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Abstract. Mathematical models are well-established as metaphors for bio-
logical and epidemiological systems. The framework of epidemic modeling
has also been applied to sociological phenomena driven by peer pressure, no-
tably in two dozen dynamical systems research projects developed through the
Mathematical and Theoretical Biology Institute, and popularized by authors
such as Gladwell (2000). This article reviews these studies and their common
structures, and identifies a new mathematical metaphor which uses multiple
nonlinearities to describe the multiple thresholds governing the persistence of
hierarchical phenomena, including the situation termed a “backward bifurca-
tion” in mathematical epidemiology, where established phenomena can persist
in circumstances under which the phenomena could not initially emerge.

1. Introduction. Humans have long used metaphors to communicate, explain,
and understand ideas across all fields of endeavor. Their expressiveness is so efficient
that their use has become engrained in everyday language (e.g., “it’s raining cats
and dogs”). Metaphor’s ability to encapsulate essential features of an idea makes it
a powerful tool despite its limitations (e.g., the rain metaphor is not meant to extend
to the falling of solid, let alone living, bodies). Metaphor is commonly identified as
a term in literature, with many notable examples in the works of Shakespeare, but
has been used for centuries in humanities more broadly as well as the physical and
social sciences (see, e.g., [18] for a discussion of the latter). Biology, for instance, has
long relied on metaphors to describe and explain ideas such as evolution; Darwin’s
“tree of life” metaphor transformed our understanding of evolution by replacing
(superseding) all other evolutionary metaphors (like Lamarck’s).

The forms metaphors may take also go well beyond that of a single image de-
scribed in words. Mathematics, a language developed to describe complex rela-
tionships concisely through symbols packed densely with meaning, lends itself to
this sort of use, and under the label of models, mathematical objects and systems
have been fruitfully used to describe phenomena observed in the world around us.
Population biology and theoretical epidemiology are examples of related fields in
which various types of mathematical models, most notably dynamical systems, have
offered seminal insights into the nature and persistence of populations, be they

2010 Mathematics Subject Classification. Primary: 91D99, 91E99; Secondary: 92D25.
Key words and phrases. Backward bifurcation, multiple nonlinearities, dynamical systems,

epidemic, metaphor.
Dedicated to my friend and colleague Carlos Castillo-Chavez, who follows the maxim, attributed

to Gandhi, “Be the change you wish to see in the world.”

1587

http://dx.doi.org/10.3934/mbe.2013.10.1587


1588 CHRISTOPHER M. KRIBS-ZALETA

cells, infections, or collections of individuals. The quantitative nature of mathe-
matical metaphors invites, for some, the same kind of overextrapolation that any
metaphor offers—in this case, a focus on quantitative predictions when the aim of
the metaphor is qualitative—but the qualitative descriptions at the heart of the
metaphor remain powerful nevertheless. (Caveat: there are, of course, also many
mathematical models intended to be quantitatively accurate as well; those should
be distinguished from the notion of model as metaphor discussed here.) A math-
ematical model as a qualitative metaphor deliberately oversimplifies and idealizes
the phenomenon it describes, in order to highlight insights about the behavior of
the phenomenon’s central feature(s). Toward such a qualitative end, these models
should be what one author calls “generic and robust” [38, p. 37]; that is, one limits
oneself to describing certain essential features of the system, and if one changes the
precise mathematical functions and expressions used in the model, to others which
still have those same essential features, the resulting qualitative behavior should
remain the same as well.

One such qualitative insight that has developed as a central concept in the fields of
population biology and theoretical epidemiology mentioned above is that of thresh-
olds: points at which the nature of a system’s behavior changes in a wholesale,
qualitative way. This notion has become central to an understanding of the persis-
tence of infectious diseases: the threshold quantity denoted R0, the basic reproduc-

tive number of an infection, describes an infection’s ability to invade a susceptible
population, by quantifying the average number of secondary infections produced by
a single infectious individual introduced into that näıve population. If this number
is less than one, then the infection is reproducing poorly, and the invasion should
fail; if it exceeds one, then each infection is on average more than replacing itself,
and an epidemic results. Ronald Ross, a British physician studying malaria dur-
ing the days of Britain’s involvement in the Panama Canal, notably discovered the
threshold phenomenon and tied it to mosquito population density [31], work which
later won him the Nobel Prize in medicine. The notion of R0 was developed more
explicitly by Kermack and McKendrick some decades later [21, 22, 23] and continues
to drive the mathematical analysis of epidemiological models to this day. In this
case, the threshold at R0 = 1 distinguishes persistence from eradication in simple
infection dynamics, but the basic idea is generally applicable to many situations in
nature and human interactions (see [20] for one review).

The mathematical phenomenon at the heart of the metaphor is bifurcation, a
point where solutions of a dynamical system diverge in their long-term behavior.
The bifurcations exhibited by dynamical systems make them nice metaphors for
phenomena which undergo such threshold changes; Figure 1(a) illustrates graphi-
cally the epidemic bifurcation at R0 = 1 by describing the equilibrium (eventual)
prevalence of the infection in terms of the basic reproductive number. When R0 < 1,
the equilibrium prevalence is zero; when R0 > 1, it is positive, and grows as R0

grows. Bifurcations are driven by nonlinearities in the model, terms which reflect
a faster-than-linear growth in a particular rate of change as a function of the pop-
ulation(s) undergoing the change (cf. [38, p. 116]). Perhaps the best-known such
nonlinearity is the mass-action law in chemistry, which states that the rate of cre-
ation of a new compound in a bimolecular elementary reaction is proportional to
the product AB of the amounts of the two reactants A and B used to create it.
Although this law gives a literal description in its original context, it has been suc-
cessfully extrapolated in population biology and epidemiology to describe rates at
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Figure 1. Bifurcation diagrams depicting (a) the traditional “for-
ward” bifurcation in an epidemiological model at R0 = 1 and (b)
the corresponding “backward” bifurcation. Here I∗ is the number
of infected individuals at epidemiological equilibrium, and R0 is a
composite function of multiple system parameters.

which two distinct populations (say, susceptibles and infectives, or predators and
prey) come into contact. These intergroup contact rates control the eventual nature
of the interactions between populations.

