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Abstract. An appropriate choice of strategy for resource allocation may fre-

quently determine whether a population will be able to survive under the con-
ditions of severe resource limitations. Here we focus on two classes of strategies

allocation of resources towards rapid proliferation, or towards slower prolifera-
tion but increased physiological and environmental maintenance. We propose

a generalized framework, where individuals within a population can use ei-

ther strategy in different proportion for utilization of a common dynamical
resource in order to maximize their fitness. We use the model to address two

major questions, namely, whether either strategy is more likely to be selected

for as a result of natural selection, and, if one allows for the possibility of
resource over-consumption, whether either strategy is preferable for avoiding

population collapse due to resource exhaustion. Analytical and numerical re-

sults suggest that the ultimate choice of strategy is determined primarily by
the initial distribution of individuals in the population, and that while invest-

ment in physiological and environmental maintenance is a preferable strategy
in a homogeneous population, no generalized prediction can be made about
heterogeneous populations.

1. Introduction. Interactions with resources often determine much of the dynam-
ics of any population, since there are no unlimited resources available to any pop-
ulation, and since it is successful competition for the resource that will determine,
whether individuals will be able to survive and reproduce. This consideration in
turn raises a question of optimizing resource allocation strategies for fitness max-
imization under the constraint of different selective pressures that the population
may be experiencing at each point in time. The two strategies that can be adopted
by different species in response to different selective pressures that come from their
environment are either to invest the resources into rapid proliferation, which has
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been suggested to be the preferable strategy in unstable environments, or into physi-
ological maintenance and increasing environmental carrying capacity at the expense
of rapid proliferation, which would allow maximizing fitness in more stable condi-
tions [8, 19, 24]. The main criticism of this theory came from empirical studies:
however intuitive the heuristic may seem, the adaptations that were predicted by
either selective strategy were simply not observed in nature [28, 29, 30, 33].

The models that were used to make predictions about what environmental con-
ditions could lead to the dominance of either type of resource allocation strategy
often make the simplifying assumption of population homogeneity, or at least a level
of heterogeneity that would not affect the dynamics of the overall system, since the
choice of the dominant strategy if typically assumed to be determined solely by the
environment (for a review of the existing theoretical models see [26]). This assump-
tion may be valid if there is sufficient evidence to believe that the process that is
being observed and described takes place on a sufficiently slow time scale, so that
natural selection will simply have had no time to have any serious effect on popula-
tion dynamics. In this case the assumption of homogeneity is a reasonable enough
simplification. Otherwise, it is reasonable to believe that competition between indi-
viduals within the population poses as much, if not more selective pressures on the
entire population than do interactions with the resources. That is, other members
of the population are just as big a part of the environment as the resource, and if
the population composition is changing, so can the final outcome of the individu-
als’ interactions. However, this important aspect of population dynamics becomes
buried under the assumption of homogeneity.

Examples of population heterogeneity and intra-species interactions driving the
population towards one or the other strategy can be observed in many systems and
on many levels of selection.

On the molecular level, Voytek and Joyce [32] reported that continuous in vitro
evolution can be observed as 2 different species of RNA enzymes are made to com-
pete against each other for common limited resources (in this case substrates). In
the described experiment, the substrates were necessary for amplification of RNA.
The authors observed that as the system evolved, so did the enzymes, whose bio-
chemical characterization revealed distinct differences in their strategies: enzymes
that invested in being efficient rather than proliferative, reacted with the substrate
nearly hundredfold faster than the other; highly proliferative selected enzymes, while
not as reactive, produced 2-3 times more progeny.

Elser et al. [9] investigated the question of resource management at the cellular
level, looking particularly at competition for the common resource among differ-
ent types of tumors. The authors found that in some tissues, such as in colon and
lung, the microenvironment seems to promote selection of most rapidly proliferating
clones, while conditions in other organs may favor the clones with lower mortality
rate. This suggests that even within the same patient, different microenvironmental
conditions in different organs might favor evolution of the overall tumor composition
towards different strategies. This, of course, is only possible in the case of sufficient
tumor heterogeneity, i.e., the fact that tumors are composed of populations of ge-
netically diverse cells [12, 21, 31] that in addition to competing for the common
resources also impose selective pressures on each other.

Another example of selection on the cellular level has been demonstrated in the
work done by Chikatsu et al. [4]. The authors studied two types of rat embryo
fibroblasts and were able to observe that not only did conditions in the culture
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affect selection in cell clones with respect to growth strategy but also that presence
of one type of clones affected fitness of another type of clones under the same
environmental conditions.

On the organismal level, distinct resource allocation strategies have been ob-
served to emerge in unicellular organisms like bacteria. Denef et al. [7] observed
that in natural acidophilic biofilm communities two genotypic groups of Leptospir-
illum bacteria are unequally represented in the bacterial population during different
stages of colonization. At the early stages of colonization, the environmental re-
sources (compatible solutes) are allocated primarily towards osmoprotection (phys-
iological maintenance at the expense of rapid proliferation), while in the successive
stages more resources are allocated for metabolism and increased fecundity. The
importance of intra-species variation and its effects on biodiversity has also been
documented in multicellular organisms, such as forest trees [5], malaria mosquitoes
[27], hylid frogs [1], Eurasian badgers [20], as well as in human social ecological
systems [10].

In this paper we construct and study a consumer-producer type model based
on two models previously proposed in [17], where the individuals within a popula-
tion differ in their choice of what proportion of the common renewable resource is
allocated for rapid proliferation, or for increased physiological and environmental
maintenance achieved at the expense of rapid proliferation, in order to investigate
the question of whether either strategy can become intrinsically dominant if a het-
erogeneous population is allowed to evolve over time. In order to investigate these
questions, we turn to two models proposed by Krakauer et al. [17], where the
authors look at a large number of competitor species interacting with a single, col-
lectively constructed niche from the point of view of life history trade-offs. That
is, they assume that time and energy that is invested by the species, or individuals
within a single species, in increasing the common environmental carrying capacity
(the ’common niche’) is subtracted from time and energy invested in proliferation.
From an evolutionary point of view, one should not expect evolution to select for
individuals that invest in increasing environmental carrying capacity, since imme-
diate benefits of ’fecundity construction’ are larger. This conundrum is referred to
as ’construction dilemma’. The authors investigate both models of niche and fe-
cundity construction and conclude that niche construction can be selected for if the
species are allowed to actively monopolize their niche. In this paper we construct a
joined model based on the two models of niche and fecundity construction proposed
by Krakauer et al. [17] in order to investigate whether ’construction dilemma’ can
be resolved not through niche monopolization but solely through introduction of
sufficient population heterogeneity. We use the model to address the questions of
strategy selection under the conditions of both resource availability and limitation,
and consider a possibility of resource over-consumption by individuals within the
populations. We hypothesize that one cannot predict which strategy will come to
dominate over time without understanding both the rules that govern the dynamics
of the system and knowing the initial composition of the population.

