
1+bjg(Sj)
1+b1g(S1)

, this boils down to the condition g(S1) < g(Sj),

j 6= 1, which we have already established.

(4.14) is automatically satisfied if g is strictly increasing on (0, S�). It is also
satisfied if g is strictly increasing on (0, S∗), decreasing on (S∗, S�], where 0 < S1 <
S∗ < S� and g(S�) > g(S1).

Example 4.5. Theorem 4.4 covers functional responses such as

fj(S) =
κjS

α

1 + bjSα

with α > 0.
More generally, let g(S) = Sα

1+cSβ
with α, β > 0. Then g is strictly increasing if

α ≥ β > 0 and unimodal if 0 < α < β. The associated fj are of the form

fj(S) =
κjS

α

1 + cSβ + bjSα

with α, β > 0. We can also take g(S) = Sαe−βS . Then

fj(S) =
κjS

α

eβS + bjSα
.
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Here is a list of concave monotone functional responses for which, to our knowl-
edge, competitive exclusion has not yet been shown,

fj(S) = κj(1− e−βjS) Ivlev [7, 38, 63]
fj(S) = κj ln(1 + βjS) logarithmic [12]
fj(S) = κj min{S, βj} Blackman [7, 11].

The second functional response is used in [12] not for the susceptibles, but for
the per capita rate of being infected as a function of virus particles released after
the death of infected insects.

We mention [45] that, if S1 < S2 ≤ · · · ≤ Sn and

S2 − S1

S�
>

D

Dmin
− D

Dmax
,

with Dmin and Dmax being the minimum and maximum of D,D1, . . . , Dn, respec-
tively, then competitive exclusion holds for general monotone functions and also
for unimodal functional responses if f1(S) > D1 for S ∈ (S1, S

�]. This result was
obtained by modifying the function (4.6) and improved an earlier result in [77].

5. Coexistence. Since the work of Cushing [18] and de Mottoni and Schiaffino [19],
it is known that two species can coexist in a periodic environment which would
not coexist in a constant environment. However, in a chemostat or an epidemic
model, competition is more specific than in a Lotka-Volterra competition model:
The consumers compete for the substrate and the pathogen strains compete for
the susceptibles. Nevertheless, in a chemostat, coexistence is possible even if the
washout rate or the nutrient supply concentration is the only parameter that varies
periodically [34, 66, 67, 78] which is the typical chemical engineering scenario. This
requires the functional responses not to be proportional (Section 3).

In an epidemic model, since susceptible individuals typically do not recognize by
which strain an infective individual is infected, functional responses can be expected
to be proportional as functions of S. In this case, if the recruitment rate Λ and
the natural death rate D were the only time-periodic parameters, there would be
no coexistence (Section 3). In an epidemic model, however, it is also reasonable to
assume that the incidence varies as a function of time with the seasons,

fj(t, S) = κj(t)g(S), t ≥ 0, S ≥ 0.

Again, if the κj are proportional functions of t, there is no coexistence (Section 3).
However, if they are not, coexistence is possible [52]. But why should the κj not be
proportional? After all, the strains face the same environmental conditions.

A possible scenario for non-proportional κj can result when a pathogen has a
direct and an indirect route of infection.

As an illustration, we revisit a model [23] for an infectious disease which is spread
both by direct (horizontal) transmission and by waterborne (or otherwise free-living)
propagules released by infective hosts. As additional dependent variables, we add
the amount of waterborne propagules, Wj , released by infectives with strain j.
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Recast in the notation used above, the model in [23] takes the form

S′ = Λ−DS − S
n∑
j=1

(
κ̂j(t)Ij + κ̃j(t)Wj

)
,

I ′j = S
(
κ̂j(t)Ij + κ̃j(t)Wj

)
−DjIj

W ′j = σjIj − νjWj

}
j = 1, . . . , n.

(5.1)

The parameters σj are the per capita release rates of waterborne propagules and
νj are their per unit destruction rates, for strain j. κ̂j is the direct horizontal per
capita infection rate, while κ̃j is the infection rate per capita host and per unit
propagule. We assume that the parameters σj and νj are large compared with
the other parameters, in other words, that the dynamics of waterborne pathogens
are fast compared with the dynamics of the remaining system [71, 6.2.1]. Then a
quasi-steady state approximation may be justified for the waterborne pathogens,

Wj ≈
σj
νj
Ij .

We substitute this relation as an equality into the equations for Ij in (5.1) and
obtain

I ′j = κj(t)SIj −DjIj

with

κj(t) = κ̂j(t) + κ̃j(t)
σj
νj
.

Notice that even if the κ̂j are proportional to each other and the κ̃j are proportional
to each other,

κ̂j(t) = η̂jφ(t), κ̃j(t) = η̃jψ(t),

the κj may no longer be proportional to each other if φ and ψ are not proportional
to each other. For instance, one could be constant and the other periodic; then
they can be tweaked to have the form of [52, Fig.1] where periodic coexistence of
two strains is shown.

6. Epilog. Competition of consumer species for a substrate and of pathogen strains
for susceptible hosts are special cases of a more general theme: subsistence of sev-
eral species or variants of a single species in the same environment [20, 21, 61]. If
the environmental conditions are given by the concentration or density of a single
resource (here one homogeneous substrate or one unstructured host), competition
favors the species or strain that can subsist under worse environmental conditions
(at lower resource levels) than the others. Differently said, competition favors the
species or strain that, when by itself, drives the resource to the lowest level (pes-
simization principle [21] [22, p.95]). If the functional response of strain j to the
environmental variable separates in a multiplicative way, like κjg(S) (proportional
response), competition equivalently favors the strain with the largest basic repro-
duction number. If the response is nonproportional, competition still favors the
species that can subsist at the worst environmental conditions, but not necessarily
the one with the largest basic reproduction number. Competitive exclusion holds
at equilibrium and, for proportional functional responses and some nonproportional
functional responses, also dynamically: suboptimal strains die out as time tends to
infinity. For general functional responses, dynamical competitive exclusion is still
an open problem.
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If the environment is time-periodically forced and the functional response is
nonproportional, coexistence may occur, though not at equilibrium but in a time-
oscillatory manner [34, 52, 66, 67, 78].
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