The techniques developed for population dynamics, and more particularly for the
transmission of infectious diseases, have already been applied to systems outside
the purview of the hard sciences. As long ago as 1950, mathematical models were
being applied to the dynamics of economics and finance [2, 27, 28, 29] to describe
what Weidlich called “analogies between economic and biologic evolution” [38, p.
203]. The epidemiological metaphor (casting the spread of ideas as the spread of
infections) also applies to sociological phenomena in which peer pressure or the
force of opinion convinces individuals to change their behaviors. In such cases, the
pressure exerted on one group by the beliefs, priorities or opinions of others forms
a nonlinear contact process that drives the spread of the behavior(s) that follow
those beliefs. This peer-pressure contact metaphor can be used to describe a wide
variety of phenomena including both directly cooperative processes, good and bad—
say, learning environments or gang activity—and processes where contacts occur
indirectly, often via the media—say, political beliefs or ideals of health and beauty.
At the beginning of this century, Gladwell [13] popularized the single-nonlinearity
metaphor of a “tipping point” to explain trends in everything from shoe sales to
sexually transmitted diseases and crime rates. In research literature, mathematical
models had been used during the last three decades of the twentieth century to
study thresholds in collective behaviors in general, as well as applied to specific
phenomena such as segregation, dropout rates, teen pregnancy, and political beliefs
[8, 16, 17, 33, 37], fads and fashion demand, and urban growth [38, p. 274]. In
each case, the metaphor from mathematical epidemiology could be used to identify
thresholds governing the persistence of the phenomenon.

It was during this same time that Carlos Castillo-Chavez developed the Math-
ematical and Theoretical Biology Institute (MTBI), a student research program
in which, unlike most such programs, the students are free to choose the research
topic, even when it goes well beyond the anticipated range of subjects. Although
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the vast majority of the over 150 dynamical systems research projects produced
since MTBI’s inception in 1996 have studied problems in population biology and
theoretical ecology and epidemiology, fully two dozen have instead applied the epi-
demiological metaphor to questions of collective behaviors, many of which have
subsequently been published in journals. The problems studied include drug use
[35], which has led to more detailed studies of alcohol and tobacco use [26, 32];
eating disorders [15, 12] and depression driven by unhealthy societal ideals [11];
political behaviors and the growth of grassroots movements [30]; cooperative learn-
ing environments [9] and (on the other hand) teacher and student burnout [5];
delinquency, gang and criminal activity, and the effects of “three strikes” laws; im-
migration and immigration policy; the spread of rumors and gossip [4]; and even
competing advertisements. In these studies1, the manifestation of peer pressure’s
driving force as nonlinear contact rates in systems of differential equations led to
behavior thresholds and threshold quantities like those reviewed by Gladwell and
Weidlich, in a direct line from Ross and Kermack and McKendrick. However, the
relative intensity of this research line over the past fifteen years has also led to a
more detailed examination of hierarchical participation in these activities—for in-
stance, those who organize and promote grassroots movements, as opposed to those
who simply vote for them, or those who train others in collaborative learning, as
opposed to those who simply collaborate. When advancement to the higher levels
of participation involves further contact (training, debate, discussion), the result-
ing dynamical model contains multiple nonlinearities in series, and the subsequent
collective behaviors become much more complex than the single-level nonlinearity
metaphor can account for. Put another way, the real complexity of human inter-
actions may produce multiple-level nonlinearities, and thus lead to an altogether
different qualitative metaphor.

Some relatively simple examples of this multi-level interaction have already been
seen in mathematical epidemiology, the best-known of which is the so-called “back-
ward” bifurcation which can arise when individuals change their level of infection
risk during an outbreak, say by gaining or losing vaccination protection, or by
changing the rate at which they make potentially infectious contacts, even when
these changes have nothing to do with awareness of the outbreak or danger, e.g.,
[19, 25]. Figure 1(b) depicts such a bifurcation graphically, illustrating the resultant
possibility of an infection to persist at a high level even when its basic reproductive
number R0 remains below 1. The consequences of this behavior continue to have
major repercussions in disease control policy, and the corresponding implications
about the robustness of hierarchical collective behaviors are equally groundbreaking.

It is only in reviewing these MTBI studies, however, that the new behaviors
emerge, and the new metaphor becomes clear. This is the aim of the present article.
The review begins in the following section by examining the effect of spontaneous
(linear) relapse by those “recovered” from participation, an extension of the single-
level epidemiological metaphor, which visibly augments the phenomenon’s basic
reproductive number (threshold quantity). The next section describes the common
structure of a simplified multi-level metaphor, in which automatic advancement to
higher levels of participation creates a less-than-additive effect (in the reproductive
number) of joint pressure by intermediate and advanced participants. Finally, we

1Research reports for all MTBI projects can be found at the MTBI webpage
http://mtbi.asu.edu/research/archive.
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examine the effects of the fully developed hierarchical metaphor, in which multi-
ple nonlinear transitions create multiple thresholds, enabling backward bifurcations
and even more complex behavior to occur, reflecting more deeply the broad, intri-
cate spectrum of behaviors that result from simultaneous interaction among several
groups of individuals, even when restricted to a single phenomenon or topic.