It is important to note that the purpose of this work is not to test what birth,
death, competition or any other rates would render either strategy more or less op-
timal for maximizing the populations fitness when consuming a dynamic resource,
or to provide a case study for a specific biological system. Instead, we want to
construct a conceptual theoretical framework, where we investigate how the distri-
bution of individuals that can adopt different strategies evolves over time depending
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on the initial state of the system. The asymptotic distribution will show what strat-
egy (if any) will be selected in the process of natural evolution of the system. The
resulting insights can then be fine-tuned and applied to more specific biological,
social or economical systems.

This paper is organized as follows: first the formulation of the mathematical
model is given. Then, a parametrically homogeneous system is analyzed in order
to identify the possible dynamical regimes of the model. Next, parametric het-
erogeneity with respect to strategy choice is introduced. The resulting infinitely-
dimensional system is then reduced to low dimensionality using the Reduction the-
orem [14, 15]. The changes in population composition over time are investigated
numerically under the assumption of different initial distributions of individuals
within the population with respect to strategy choices. The paper concludes with
a discussion of results and conclusions.

2. Model Description. Consider a population of individuals x(t), whose survival
and proliferation are dependent on their ability to colonize and exploit common
collectively constructed ’niche’ z. Within the frameworks of the proposed model,
’niche’ is considered to be an abstract generalized ’extrinsic resource’, which can
be used by each individual either for increased proliferation (denoted here as r-
strategy for rapid proliferation) or for increased physiological and environmental
maintenance (denoted here as s-strategy for slow proliferation). Each individual is
assume to also possess some kind of abstract ’inner resource’, such as time, energy, or
in case of financial systems, money, than can be converted to the ’extrinsic resource’.
An example of such a situation could be an ant colony, where individual ants spend
time and energy on constructing the collective nest; another such example could be
beavers building dams.

The dynamics of z(t) is determined by a natural restoration rate γ and decay/loss
rate δz(t) , which can be interpreted as loss, or natural decay of the extrinsic re-
source, such as the damage that is done to the beaver-constructed dam as a result
of natural processes. Resource utilization and restoration is accounted for by the

term e(1−c) x/z
1+x/z , where the common extrinsic resource is restored proportionally

to each individual’s investment. Parameter e accounts for inter-conversion of each
individual’s ’intrinsic’ resource to commonly available ’extrinsic’ resource. Notice-
ably, in the case when c ≥ 1, one can observe resource over-exploitation, i.e., a
situation, when an individual consumes more of the common resource than they
invested in it; within the frameworks of the proposed model, such individuals are
referred to as over-consumers; their importance will be discussed later in the paper.

In order to enable us to investigate how different strategies can be selected over
time, let us introduce parameter α ∈ [0, 1], which is intrinsic to each individual x(t)
(from now on denoted as xα(t)) and which represents the probability with which an
individual uses either r-strategy, used with probability α, or s-strategy, used with
probability (1−α), for resource allocation. By construction, the closer α is to zero,
the more likely the individual is to use r-strategy for resource allocation, and the
larger the value of α , the more likely they are to use s-strategy. Since in this model
formulation, the only difference between the individuals is the value of parameter
α, we find it appropriate to refer to them as α -clones.

When α = 0 , each individual of this clone type use the available resources for
rapid proliferation; the per capita growth rate is described by r(c2

z
N+z −φ) , where

φ is the individuals average death rate, N(t) =
∫
α
xαdα is the total population size,



MIXED STRATEGIES AND NATURAL SELECTION IN RESOURCE ALLOCATION 1565

and where population growth is proportional both the current population size and
the amount of total available extrinsic resource.

When α = 1, each individual of this clone type uses available resources for
physiological and environmental maintenance at the expense of rapid proliferation.
In this case, the per capita growth rate is described by the functional form r(c1− bNkz ),
where the carrying capacity is not constant but is rather determined by the currently
available amount of z(t). If the individual uses both strategies with the probabilities
α and (1 − α) respectively, i.e., uses some of the “extrinsic resource”, for rapid
proliferation and some for physiological maintenance, which is more realistic than
using just one pure strategy, then the per capita growth rate of each α-clone is

αr(c1 −
N(t)

kz(t)
) + (1− α)(

c2z(t)

N(t) + z(t)
− φ).

The dynamics of the resource are determined by a natural restoration rate γ
and decay/loss rate δz(t). Consumption-restoration process is accounted for by the

term eN(t)(1−c)
z(t)+N(t) . It is assumed that each individual attempts to restore e units

of resources per unit time, which is mitigated by spatial limitations and intra-
population competition, accounted through z(t) + N(t). One can also view this
fractional relationship is in terms of mass action law, or ratio-dependence, i.e. as

e(1−c) N/z
1+N/z . As the number of consumers xalpha increases, the amount of resource

z will increase or decrease depending on the value of the parameter c ≥ 0.
For the purposes of initial analysis, let us first consider the case, when the pa-

rameter α is fixed, so that the entire population consists of a single α-clone. (It can
be interpreted as follows: if natural selection has had sufficient time to act upon the
population, the final outcome can be seen as there being an ”optimal proportion” of
each strategy within the population, if such a proportion exists). This assumption
will be relaxed later in the paper.

In this case, N(t) = xα(t), i.e., the population is monomorphic and homogeneous
with respect to α. The resulting system becomes:{

dN
dt = rN(t)(α(c1 − bN(t)

kz(t) ) + (1− α)( c2z(t)
N(t)+z(t) − φ)),

dz
dt = γ − δz(t) + eN(t)( α(1−c1)

N(t)+z(t) + (1−α)(1−c2)
N(t)+z(t) ).

(1)

The case, where α = 1 , was analyzed completely in [16]. The case, where α = 0,
is briefly discussed in the Appendix (this particular model loses biological relevance
for c0 > 1 because trajectories fall outside the positive quadrant for a wide range of
initial values). The values of z(t) are guaranteed to remain in the positive quadrant
for e > γ

c2−1+α(c1−c2) .