2. Spontaneous relapse: Extending the single-level metaphor. Several
MTBI projects have described the dynamics of a system in which participants
“recover” or quit but may then “relapse” or resume participation spontaneously,
i.e., without further pressure to do so. In mathematical terms, both recovery and
relapse are linear under this hypothesis: they occur at rates that can be described
in terms of (actually as the reciprocals of) average “residence” times in each status,
completely independently of how many individuals are still participating. This sets
up a three-class model (those who have never participated, current participants,
and former participants), which has been considered for a wide variety of situa-
tions including juvenile delinquency, drug use of various sorts, and even sex workers
and their clients. In each case the common structure involves a sort of addiction
which prompts relapses independently of the kind of peer pressure that recruited
the individuals in the first place.

One of the first studies to present a system with spontaneous (linear) relapse
was Castillo-Garsow et al. [7], which examined the system in its simplest form,
with only the three basic transitions (recruitment, recovery, relapse) in addition to
demographic renewal. The model, of which a flow chart is given in Figure 2(a), was
designed to describe drug and tobacco use, and has been used in other subsequent
projects such as one studying crack cocaine use. Given a per capita pressure contact
rate into the D user class of βD/N and per capita departure rate of µ+γ, the basic
reproductive number without relapse is β/(µ+ γ). However, the per capita relapse
rate δ adds to this number, because the average number of times that an individual
visits the user class is no longer 1. Instead, a fraction ( γ

µ+γ
) of those who leave the

user class go into the recovering class, of whom a fraction ( δ
µ+δ

) then relapse back

into the user class. In all, a fraction φ = γ
µ+γ

· δ
µ+δ

of users relapse. Of those who

relapse, a further fraction φ—that is, a fraction φ2 of all users—eventually relapse
a second time. Likewise a fraction φ3 of all users eventually relapse at least three
times, etc. The average number of times a user enters the user class is therefore
given by a geometric series,

∑

∞

k=1 φ
k, making the basic reproductive number

R0 =
β

µ+ γ

∞
∑

k=1

(

γ

µ+ γ
·

δ

µ+ δ

)k

=
β(µ+ δ)

µ(µ+ γ + δ)
.

It is, of course, also possible to derive R0 in a less ad hoc way, using one of
the two next generation operator (NGO) methods developed for this purpose in an
epidemiological context [10, 36]. A word is in order, however, regarding the inter-
pretive first step of any of these methods, in which one must identify which classes
are considered “infected” (in behavioral terms, committed to participation or the
ideas under study), or which transitions are considered new “infections.” Because
relapse from the recovering class occurs spontaneously and without any need for
“reinfection,” this class should correctly be considered an infected class, meaning
that relapses do not constitute new infections, merely reactivation of existing infec-
tions. This corresponds to the terminology of addiction, in which those who quit
are considered recovering and not permanently recovered. This interpretation leads
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Figure 2. Flow charts for models depicting spontaneous (linear)
relapse: (a) at left, the model for drug use with linear relapse of
[7]; (b) at right, the juvenile delinquency model of [6]. All la-
bels represent per capita rates. Both models compartmentalize the
“at-risk” population into “susceptible” non-participants S, partic-
ipants/users D, and former (recovering R or arrested A) partici-
pants.

to the expression for R0 given above. If one were instead to consider the R class as
recovered and uninfected, qualifying relapses as new infections despite their spon-
taneous nature, a different expression for R0 would result, namely β

µ+γ
+ δ

µ+δ
·

γ
µ+γ

(which, as it differs only in interpretation, serves the same mathematical purpose,
since it is always on the same side of 1 as the true R0).

At the same time, another study [6] used a similar form to study juvenile delin-
quency as a collective behavior driven by peer pressure. The model developed, il-
lustrated in Figure 2(b), adds two transitions to the basic structure, with the third
(removed) class representing individuals who are arrested (and therefore unable to
influence others to participate). Some proportion (1 − q) of individuals released
from arrest are assumed to be rehabilitated, while others (q) resume delinquency;
likewise delinquents may choose to quit (reverting to susceptible non-participants)
while others are caught and arrested. The change in interpretation of the removed
class leads to these additional transitions back to the susceptible class, adding in-
crementally to the complexity of the phenomenon’s basic reproductive number, but
not changing the qualitative behavior any. Calculation of the threshold quantity,
again considering the removed (arrested) class as still “infected,” yields

R0 =
β

µ+ α+ ω + (1− k)γ
, where k =

qδ

µ+ δ + ω′
,

which is clearly greater than the value would be without relapse (q = k = 0). Note
this expression can also be written in the other forms given for the R0 of the previous
model; in particular, the geometric series form uses the probability γk

µ+α+ω+γ
of a

delinquent returning to the delinquent class after leaving it.
In mathematical terms, the addition of linear terms for new (i.e., beyond basic

recruitment to participate) transitions does not change the qualitative behavior of
the system, which remains driven by the sole nonlinearity. In sociological terms,
inevitable relapses or resumptions of collective behaviors strengthen the behaviors’
ability to persist, but remain part of the single-threshold metaphor. That is, relapse
which is inherent to an individual’s nature (prompted by means such as addiction
or economic need), rather than driven by contact with others’ ideas, can’t sustain
a phenomenon by itself, although it can enable weak peer pressure to do so.
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3. Automatic advancement: Toward the multi-level metaphor. The heart
of the multi-level metaphor is a hierarchical structure which identifies multiple levels
of participation in a collective behavior, distinguishing novices from experts, passive
agreement from activism, average participants from organizers. In some phenomena,
however, studies have viewed the transition from the first to the second stage as
automatic, with the first stage representing adoption of a certain belief or idea,
and the second representing implementation; here the transition between stages
corresponds to a delay in beginning to live out the belief in question (or to see
the consequences of doing so). This structure has been applied (in MTBI projects)
to phenomena such as eating disorders [15], depression [11], teen smoking [7], and
even U.S.-Mexico immigration; in the latter case, the first stage of participation
represented residents of Mexico who had developed an interest in moving to the
U.S. (because of reports from others), while the second stage represented those who
had actually immigrated. A review of these projects illustrates how the resulting
automatic-transition structure affects the phenomenon’s reproductive number in a
different way, but leaves the qualitative nature of the collective behavior the same.