3. Analysis. Bifurcation analysis performed on System (1) (see Appendix A) re-
vealed seven possible topologically non-equivalent types of phase-parameter por-
traits in the positive half-plane (N, z) and (c2, c1 > 0, α ∈ [0, 1])-parameter space
for different fixed values of parameters φ, e, γ, δ. Results are summarized in Figure
1, which schematically depicts three slices of (c2, c1, α ∈ [0, 1])- parameter portraits
(Figure 1a-c) and respective phase (N, z)−plane portraits (see Figure 1,d).

First, we fix α and study the dynamics of the model with respect to variations of
parameter c1, c2, holding all other parameters in the system constant. In Domain
1 of the phase parameter portrait (when no over-consumption of the resource is
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Figure 1. Bifurcation diagram of the System (1). (a),(b),(c)
present schematically (c1, c2, α) parameter portraits for fixed val-
ues of γ, δ, e = 1 and (d) represents the corresponding typical phase
portraits. In Domain 1 there exists a non-trivial globally attract-
ing equilibrium point Aα. Domains 2 and 6 are the regions of
bistability; in Domain 2, there is a nontrivial stable node, while in
Domain 6 there exists a stable oscillatory regime. In these regions
population survival is conditional on the initial population size and
the initial amount of resource. In Domain 3, an unstable limit cy-
cle is formed around the point Aα, shrinking the range of possible
initial conditions that will lead to sustainable population survival.
In Domain 4, point Aα is unstable, so any perturbation will lead
to population collapse. In Domain 5, an elliptic sector appears,
which implies that a population is bound for extinction regardless
of initial conditions. Finally, Domain 0 corresponds to the case,
when only trivial equilibrium B(0, γδ ) is globally attractive, which
is of no biological interest. Domains are separated by bifurcation
boundaries K, S, H , C, Del and Al = 0 that correspond, re-
spectively, to the appearance of attractive sector in a vicinity of
O, appearance of unstable heteroclinic cycle, loss of stability of Aα
(Hopf bifurcation), merging of stable and unstable cycles contain-
ing Aα inside and disappearance of positive nontrivial equilibrium.
When c∗2 = H+ (α=0) and c∗1 = H+ (α=1) are end points of
the Hopf boundary H+, the following scenarios can be realized:
(a) when c2 > c∗2, c1 > c∗1, the system can sustainably exist for
α ∈ [α1, α2] ⊂ (0, 1); (b) when c2 > c∗2, c1 < 1, the system can
sustainably exist for α ∈ [α1, 1]; (c) when c0 < 1, c1 > c∗1, the
system sustainably exist for α ∈ [0, α2).
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allowed, i.e., when c1 < 1, c2 ∈ (φ, 1)), the equilibrium point

N̂α =
1

δKα
(γ +

e(1− αc1 − c2(1− α)

1 +Kα
), ẑα =

1

δ
(γ +

e(1− αc1 − c2(1− α)

1 +Kα
),

Kα =
(1− α)φ+ α(c1 − 1)

2(αc1 + (1− α)(c2 − φ))
+√

((1− α)φ+ α(c1 − 1))2 + 4α(αc1 + (1− α)(c2 − φ))

2(αc1 + (1− α)(c2 − φ))

(2)

is a global attractor, and the general set of trajectories tend to this point with time.
That is, a niche, which is defined here as a state of sustainable coexistence with
a common renewable resource, will successfully be formed regardless of the initial
population size or initial amount of resource available.

Domain 1 always exists when c1 < 1, c2 ∈ (φ, 1) and may continue to exist for
c2, c1 > 1 for certain values of other parameters. Increasing parameters c2and/or
c1, one moves into Domain 2, which is a region of bistability (see Figure 1 d2). In
Domain 2, population survival is going to be possible only depending on the appro-
priate initial conditions: if the initial population is too large or the initial amount
of the resource is too small, the population will go extinct. Further increases in c2
and/or c1 moves the system behavior to Domain 3, where an unstable limit cycle
exists around the stable equilibrium point Aα, thus further shrinking its domain of
attraction and consequently decreasing the range of initial conditions that permit
sustainable coexistence of the population and the resource. In Domain 4, the limit
cycle merges with the equilibrium point Aα, making it unstable. This implies that
any small perturbation from the state of equilibrium will cause population extinc-
tion. Further increasing c2 and\or c1 causes point Aα to move closer and closer
to the origin, finally merging with it in Domain 5, which results in the appearance
of an elliptic sector (see Figure 1, d5) and thus inevitable, albeit delayed, popula-
tion extinction. Moving into Domain 5 could be interpreted as “the tragedy of the
commons, when overly efficient consumers exhaust the ’common resource’, thereby
eventually causing extinction of the entire population [11, 22, 23]. Within Domain
6, a regime of stable oscillatory behavior is possible. In Domain 6, one can observe
a paradoxical effect of increased resource decay having a stabilizing effect on the
system. More details for the case α = 1 can be found in [16]. Note also that for all
parameter values, the System has a non-hyperbolic trivial equilibrium O(0, 0) and
equilibrium B(N = 0, z = γ

δ ), which is a saddle if Al ≡ c2(1−α)−φ+α(c1 +φ) > 0
and a stable node if Al < 0. Domain 0 is bounded by Al = 0; in this Domain point
Aα does not exist, and only point B is stable. Therefore, Domain 0 appears to be
biologically irrelevant, since it corresponds to the case, when the ’extrinsic resource’
grows and decays independently of consumers, which within the frameworks of this
model can only happen if the population size is close to 0. Note, that for α = 0,
condition Al < 0 reduces to c2 < φ.

The dynamical behaviors described above are realized under variation of either
one of c2,c1 for fixed α. It is also worth noting that while the location of the bound-
aries changes for differentα, c2 and c1, the order in which the described dynamical
regimes appear remains unchanged (see Figure 1a-c.).

The boundary lines presented in the phase-parameter portraits of Figures 1a-c
correspond to bifurcations of co-dimension 1 in the System, and points of intersec-
tions of the lines correspond to bifurcations of higher co-dimensions. Specifically,
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boundary K corresponds to the appearance of an attracting parabolic sector in a
vicinity of the origin; boundary S corresponds to the appearance of an unstable
limit cycle from heteroclinics, composed of separatrices of points O and B; bound-
ary H corresponds to the change of stability of point Aα (Hopf‘ bifurcation), where
H+ determines the appearance of an unstable limit cycle and H determined the
appearance of a stable limit cycle. Boundary C corresponds to the merging of stable
and unstable cycles and, finally, Del corresponds to the merging of point Aα with
O. Note now that boundaries H+ ∪C are dangerous because their intersection will
cause population extinction. Also, Domain 6, which is bounded by boundary C,
exists for a narrow range of parameters δ andγ (natural rates of resource decay and
restoration), and only whenα is closer 1 than to 0.

Let us look in more detail at the boundary H+. Let c∗2 = H+(α = 0) and
c∗1 = H+(α = 1). Then we can observe the following dynamical regimes that can
be realized in System (1) and which are also depicted in Figure 1, a-c:

1) If c2 > c∗2, c1 > c∗1, then for 0 < α < 1 , the population can sustainably coexist
with the common resource for some mixed strategy α ∈ (α1, α2) ⊂ (0, 1); however,
population goes extinct for the critical cases of pure strategies, i.e., when α=0 and
α=1, see Figure 1a;

2) If c2 > c∗2, c1 < 1 (or c0 < 1, c1 > c∗1 ) then the population can sustainably
coexist with the common resource for α ∈ (α1, 1] , see Figure 1b,c;

3) The population can sustainably coexist with the common resource and exhibits
qualitatively equivalent stable behavior for α ∈ [0, 1] if both c2, c1 < 1, see Figure
1a-c.

This bifurcation diagram can be used conceptually to not only understand the
possible dynamical regimes but also to make predictions about possible implications
of changes in population composition, as well as changes in intrinsic properties of
individuals within the population.

4. Modeling parametric heterogeneity. Until now we have been acting upon
the assumption of a fixed proportion of clones that adopt either strategy in the
population, i.e., that α is a constant. It can happen if the system has already had
time to evolve and reach a steady state, concentrating near the average parameter
value. However, the dynamics cannot be so easily predicted if the selection process
is still ongoing or if there exists no ’optimal’ proportion of each strategy within the
population, and consequently the population tends to a distribution of strategies.

In order to enable us to visualize evolutionary trajectories of a system that may
still be experiencing ongoing selective pressures, or the one that has been signifi-
cantly perturbed, assume that the population is composed of many α -clones xα(t),
where the parameter α ∈ [0, 1] represents the probability with which an individual
uses s-strategy (and hence 1-α represents the probability of using r-strategy) in
the α -clone. The initial state of such a polymorphic population can be described

through the distribution of the parameter α ∈ [0, 1], where Pα(0) = xα(0)
N(0) . In

this case, instead of the 2-dimensional parametrically homogeneous System (1), we
consider the following infinitely dimensional parametrically heterogeneous System:

{
dxα

dt = rxα(α(c1 − bN(t)
kz(t) ) + (1− α)( c2z(t)

N(t)+z(t) − φ)),
dz
dt = γ − δz(t) + e(Et[α](1− c1) + (1− Et[α])(1− c2)) N(t)

N(t)+z(t) ).
(3)
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The last equation in System (3) can be deduced from the last equation of System
(1) by integrating over α; here we denote to Et[α] as the mean value of α over the

current distribution of clones, Pα(t) = xα(t)
N(t) .

If the selective pressures acting upon the population are sufficiently strong, then,

we should expect to see the distribution of clones, Pα(t) = xα(t)
N(t) to change over

time, and the question of what the final distribution will be, or what the transi-
tional regimes that could be observed as the system stabilizes, does not have an
intuitive and predictable answer. This is due to the fact that now the state of the
environment in which the population evolves is determined not only on the amount
of ’resources’ that the individuals have to compete for but also by the population
composition and individuals themselves; consequently, different types of clones can
impose different selective pressures on each other, over time further affecting over-
all system dynamics. The effects of intra-population selective pressures on system
dynamics cannot be captured without taking into account population heterogeneity.

The proportion of each type of clone within the population can be tracked
through the expected value of the parameter α, which in the homogeneous sys-
tem was just a constant but in a parametrically heterogeneous system becomes a
function of time.

Each individual tries to maximize his or her own fitness through allocating their
resources either towards increased proliferation or increased physiological mainte-
nance, in such a way as to maximize their fitness, which in the framework of ODEs
is measured as the growth rate per individual, i.e., dxα

dt /xα . If only two clones ad-
hering to two pure strategies were interacting, the predominant strategy would be
determined only by the relative value dxα

dt of each clone at each time point (see Fig-
ure 2). However, if many clones are interacting, it is not immediately clear, which
strategy will come to dominate through natural selection, since both population
composition and the amount of extrinsic resources available would be changing.

Figure 2. Relative positions of the growth curves for the two
strategies under fixed z (a) c1 = c2 = 1,φ = 0.01 (b) c1 = c2 =
1,φ = 0.2.

In order to investigate this question, let us introduce auxiliary variables q(t) and
g(t) such that {

dq(t)
dt = z(t)

z(t)+N(t) ,
dg
dt = bN(t)

kz(t) .
(4)
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Then the equation for the rate of change of the frequency of each clone can be
written as

xα(t)′ = rxα(t)(α(c1 − g(t)′) + (1− α)(c2q(t)
′ − φ)). (5)

The solution to Equation (5) is

xα(t) = xα(0)e[r((αc1−(1−α)φ)t+(1−α)c2q(t)−αg(t))]. (6)

Then the total population size N(t) becomes:

N(t) =

∫
α

xα(t)dα =N(0)

∫
α

er(c2q(t)−φt) · erα((c1+φ)t−c2q(t)−g(t))P0(α)dα

=N(0)er(c2q(t)−φt) ·M0[r((c1 + φ)t− c2q(t)− g(t))],

(7)

where N(0) is initial population size, and M0 is the moment generating function
(mgf) of the initial distribution P0(α); the mgf is defined by the formula M0(δ) =∫
α
eδαP0(α)dα. The distribution of clones over time is given by

Pα(t) =
xα(t)

N(t)
=

eαΩ(t)

M0[Ω(t)]
, (8)

where Ω = r((c1 + φ)t− c2q(t)− g(t)). The mean value of α at time t is

Et[α] =

∫
αPt(α)dα =

∫
P0(α)

αeαΩ

M0(Ω)
dα =

M ′0(Ω)

M0(Ω)
. (9)

Putting together all the expressions that have been obtained as a result of these
transformations, we obtain the following system of equations:


dz
dt = p− dz(t) + re(Et[α](1− c1) + (1− Et[α])(1− c2)) N(t)

z(t)+N(t) ,
dq
dt = z(t)

z(t)+N(t) ,
dg
dt = bN(t)

kz(t) ,

(10)

where N(t) is defined in System (7) and Et[α] is the mean value of the parameter
α, which can be calculated from Equation (9).