A 2004 study [12] described the development of obesity in the U.S. in terms of
an epidemic (1 in 3 Americans is now clinically obese) fueled by the adoption of
a lifestyle involving increased caloric intake (dominated by fast food restaurants)
and reduced physical activity levels. The underlying hypothesis is that individ-
uals (and families) adopt this lifestyle through interaction with others who have
already done so (especially since meals are common settings for social interaction).
In this study, the two stages of participation in a fast-food lifestyle lead initially
to being overweight (class O1) and eventually to being obese (class O2), the latter
transition occurring naturally as the effects of the new lifestyle accumulate. Indi-
viduals in both stages may quit the lifestyle and return to healthier habits either
spontaneously (by noticing the lifestyle’s effects on themselves) or by observing the
lifestyle’s effects (heart attacks and other health problems) on the obese, but in ei-
ther case it is assumed in the simplest model (three are considered) that there is no
relapse, the lesson learned having been sufficiently severe. The fast-food lifestyle is
thus described as a two-stage phenomenon with automatic transition to the second
stage.

The corresponding mathematical model (illustrated in Figure 3(a)) exhibits only
the single threshold driven by the initial nonlinearity: persistence of the lifestyle
is driven by the strength of the initial recruitment interaction, measured in the
model by the parameter β. However, in contrast to single-stage phenomena, the
corresponding reproductive number has a more complex form, reflecting the two-
stage nature of the “infection”:

R0 =
1

2

(

R1 +
√

R2
1 + 4r22

)

, where R1 =
β

µ+ γ + α1
, r2 =

√

R1
γ

µ+ α2
.

Here R1 gives the behavior’s reproductive number for the influence of individuals
in the first stage only, and the term r2 (written in lowercase since it is not properly
speaking a reproductive number) deals with the influence of individuals in the sec-
ond stage. The latter term resembles the reproductive number for a vector-borne
infection, as the geometric mean (square root of the product) of two single-stage
reproductive ratios: R1 and γ

µ+α2

, each of which gives the rate into the respective

stage over the rate out. One can also, however, interpret r22 instead as the proportion
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γ
µ+γ+α1

of stage one (overweight) individuals who eventually become obese, multi-

plied by the reproductive effect β
µ+α2

of stage two (they influence non-participants

at a rate of β, for an average duration of 1/(µ + α2)). One also observes that R0

is independent of the factor α0 denoting the strength of the influence of seeing the
negative consequences of others’ obesity, since the context of the basic reproductive
number involves the phenomenon at its outset, when only a few (thus first-stage)
individuals are promulgating the lifestyle.

This hybrid (part one-stage, part two-stage) structure for R0 also merits inter-
pretation. First, from a purely algebraic perspective, one can note that R1 < R0 <
R1 + r2; that is, the behavior’s reproductive capacity is greater than it would be if
only stage one individuals contributed to acceptance of the lifestyle, but less than
the sum of the two stages’ respective influences, because there is overlap between
them (both R1 and r2 measure abilities to replenish O1, but recruitment into O1 also
eventually brings individuals into O2). We may term this effect “almost additive”
or less-than-additive. If we view the two single-stage numbers as measures along
different dimensions, the square root term resembles a Euclidean distance expres-
sion, as though, in the overall measure R0, half of R1 were considered orthogonal
to r2, and the other half parallel to the resultant. For this reason we might also
term this form “half-orthogonal.” This form for a basic reproductive number has
been seen in some models for the transmission of vector-borne diseases (e.g., [24]),
in which host-internal transmission (such as vertical transmission from mother to
child) appears “half-orthogonal” to transmission between host and vector.

Another study [15] described the spread of the eating disorder bulimia nervosa
in a college population in similar terms (see Figure 3(b)). Here, peer pressure to
conform to unrealistic ideals of health and beauty prompted some individuals to
develop bulimia, further supported within this closed population by eating habits
which are public since most students in residential universities eat in groups rather
than alone. The two stages here distinguish the severity of the behavior: initially
(class B1) individuals are able to keep their bulimic purges secret, but eventually
the behavior and effects progress to a severity in which their health is endangered
(B2), prompting them to enter treatment either by having a severe enough episode
that family, friends or healthcare providers become aware of it (considered a sponta-
neous, non-contact event) or by learning of friends or classmates who have entered
treatment (considered a contact-driven event). Like the more complex obesity mod-
els (not discussed here) in the previous study, the model also allows for relapse: in
this case, spontaneous relapse (treatment failure) back into the more severe class.

As with the obesity model already discussed, the model yields simple threshold
behavior driven by the disorder’s basic reproductive number, despite the nonlinear-
ity in the treatment rate since the linear treatment rate dominates (even if no one
else in the student population is presently in treatment, advanced-stage bulimics
will eventually have an episode that causes discovery followed by mandatory treat-
ment). However, relapse does complicate the expression: if we again let R1 = α

µ+γ

be the part of the reproductive number describing the influence of stage one in-

dividuals and r2 =
√

R1
γ

µ+ερ
describe the influence of stage two individuals, and

consider relapse to decrease the effective treatment rate by a factor ε = µ
µ+φ

, then

the NGO method of Diekmann et al. [10] again yields R0 = 1
2

(

R1 +
√

R2
1 + 4r22

)

.