The auxiliary variables q(t) and g(t), which were not present in the original
model, are actually the keystone quantities that govern the system dynamics and
determine all of its statistical characteristics. More details on this approach for
studying replicator equations can be found in [14, 15].

4.0.1. Differences in intrinsic properties of the population. In order to investigate,
how such a heterogeneous system can evolve over time and to visualize evolutionary
trajectories with respect to different parameter values, we consider two different ini-
tial distributions of clones within a population: uniform and truncated exponential
(of which uniform distribution can be considered a special case). The choice of trun-
cated exponential distribution can be justified through the principle of maximum
entropy (MaxEnt): if the mean value of the random variable is the only quantity
that can be estimated from observations or other data, then the most likely dis-
tribution of the variable is exponential with the estimated mean [13]. Given that
is bounded on the interval [0,1], then, according to MaxEnt principle, we should
choose the truncated exponential in this interval as the initial distribution.
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Parameter values for the trajectories, illustrated in Figure 3a and 3c were chosen
explicitly to fall into Domain 1. The two figures differ only in the value of parameter
φ , which is taken to be φ = 0.09 in Figure 3a and φ = 0.14 in Figure 3c. Neverthe-
less, one can already observe that the population evolves towards different expected
values of α. This is most evidently reflected in the graph for how the distribution
of clones changes over time in Figures 3b and 3d, which in turn suggests that even
a small change in the intrinsic properties of individuals within the population can
have critical effect on which way a heterogeneous population will evolve.

However, the mean value of α does not always reach an equilibrium value, i.e.,
the population does not always tend towards some fixed strategy, whether pure or
mixed. Starting in Domain 6, we can observe that not only do the population size
and amount of extrinsic resource start oscillating (which corresponds to the system
entering inside the domain of attraction of the stable limit cycle) but so does the
Et[α]. In this case, as the system evolves, no final distribution of clones becomes
fixed over time (Figure 4). This suggests that the standard approach using a fixed
value of the parameter α (or its mean value) can yield incorrect predictions within
this domain of the model parameters and, hence, is not justified in general case.

4.0.2. Differences in initial composition of the population. Now we would like to
investigate how the changes in initial distribution of clones will affect the direction
in which the population will evolve. That is, we want to investigate the changes in
evolutionary trajectories in the case when the intrinsic properties of the individuals
within the system are fixed (such as birth, death and resource consumption rates)
but the initial population composition, and consequently the set of selective pres-
sures experiences by each individual within the population, is different. In other
words, we want to investigate how the evolution of the population as a whole can
be affected by the strategic choices made by individuals within it.

In Figures 5 and 6, one can observe the changes in the population size N(t),
resource amount z(t) and the mean value Et[α] over time under different initial
distributions, given that all other initial conditions were the same for both cases.
In Figure 5, part (a) corresponds to initial uniform distribution, part (b) to initial
truncated exponential distribution with parameter µ = 1.1, and part (c) to initial
truncated distribution with parameter µ = 10.1 . One can see that the trajectories
look strikingly different as the population evolves, passing through different regions
of the phase-parameter space. Noticeably, in Figure 5b, the population size crashed
at t = 32, while in parts (a) and (c) one could observe stable coexistence with the
resource. This effect is due to the trajectory moving outside of domain of attraction
of the non-trivial equilibrium point Aα in Figure 5b.

5. Discussion. In situations when resource availability is crucial for population
survival and expansion, the question of most efficient resource allocation becomes
of vital importance. Considered in this work are two general ’pure’ strategies for re-
source allocation that the individuals can use for optimizing their fitness: investing
the resources primarily in rapid proliferation or in physiological and environmental
maintenance and the expense of rapid proliferation, with a full spectrum of possible
intermediate strategies. The two pure strategies were analyzed separately in [17],
where the authors considered a situation, in which either different species, or indi-
viduals within the same species, interact with a collectively constructed niche, on
which depends their overall survival. The authors focused specifically on what is
known as a ’construction dilemma’, i.e., a question of why investment of basic life
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Figure 3. Trajectories and distribution of clones throughout the
completely altruistic population (starting in Domain 1). Even a
very slight change in the value of an intrinsic parameter φ (natural
death rate of individuals that invest primarily in fecundity) causes
the system to evolve towards the dominance of one or the other
strategy (investment in fecundity in the top case and investment
into carrying capacity in the bottom case). The total population
size and the total amount of resource are virtually the same in both
cases. All parameters held constant at r = 1, e = 1, b = 1, k = 1,
N0 = .1, c2 = .2, c1 = .6, d = 1, p = 1,φ = 0.09. (c-d): all
parameters held the same, except φ = 0.14.

history trade-offs, such as energy, time, or, in the case of financial systems, money,
into physiological and environmental maintenance could be selected for if the im-
mediate benefits of investment into rapid proliferation are greater. They came to
the conclusion that the construction dilemma can be resolved through ’niche mo-
nopolization’, which can be achieved either through spatial proximity, or through
preferential access to the resources. In this paper we challenge the authors’ con-
clusion, suggesting that even within the proposed simplified conceptual framework
of a consumer-resource type system construction dilemma can be resolved if the
population is heterogeneous with respect to the initial strategy choice.

In order to investigate the question of natural selection in strategies for resource
allocation, we constructed a mathematical model based on models introduced in
[17], which captures the dynamics of a consumer-resource type of a system, where
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Figure 4. Trajectories and distribution of clones throughout the
population. In this case, one not only observes stable oscillatory
behavior in the amount of resource and total population size but
also a shift between the two strategies. That is, the population
evolves not towards eventual dominance of just one pure strategy
but shifts between two strategies. Initial distribution is uniform.
Initial conditions are such as to fall within Domain 6. Parameters
are r = 1, e = 1, b = .9, k = 1, φ = 1.2, N0 = .1, c2 = 8.75, c1 = 9,
d = 24, p = 7.72.

Figure 5. The effects of difference in the initial composition of
the population with respect to different strategies. Different initial
distributions were chosen to be (a) uniform initial distribution (b)
truncated exponential initial distribution, with parameter µ = 1.1
(note: population crashes after time t = 32) and (c) truncated
exponential initial distribution, with parameter µ = 10.1. Initial
conditions are such as to fall within Domain 1. All parameters held
constant at r = 1, e = 1, b = 1, k = 1, N0 = .1, c2 = .2, c1 = .6,
d = 1, p = 1, φ = 0.14. One can see that the initial composition of
the population can have dramatic effects on the direction in which
the population will evolve over time. (Note: the values of µ were
chosen arbitrarily for illustrative purposes).

the individuals can allocate the extrinsic resources that are available to them ei-
ther for rapid proliferation (here termed r-strategy) or for slow proliferation but
increased physiological and environmental maintenance (here termed s-strategy).
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Figure 6. The effects of difference in the initial composition of
the population with respect to different strategies. Different initial
distributions were chosen to be (a) uniform (b) truncated exponen-
tial with parameter µ = 10.1 and (c) truncated exponential with
parameter µ = 30.1. Other parameters held constant at r = 2,
e = 2, b = 1, k = 1, N0 = .1, c2 = .2, c1 = 2, d = 1, p = 1,
φ = 0.05.

We also allow for the existence of ’over-consumers’, i.e., individuals that are ca-
pable of drawing more from the common resource pool than they restore. Each
individual in the population is characterized by a value of parameter α, which cor-
responds to the probability of an individual allocating the resources according to
either strategy (α = 1 corresponds to pure s-strategy and α = 0 corresponds to pure
r-strategy); a set of individuals characterized by the same value of the parameter
are referred to here as α -clones. The ’success’ of either strategy, whether pure or
mixed, is determined by the overall growth rate of the set of individuals that choose
it. Examples of populations, where individuals within the same population can
switch between different resource allocation strategies, range from bacteria [6, 25]
to cancer cells [9] to forest trees [5] to socio-economical systems [10]. While we
can observe the current state of the system and the corresponding distribution of
strategies, identification of mechanisms that could have led to it, and speculation
about other possible evolutionary trajectories that the system could have taken,
is rarely possible. In this paper we propose but one way to try and explore this
question.

At first, full bifurcation analysis was performed on the model, where the pop-
ulation was assumed to be parametrically homogeneous, i.e., the value of α was
fixed. This was done to identify all possible dynamical regimes in the system to
create a framework, within which to then evaluate the effects of natural selection
on a parametrically heterogeneous population. The obtained bifurcation diagram
describes the possible dynamical regimes of a population that is homogeneous with
respect to α.

An important conclusion from the bifurcation analysis is that the main qualita-
tive regimes of behaviors and also the sequence in which they appear as the param-
eters of (over-)consumption change are very similar for both models, i.e., when the
individuals in the population use only pure r- or s-strategies. We want to emphasize
that namely the regimes of qualitative behaviors, not particular phenomenological
equations, determine, whether the model corresponds to a real system of interest.
The bifurcation analysis shows that both pure strategy models can be applied to
describing the dynamical behaviors of the same system, which suggests that mixing
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the two strategies in different proportions to describe the dynamics of a population
is also mathematically justified by the similarity of their qualitative behavior.

In order to investigate how a heterogeneous population will behave, and in partic-
ular, which strategy can be selected purely through the process of natural selection
without any specific assumptions imposed on the environment in which the selection
process occurs, we applied the Reduction theorem [14, 15], which allows reducing
an otherwise infinitely dimensional System (3) to a 3-dimensional system of non-
autonomous ODEs. The approach can be summarized as follows: assume each
individual within the heterogeneous population is characterized by their own in-
trinsic value of the parameter α. Assume also that the individuals can be grouped
in such a way as to fall into some distribution that is known at the initial time
moment. Overall dynamics in such a system is then governed not by the constant
average value of α but by the expected value of α at each time moment, which can
be tracked through the moment generating function of the initial distribution. In
this case one can observe the mean of α moving across, or ’traveling’ through the
phase parameter portrait as the population evolves, which is why obtaining a full
bifurcation diagram of the original parametrically homogeneous system was benefi-
cial. This approach to studying the dynamics of the parametrically inhomogeneous
system was justified by the Reduction theorem.

Several interesting effects were observed that allow answering, at least in part,
the questions posed in the beginning of this work. We were able to demonstrate
that while the direction in which the population will evolve is largely determined
by what domain in the phase parameter space one starts in, this was never the sole
determining factor and that varying initial population composition had a larger
impact on final population composition. We also showed that the strategy towards
which the population eventually evolves is not always a pure strategy but can be
a mixture of strategies. Moreover, we have been able to observe regimes when the
mean value of α oscillates sustainably, as do population size and amount of resource.
(Interestingly, one frequently can observe oscillatory behavior before a strategy
stabilizes and the mean of α reaches an equilibrium. However, increasing amplitude
of oscillations can also signal that population collapse is approaching, since this
most often occurs when the trajectory passes through Domain 2 (unstable limit
cycle), entering Domain 4 (unstable node), and from there traveling either directly
to the origin (immediate extinction), or to Domain 5 (elliptic sector) in Figure 1).

We were also able to show that starting with different initial distributions, even
within the same domain on the phase-parameter space, can lead to different sys-
tem behaviors and different strategies being favored by natural selection in the
long run. We could observe it by calculating numerical solutions of the system,
with uniform initial distribution of strategies within the population, and truncated
exponential initial distribution (parameter α bounded on the interval [0,1] ) with
different parameters of the distribution. As one can see in Figures 4 and 5, even
when everything else is equal, the direction in which the system will evolve depends
greatly on the initial distribution.

Therefore, when one is trying to predict the direction in which the system will
evolve, just knowing the rules that govern its dynamics might not be enough to
make a more or less accurate prediction. One needs to also know the composition
of the population that is playing by these rules. This is true even in the case of
perfect information, i.e., when every individual in the population knows the rules
and plays to maximize his or her own fitness.
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Appendix A. Analysis.