The only significant difference from that of the obesity model is that the second
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Figure 3. Flow charts for models of eating disorders depicting
automatic progression to advanced participation: (a) at left, the
obesity model of [12]; (b) at right, the bulimia model of [15]. Tran-
sition labels represent per capita rates.
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Figure 4. Flow chart for the two-stage depression model of [11],
with automatic advancement to the second stage. Transition labels
represent per capita rates.

stage’s influence r2 is here diluted by relapse. (Note that R0 is independent of
the nonlinear treatment rate δ, which depends on having an established population
already in treatment, and that [15] presents a form for R0 which considers relapses
more like reinfections.)

A 2002 study [11] examined depression in young women due to the same ideals
which formed the basis for the bulimia study. The resulting model, of which a
special case is illustrated in Figure 4, involves four classes: women with low and
high vulnerabilities to depression, with depression, and in treatment (which may end
with either success or spontaneous relapse). Here the phenomenon is subscription to
unhealthy ideals, which initially manifests as increased vulnerability to depression
and eventually, under the authors’ hypotheses, leads to clinical depression. The two-
stage participation with automatic progression again leads to the same behavior as
described for the previous two studies, and (including relapse) the same reproductive
number as for the bulimia model. Other studies which include this same form and
behavior include a 2000 study on teen smoking, education, and lung cancer [1].

One non-example serves to clarify that order matters. Boyd et al. [5] devel-
oped a model for a school with teacher and student populations each functioning
at three different levels. Teachers (see Figure 5) were classified as unprepared, pre-
pared, and master teachers: Unprepared teachers are those who enter the profession
with emergency or temporary credentials and without any background preparation
for teaching. Prepared teachers are those who are able to manage classrooms well
enough to deliver lessons, because of either a formal background in teacher education
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Figure 5. Flow chart for the teacher system in the education
model of [5], where advancement to the first stage is automatic.
Transition labels represent per capita rates.

or sufficient teaching experience; this qualification addresses basic logistical com-
petence but not pedagogical quality. Master teachers are defined by pedagogical
excellence in helping students learn and construct their own knowledge. Conse-
quently, new teachers arrive at the school in one of the first two classes (since the
study concerns schools with high drop-out rates, it is assumed that the school is
only able to recruit teachers new to the profession, many of them on emergency
credentials). The study also assumed that, although unprepared teachers have a
higher burnout rate, those who persevere eventually master the logistical aspects of
the job and become prepared. However, it was also assumed that master teachers
served as mentors, to help prepared teachers develop into master teachers them-
selves (unprepared teachers were assumed to be too busy dealing with logistical
and classroom management issues to attend to finer pedagogical questions). These
assumptions lead to a mathematical model in which “recruitment” into the body of
competent teachers occurs automatically (a linear transition) but advancement to
master level requires mentoring (a nonlinear, contact-based transition). Here the
order of the two transition types is reversed from that of the other two-stage models
reviewed in this section, with the result that there will always be a population of
teachers with baseline competence (even if all new arrivals are unprepared), and the
only question is whether a master/mentor class will survive; this latter question is
answered with a single threshold quantity, measuring the master teachers’ average
ability to mentor their prepared colleagues into master teachers themselves before
retiring.

Therefore partly hierarchical collective behaviors, in which initial recruitment
is driven by peer-pressure contacts but progression is automatic, manifests in the
phenomenon’s basic reproductive number, which takes on an “almost-additive” or
“half-orthogonal” form reflecting a component for each stage, but not in the qualita-
tive description of the phenomenon’s ability to persist, which can still be described
by the single-threshold metaphor. Distinguishing the levels of participation allows
one to quantify the contribution of each level to sustaining the collective behav-
ior (and to see that their influence is limited to initial persuasion only) but does
not change our understanding of how, or under what conditions, it persists. This
conclusion changes when advancement requires further contacts, as the following
section explains.

4. Multi-level cooperation: A new metaphor for complex behavior. Col-
lective behaviors in which either cooperation or the influence of others’ opinions are
key to progression to advanced levels of participation have emerged as phenomena
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with a more complex structure, in which a genuinely multi-level metaphor with
multiple thresholds is necessary to describe the surprising robustness they exhibit.
This structure has been observed in a variety of studies covering topics such as
peer-pressure-based alcohol, drug and tobacco use for which simpler models de-
scribed in earlier sections painted a simpler picture, as well as other, more directly
collaborative endeavors such as cooperative learning environments and grassroots
political movements. One of the simplest consequences of a fully hierarchical model
is the so-called backward bifurcation described in the introduction, although it will
be shown in this section that backward bifurcations in sociological models can be
much more complicated than those seen more typically in epidemiological models.
In the review that follows, we consider two separate versions of the metaphor: one
in which the two consecutive contact-based transitions are aligned in the same di-
rection, leading individuals to initial and then advanced participation, and another
in which the transitions occur in opposite directions, both leading into the initial
participation level, in which the latter transition represents a so-called nonlinear
relapse brought about by the influence of peer pressure. We begin with the former.

In the summer of 2001, already having given rise to an unexpected diversity of
research, MTBI itself became the focus of one project, and the motivation behind
a more general model of a cooperative learning environment. The model, depicted
in Figure 6(a), retains the three-class structure of earlier models but (in extending
the epidemiological metaphor) stratifies participation into novices and mentors,
with recruitment into each level dependent on contact with those at the new level
or higher. That is, novices “teach” by example, while mentors are experienced
enough that they can not only train individuals in collaborative learning (and more
efficiently than novices do), but also train novices to become mentors. Although
mathematical models had previously been used to describe cooperation (e.g., [14]
applied game theory, casting it as a binomial version of the prisoner’s dilemma),
this was the first extension of the epidemiological metaphor to describe cooperative
learning as a hierarchically structured phenomenon.

As one might anticipate, two distinct reproductive numbers quickly emerge from
the analysis of such a model, representing the respective abilities of the novice and
mentor classes to replace themselves from the class immediately below:

R1 =
β1q

µ
, R2 =

β2

µ+ γ

(

1−
1

R1

)

.

Here q ∈ (0, 1) describes the effectiveness of novices’ “training” ability relative to

that of mentors, and the term
(

1− 1
R1

)

in R2 represents the proportion of the

population in the novice class when R1 > 1, i.e., the fraction of the population
available to train as mentors, which multiplies the mentors’ basic efficiency r2 = β2

µ+γ

in doing so. These two numbers serve as threshold quantities determining the
persistence of each class: if R1 > 1, then a population of novice cooperative learners
is guaranteed to survive, and if in addition R2 > 1 then there will always be a
population of mentors as well (spontaneous “burnout” relapse from mentors to
passive participants has only a minor effect on R2). To this extent the hierarchical
metaphor may resemble two concatenated copies of the single-level metaphor. But
there is more.

The multi-level metaphor features a third threshold, beyond the two predictable
ones, with its own threshold quantity, a sort of reproductive number describing the
resilience of the hierarchical structure—and in particular incorporating mentors’
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ability to train/recruit new novices (which does not factor into R1 or R2):

R3 = 1
/

(√

q

R1
+

√

1− q

r2

)2

.

IfR3 > 1, then a backward bifurcation occurs, but with potentially much greater im-
pact than the simple backward bifurcation depicted in the introduction for epidemic
models. The bifurcation at R1 = 1 is always forward, but when the bifurcation at
R2 = 1 turns backward (i.e., if R3 > 1), it has the potential to reach back below the
prior bifurcation point. That is, if R1 < 1, so that normally not even the novice class
could persist, but R3 > 1, then a large enough “seed” community can persist (once
introduced) at all three levels including mentors, as illustrated in Figure 6(b). Thus
backward bifurcations in general provide a measure of robustness to the phenom-
ena they describe; here that phenomenon is the persistence of the mentor class, but
by virtue of mentors’ work training individuals to become novices, the robustness
extends to sustain the entire collaborative learning community, novices included, in
cases where it would never arise on its own.

The lesson here is that dedicated mentors can sustain hierarchically structured
communities once they’re established. This result contradicts Gladwell’s [13] single-
level “tipping point” metaphor, which offers a limited view of the complex impact
of multi-level social forces on community resilience, by failing to predict this third
threshold yielded by two nonlinear transitions in series.

A 2005 study (published as [30]) of the growth of grassroots political movements
and third parties used a similar structure to describe the recruitment of partisans
(voters) and party organizers. The primary difference in model structure is that
“relapse” is considered not from party members/organizers to voters, but from
party voters back into the general voting population, with both spontaneous (lin-
ear) and contact-based (nonlinear) transitions there (see Figure 7(a) for a sketch of
the model). However, the behavior is again driven by the two contact processes con-
nected in series: party voters (V ) and members (M) convincing voters not affiliated
with the movement S to subscribe to party ideas, and members recruiting more
organizers from among those who already share the movement’s ideals. Like the
cooperative education model, this application of the multi-level contact metaphor
involves not two but three thresholds, each with its own associated reproductive
number:2

R1 =
β − φ

µ+ ε
, R2 = r2

(

1−
1

R1

)

, R3 = r3

(

1−
1 + q + 2

√

q(1−R2)

r2

)

,

where R1, r2 = γ
µ
, and r3 = αβ

µ
measure the basic recruitment efficiencies, respec-

tively, of party voters V on general voters S, party activists M on party voters
V , and party activists M on general voters S. The terms by which r2 and r3 are
multiplied to yield R2 and R3 represent the proportion of the population available
to be recruited in each case. Also, q = (β − φ)/αβ < 1 describes the influence
of party voters’ influence on the general voting populace relative to that of party
activists. It is worth noting that any and all of q, R1, R2, R3 can be negative, which
may appear to defy their definitions as average reproductive numbers (or relative
strength in the case of q), but negative values for these quantities may more prop-
erly be interpreted as the corresponding recruitment ability being moot due to a

2Note the R3 given here differs slightly from that given in [30]: R3 > 1 here is equivalent to
R3b > 1 in the article.
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Figure 6. (a) Above, a flow chart for the collaborative learning
environment model of [9], with two nonlinear transitions in series
(all transition rates are per capita); (b) below, a bifurcation di-
agram in parameter space depicting the behavior of this model.
BB1 refers to the situation where a backward bifurcation allows
the mentor class to persist when it would not naturally arise, BB2
(where R1 < 1) to the more extreme scenario where the backward
bifurcation allows novices and mentors both to persist under con-
ditions where neither would normally arise.

recruitment failure at a lower level (R2 depends visibly on R1, and R3 on r2 and
R2, even though it only applies when R2 ≤ 1).

The three thresholds which determine the movement’s (party’s) fate are depicted
graphically in Figure 7(b), illustrating again the robustness imported to a collec-
tive behavior with a fully cooperative hierarchy, through the multi-level metaphor.
Party members’ active recruitment of “susceptible” individuals into the group of
party voters provides the movement a third sustaining force which can be criti-
cal to its survival when strictly hierarchical recruitment is not enough. From [30]:
“This activism, which sidesteps the traditional hierarchical structure of a party,
is a key characteristic of growing grassroots movements, which often lack a politi-
cal environment favorable to their growth in the traditional way.” The underlying
mathematical structure of this robustness again involves a backward bifurcation
(at R2 = 1) which has the capacity to reach back below even the first threshold
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Figure 7. (a) Above, flow chart for the grassroots political move-
ment model of [30], with two nonlinear transitions in series; (b)
below, a bifurcation diagram in parameter space depicting the be-
havior of this model (x and y are measures of the strength of re-
cruiting into the V and M classes, respectively)

(R1 = 1, where R2 = 0) and allow an existing movement to survive where it would
never be able to arise. This can explain the survival of dedicated movements under
shifting political winds.