A.1. Equilibria. In order to simplify analysis, let us first make the following
change of variables: dt

z(N+z) → dτ, yielding a system of equations that for any

α 6= 0 is topologically equivalent to System (1) for N ≥ 0 , z > 0:

dN

dt
=N(α(c1z −N)(N + z) + (1− α)z(c2z − φ(N + z)))

≡F (N, z) = Nf(N, z),

dz

dt
=z((γ − δz)(N + z) + e(α(1− c1) + (1− α)(1− c2))N)

≡G(N, z) = zg(N, z),

(11)

where parameters γ ≥ 0, c1, c2, e, φ, δ > 0, α ∈ [0, 1].
For any α, System (11) has trivial equilibria O(0, 0) and B(0, γδ ). The system

can also have one positive non-trivial equilibrium Aα(N̂α, ẑα), where coordinates

(N̂α, ẑα) satisfy equations{
α(c1z −N)(N + z) + (1− α)z(c0z − φ(N + z)) = 0,

((γ − δz)(N + z) + e(α(1− c1) + (1− α)(1− c0))N) = 0.
(12)

The first equation of System (12) is homogeneous. Letting{
z = KαN (13)

we get equation for Kα:

(αc1 + (1− α)(c0 − φ))K2
α − ((1− α)φ+ α(c1 − 1))Kα − α = 0, (14)

which has the unique positive solution

Kα =
(1− α)φ+ α(c1 − 1)

2(αc1 + (1− α)(c2 − φ))
+√

((1− α)φ+ α(c1 − 1))2 + 4α(αc1 + (1− α)(c2 − φ))

2(αc1 + (1− α)(c2 − φ))

(15)

if the following condition is satisfied:

αc1 + (1− α)(c2 − φ) > 0. (16)

From Equations (12), (13) and (15), we can obtain the coordinates of the non-
trivial equilibrium expressed with Kα

N̂α =
1

δKα
(γ +

e(1− αc1 − c2(1− α))

1 +Kα
), ẑα =

1

δ
(γ +

e(1− αc1 − c2(1− α)

1 +Kα
). (17)

Remark 1. Note, that for critical cases,

Kα=0 = φ
c0−φ , N̂α=0 = c2−φ

δφ (γ + (1−c2)(c2−φ)
c2

), ẑα=0 = 1
δ (γ + (1−c2)(c2−φ)

c2
)

and Kα=1 = 1
c1

, N̂α=1 = c1
δ (γ + c1(1−c1)

1+c1
), ẑα=1 = 1

δ (γ + c1(1−c1)
1+c1

).
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A.2. Structure of non-trivial equilibria. Jacobian Jα = (aij), i, j = 1, 2 of
System (11) consists of elements

a11 =α(c1z −N)(N + z) + (1− α)z(c2z − φ(N + z))+

+N(α(c1z −N)− αN − (1− α)φz),

a12 =N(2c2z − φ(N + 2z) + α((c1 + φ− 1)N + 2(c1 + φ− c2)z),

a21 =z(γ − δz + e(α(1− c1) + (1− α)(1− c2))),

a22 =((γ − δz)(N + z) + e(α(1− c1) + (1− α)(1− c2))N)+

+ z((γ − δz)− δ(N + z))

It is easy to verify that

Det(Jα(B)) = − (αc1 + (1− α)(c2 − φ))γ4

δ3

and

Trace(Jα(B)) =
(αc1 + (1− α)(c2 − φ)− δ)γ2

δ2
.

Thus point B is a saddle if Det(Jα(B) < 0 and a stable node if Det(Jα(B) > 0.
Due to condition (16), we can state that B is a saddle if the System has positive

equilibriumAα, and can be a stable node if positive Aα does not exist. Therefore,
surface

Al : {α ∈ [0, 1], c1, c2, φ, γ, e > 0, αc1 + (1− α)(c2 − φ) = 0}
is a boundary of Domain 0 where the System has no positive non-trivial equilibrium
Aα (see Figure 1). Remark that for α = 0, this Domain can exist only if c2 < φ ;
also, noticeably, for α = 1 the System does not realize that behavior.

The expressions for Det(Jα(Aα)) and Trace(Jα(Aα)) are very complex but they
can be simplified using the following Lemma:

Lemma A.1. If the system of differential equations N ′ = Nf(N, z), z′ = zg(N, z)
(a) has non-zero equilibrium A(N0, z0) such that f(N0, z0) = 0, g(N0, z0) = 0,

and
(b) function f(N, z) is homogeneous of order n with respect to N, z,
then
Det(J(N0, z0)) = NfN (zgz +NgN )|(N,z)=(N0,z0),
T race(J(N0, z0)) = NfN + zgz|(N,z)=(N0,z0) = z(gz − fz)|(N,z)=(N0,z0),
where J(N, z) is the Jacobian matrix of the system.

Proof. The Jacobian of the System at point A is(
f +NfN Nfz
zgN g + zgz

)
(N,z)=(N0,z0)

=

(
N0fN (A) N0fz(A)
z0gN (A) z0gz(A)

)
=

=

(
N0fN (A)

−N2
0

z0
fN (A)

z0gN (A) z0gz(A)

) (18)

The first equality follows from the condition (a). The second equality follows
from the Euler property for a homogeneous function f(N, z) of power n, i.e. that
f(N, z) : NfN (N, z) + zfz(N, z) = nf(N, z), and again from condition (a): since
f(N0, z0) = 0, then N0fN (N0, z0) = −z0fz(N0, z0), fz(N0, z0) = −N0

z0
fN (N0, z0).

Statements are proven.
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Applying Lemma A.1 to the expression for the Jacobian Jα(Aα), we obtain
Det(Jα(Aα)) and Trace(Jα(Aα)). Combining the obtained results we prove the
following

Theorem A.2. For any α ∈ [0, 1], if condition (16) holds, the nontrivial equilibrium

Aα(N̂α, ẑα), whose coordinates are given in (17), is a positive non-saddle point. It
appears\disappears as an unstable node at the fold surface ∆α : Det(Jα(Aα) = 0

∆α : γ/e =
−(1− αc1 − c2(1− α))

1 +Kα
(19)

and changes stability at the Hopf surface Hα : Trace(Jα(Aα)) = 0

Hα : γ/e =
−(1− αc1 − c2(1− α))(Y + δKα) + aZ

(1 +Kα)(Y + αZ)
(20)

where Kα is given in (15), Y = δ + φ+ δKα, Z = 2−Kα(c1 + φ− 1).

Slices of the Hopf boundary H to the (c1, c2)-plane for different fixed α and to
the (c2, α)-plane for different fixed c1 are shown in Figure 7.

Figure 7. Slice of Hopf boundary H to the (c1, c2)-plane for dif-
ferent fixed α ∈ (0, 1] (a), to the (c2,α)-plane for different fixed c1.
(b) In both cases e = 1, φ = .2, γ = 1.58, δ = .85.

Remark 2. For α = 1 fold and Hopf surfaces are of the form ∆α=1 = 0 : γ
e =

c1(c1−1)
c1+1 , Hα=1 : γe =

c1(c1−1)(c1+2δ+c1δ+c
2
1)

(c1+1)2(c1+δ) ;

For α = 0 fold and Hopf surfaces are of the form ∆α=0 = 0 : γ
e = (c2−φ)(c2−1)

c2
,

Hα=0 : γe = (c2−φ)(c2−1)((δ−φ)φ+c2(δ+φ))
c2(−φ2+c2(δ+φ) ).