As mentioned in the introduction to this section, there is another way to connect
two contact processes in series: in opposing directions, to describe a phenomenon
which uses contacts (peer pressure) to recruit from both the uninitiated and former
participants, with different levels of influence on the two groups. The resulting
heterogeneity in non-participants’ susceptibility to recruitment allows the underly-
ing mathematical structure—nonlinear relapse—to exhibit a backward bifurcation,
lending robustness to the phenomenon in question. (Since there is only one level
of true participation, however, any backward bifurcation has only one threshold
below which to reach, unlike the fully hierarchical behaviors described above.) This
structure has been used at MTBI to study the effects of peer pressure on relapse in
the use of alcohol, tobacco, and other drugs, as well as gang dynamics [3] and crime
rates (including the effects of “three strikes” laws as deterrents [34]), beginning with
that first study by Castillo-Garsow et al. in 1997 [7].

The study of nonlinear relapse replaces the spontaneous relapse term of earlier
models with a contact-based relapse representing the influence of peer pressure in
bringing “recovering” or “reformed” ex-participants back into the behavior in ques-
tion (setting it clearly apart from the notion of relapse due to addiction). Figure 8(a)
sketches the dynamics for the corresponding study considered by Castillo-Garsow
et al. (cf. the spontaneous relapse model in Figure 2(a)). Since (to the author’s
knowledge) these studies have not been published formally before, the details of
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the equilibrium analysis for this basic model are given briefly in the Appendix.
The results indicate two thresholds, one connected to each contact process. The
basic reproduction number, given by R0 = β

µ+γ
, measures the influence of partici-

pants’ peer pressure in recruiting first-time participants, but remains independent
of their influence on former participants. Instead, a secondary reproductive number

R1 = β′

µ+γ
measures that influence, and the phenomenon persists if either R0 > 1

(as expected) or R1 exceeds a function g(R0), given in equation (2) in the Appen-
dix, which depends only on R0 and the relative strength a = µ

µ+γ
of demographic

renewal to quitting, and whose value exceeds 1 (that is, g(R0) > 1, so the condi-
tion is stricter than R1 > 1). Thus participants who exert a strong influence on
former “members” to rejoin may be able to sustain the phenomenon despite having
relatively weak influence on those who have never participated, which supports a
common view of gang activity, that reformed gang members feel significant pressure
from their former peers to return. The underlying mathematical structure again
involves a backward bifurcation, which by offering a second path to stability extends
a measure of resilience to the phenomenon.

The studies that followed [7] (in 2006, 2007 and 2011) saw the same structure
and behavior, with nonlinear relapse creating a second threshold quantity rather
than affecting the phenomenon’s basic reproductive number as spontaneous relapse
does. Although peer pressure-based relapse does not constitute a truly hierarchical
behavior, the “hierarchy” (heterogeneity) in non-participants gives the phenomenon
a potential robustness that warrants inclusion here in discussing the limitations of
the single-threshold metaphor. There was, however, a 2001 project which incorpo-
rated both a fully hierarchical (two-level participation) structure and contact-based
relapse; its many embedded nonlinearities stretch the application of the metaphor
(as well as the ability of standard techniques to analyze model behavior fully), but
the complex behavior it describes warrants inclusion as well.

This project, later published as [35], studied the environment of rave parties and
nightclubs as a setting for promulgating the use of the drug ecstasy. The model
developed in this study divided a population of young people (ages 13 to 25) into
four groups: the majority A who do not attend raves (or frequent clubs), those
S who do frequent such gatherings but do not (yet) use ecstasy, ecstasy users I,
and former ecstasy users V who are still part of the rave scene. Apart from a
linear quitting rate (and demographic renewal), every transition is nonlinear, as
seen in the flow chart of Figure 9: six in total, including a contact-based quitting
rate. As in the cooperative learning and political movement models, the “advanced”
class of ecstasy users I participates in inviting/pressuring others to come to raves
(along with non-users S), as well as in introducing rave-goers S to ecstasy use;
as in the simpler nonlinear relapse models, ecstasy users also influence reformed
users V to resume use. At the same time, all non-users influence users to quit, and
non-ravegoers influence non-user ravegoers to stop going to raves. Predictably, this
highly complex system exhibits numerous and complicated bifurcations.

The first threshold involves the establishment of a core ravegoing population
S from the general population A, which occurs if the core recruitment number
(representing the strength of the core’s influence) Rc = ε−δs

µ
> 1. In this case a

proportion 1− 1
Rc

of the population frequents raves, and a second threshold arises,

with R0 = φ
µ+τ+γ

(

1− 1
Rc

)

measuring the ability of ecstasy users to recruit new
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Figure 9. Flow chart for the ecstasy/rave model of [35]. Transi-
tion rates are per capita.

users from among ravegoers. If R0 > 1, ecstasy use persists in the population. Al-
though the authors of [35] did not identify further threshold quantities analytically,
they did verify that for high relapse contact rates α or when the core recruitment
rate by users ε was high (even when the net recruitment rate by other ravegoers
ε − δs was low) backward bifurcations occurred, suggesting the existence of two
more threshold quantities, either of which would provide significant resilience to
the ravegoing and ecstasy use populations.

These studies show how multiple nonlinear transitions into a collective behavior
yield multiple threshold quantities—and a possibility of backward bifurcations, since
the number of thresholds follows the number of influences (one class acting on
another), which may be greater than the number of transitions. That is, phenomena
in which participants at multiple levels (or varying levels of susceptibility) progress
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only under the influence of the more advanced have survival thresholds at each
level—but, in exchange, established groups may be able to sustain themselves even
when they could not (or no longer) arise. In short, multi-level interaction changes
the metaphor and creates resilient structures.

5. Conclusions. Metaphors emerge and evolve through use. The epidemiological
metaphor describing ideas spreading like infection through contacts between suscep-
tibles and infectives began by lending the notion of a tipping point or threshold to
studies of the persistence of collective behaviors, but (as seen in the MTBI studies
reviewed above) the complex influences of others’ opinions have led to a fundamen-
tally new metaphor, in which hierarchically stratified participation with every level
cooperating to sustain the phenomenon makes the whole greater than the sum of
its parts (or the sum of single-level metaphors). Mathematically speaking, multi-
ple nonlinear transitions make backward bifurcations possible: cooperation at the
highest level can overcome even the most basic failure to recruit participants at the
lowest level. It is important to understand backward bifurcations in the proper con-
text: they create scenarios in which the initial size of the phenomenon determines
its survivability. In this scenario, short-term efforts to build community, or favor-
able environmental conditions which disappear due to political or resource shifts in
the larger culture can be sufficient to build a critical mass before conditions become
less favorable. Eradicating the phenomenon then becomes exceptionally difficult,
as it requires reducing the number of participants to quite a low level first. Wei-
dlich, observing such multiple attractors in the evolution of biological and economic
systems, wrote [38, p. 204], “In a more imaginative metaphor one may speak of a
(multidimensional) ‘adaptive landscape’ on which evolution proceeds, with a multi-
plicity of basins of attraction.” Here that multidimensional metaphor has emerged,
but the dimensions are contact processes, which give rise to thresholds, rather than
stages of progression through the process in question.

A secondary conclusion involves the nature of relapse. Spontaneous relapses due
to addiction or similar internal forces affect a collective behavior in a fundamentally
different way than relapses prompted primarily by contact with current participants
(like gang membership): in the former case, the phenomenon’s basic reproductive
number is increased, but the nature of the metaphor remains single-level, whereas
in the latter case, the reproductive number is unaffected, and instead an additional
threshold emerges. A similar contrast occurs with multi-stage progression, with au-
tomatic or spontaneous advancement affecting the form of the reproductive number,
but not the number of threshold quantities (the “dimension” of the metaphor).

One of the most remarkable features of this metaphor (as well as of its prede-
cessor) is the wide variety of behaviors which it can describe: both desirable and
undesirable, driven by real person-to-person contacts or the less tangible influence
of others’ public behavior, whether consciously and deliberately organized or arising
naturally from trends in opinions. The notion of mathematical abstraction under-
lies this property, and although mathematical models serve quantitative purposes
quite well in some cases, the robustness of the metaphor across many different spe-
cific models remains a critical qualitative hallmark of its utility. Finally, however,
it is also important to note that the metaphor does not measure the value of the
process(es) studied (whether collaborative learning or drug use) or the accuracy of
the models proposed—it just observes the resiliency of structures created through
multi-level (collaborative) interactions. For a research program developed at an
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institution founded on collaboration among undergraduate and graduate students,
postdocs, and faculty, with several current faculty who joined as undergraduates,
that seems somehow appropriate.
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Appendix. Mathematical analysis for nonlinear relapse model. For the
system

D′(t) = βSD/N + β′RD/N − (µ+ γ)D,

R′(t) = γD − µR− β′RD/N, (1)

S = N −D −R,

the equilibrium conditions yield the trivial equilibriumD∗ = R∗ = 0 and a quadratic
equation for endemic equilibria,

f(d) = Ad2 +Bd+ C = −ββ′d2 + β′

[

β

(

1−
µ+ γ

β′

)

− µ

]

d+ µ[β − (µ+ γ)] = 0,

where d = D∗/N . Since A < 0, f(1) < 0, and f ′(1) < 0, all roots of f must be less
than 1. In general a quadratic equation has 2 positive solutions iff B2 > 4AC > 0
and B/A < 0. Since A < 0, AC > 0 ⇔ C < 0.

An NGO approach calculates R0 = β
µ+γ

; if in addition we define R1 = β′

µ+γ
and

a = µ
µ+γ

< 1, then we can simplify the criteria. First, C < 0 ⇔ R0 < 1, so that

when R0 > 1 there is exactly one positive solution. When R0 < 1, the remaining

conditions for [two] positive equilibria are B > 0, which becomes R0

a

(

1− 1
R1

)

> 1,

and B2 − 4AC > 0, which becomes

(R0 − a)2R2
1 + 2R0(2R0a−R0 − a)R1 +R2

0 > 0.
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This is true for R1 outside (i.e., not between) the values

R0 ·
R0 + a− 2aR0 ± 2

√

R0(1−R0)a(1− a)

(R0 − a)2
.

Since R0(R0 + a − 2aR0) > (R0 − a)2, the constraint R1 > 1 implied by B > 0
above simplifies the quadratic constraint to

R1 > g(R0) = R0 ·
R0 + a− 2aR0 + 2

√

R0(1−R0)a(1 − a)

(R0 − a)2
. (2)

We can now rewrite the constraint B > 0 as R0 > a and R1 > R0

R0−a
, so

that the conditions for two endemic equilibria become a < R0 < 1 and R1 >

max
(

R0

R0−a
, g(R0)

)

. Some straightforward algebra shows that R0

R0−a
< g(R0) for

a < R0 < 1 (with the same vertical asymptote at R0 = a and equality at R0 = 1),
so that, finally, we have the result that the nonlinear relapse model has one en-
demic equilibrium when R0 > 1, two iff a < R0 < 1 and R1 > g(R0), and none
otherwise. Note that without demographic renewal (a short-term dynamics model),
a → 0, the conditions for two endemic equilibria simplify to R0 < 1 and R1 > 1,
highlighting the significance of the secondary (relapse) reproductive number R1 in
making it possible for contact-based (nonlinear) relapse to sustain an established
phenomenon (in mathematical terms, for high enough initial conditions even when
R0 < 1).
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