A.3. Non-hyperbolic equilibrium O(0, 0). For analysis of topological and asymp-
totical structure of the equilibrium O in the first quadrant of the (N, z)-plane we
use methods described in [3]. Let us apply the following change of variables (also
known as the “blowing-up” transformation) to System (11):

(N, z)→ (N, u = z/N), N 6= 0,
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transforming point (0, 0) to the axis u, and changing the independent variable to
Ndt = dτ , which results in the following system of equations:

dt

N
=N2(α(1 + u)(c1u− 1)− (1− α)u(φ− (c2 − φ)u),

du

dτ
=u((e(1− αc1 − (1− α)c2 + γ(1 + u)) +N(−δu(1 + u)−

−α(1 + u)(c1u− 1) + (1− α)u(φ− (c2 − φ)u)))

(21)

System (21) has two equilibrium points at axis N = 0: u1 = 0 with eigenvalue
λ1

1 = (1−αc1−(1−α)c2)−γ) and u2 = −e(1−αc1−(1−α)c2)−γ)/γ with eigenvalue
λ2

1 = −λ1
1. Although the second eigenvalue is zero for both points (λ1

2 = λ2
2 = 0),

their structure can be strictly defined in the positive (N, z)-quadrant using the
method described in [3]. Denote

E = e(1− αc1 − (1− α)c2) + γ (22)

If E > 0, then only equilibrium (0, u1) belongs to the first quadrant, where it has
an attractive node sector; if E < 0, then two equilibria (0, u1) and (0, u2) belong
to the first quadrant; (0, u1) is a saddle and (0, u2) can be a saddle, as well as an
attractive node. E = 0 corresponds to merging u1 = u2 = 0.

The second change of variables

(N, z)→ (v = N/z, z), z 6= 0 (23)

maps point (0, 0) to the axis v, and through changing time using transformation
zdt = dτ , System (11) becomes:


dv

dτ
=v(−γ − (e(1− αc1 − (1− α)c2) + γ)v + ((1 + v)(δ + α(c1 − v)+

+(1− α)(c2 − φ(1 + v)))z,

dt

z
=z(−(e(1− αc1 − (1− α)c2) + γ)v − δ(1 + v)z)

(24)

The equilibrium (v = 0, z = 0) is a saddle (λ1 = γ, λ2 = −γ) Applying the same
set of transformations to System (11) with α = 0, and then returning to the initial
variables, we prove the following statement:

Proposition 1. In System (11) for all α ∈ (0, 1] and the specified values of other
parameters c1, c2, φ > 0, γ ≥ 0,0 < e ≤ 1 there exist only three different phase-
parameter portraits in the neighborhood of equilibrium point O, which are topologi-
cally equivalent to the portraits that are shown in Figure 8a, and only two different
phase-parameter portraits for α = 0, which are shown in Figure 8b.

B4. Equilibria “at infinity”. The structure of equilibrium points “at infinity”
will be studied using the Poincaré sphere [2].

(a) The change of variables

(N, z)→ (u = 1/N, v = z/N), N 6= 0 (25)

and

dt = u2dτ (26)

transforms System (1) to
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Figure 8. A schematic bifurcation diagram of the non-
hyperbolic equilibrium point O in (N,z) - phase plane and (a)
(c1, γ)−parameter plane for α ∈ (0, 1], (b)

(c2, γ)−
parameter plane for α = 0; other parameters of the System (11) are
positive. (a) The parameter plane is divided into three Domains, 1,
2,3 ; the vicinity ofO in these Domains contains a hyperbolic sector,
hyperbolic and attractive parabolic sectors and an elliptic sector,
respectively. (b) The parameter plane is divided into two Domains,
1 and 4; Domain 1 is as above, in Domain 4, some trajectories can
leave positive quadrant, making the system biologically irrelevant
for these initial conditions.


du

dτ
=u(v(φ(1 + v)− c2)− α((c1 + φ− 1)v − 1 + (c1 + φ− c2)v2)),

du

dτ
=v(v(φ(1 + v)− c2)− α((c1 + φ− 1)v − 1 + (c1 + φ− c2)v2)+

+(1 + v)(γu− δv)− eu(α(c1 − c2) + c2 − 1))

(27)

Equilibrium points of Systems (27) for u = 0 are v = 0 satisfy the equation:

(αc1 + δ + (1− α)(c2 − φ))v2 − (α(1− c1 − φ) + φ− δ)v − α = 0 (28)

Lemma A.3. Only one of the roots of Equation (30), v = v ∗ (α), can be positive
for 0 < α ≤ 1; at α = 0, v ∗ (α = 0) = 0.

Proof. Rewrite Equation (28) in the form: B(α)v2−A(α)v−α = 0, where A(α) =
α(1−c1−φ)+φ−δ, B(α) = α(c2−c1−φ)+φ−δ−c2. The validity of Lemma (A.3)

is evident if B(α) > 0. If Bα = 0, then α = c2−φ+δ
c2−φ−c1 , and α ∈ [0, 1]⇔ c2−φ+δ ≤ 0

for c1, c2, δ, φ ≥ 0. So, Equation (28) has no positive roots if α 6= 0.

It can be verified that eigenvalues of u = v = 0 are λ1 = λ2 = α, and eigenvalues
of u = 0, v = v1(α) are
λ1(α) = δv1(α)(1 + v1(α)) > 0,
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λ2(α) = −v1(α)(δ − φ + α(c1 + φ − 1) + 2(c2 + (δ − φ) + α(c1 + φ − c2))v1(α))
Therefore, point u = 0, v = v1(α) > 0 is a saddle.

Remark 3. For α = 1, v1 = 1
c1+δ and the eigenvalues are λ1 = δ(c1+δ+1)

(c1+δ)2 , λ2 =

− c1+δ+1
c1+δ . For α = 0 , v1 = φ−δ

c2−φ+δ . If φ > δ , then v1 > 0 . The corresponding

eigenvalues are λ1 = δc2(φ−δ)
(c2+δ−φ)2 , λ2 = −(φ−δ)2

(c0+δ−φ) .

Note that System{
du
dτ = u((φ(1 + v)− c2v),
dv
dτ = e(1− c2)u+ (1 + v)(γu− δv) + v(φ− (c2 − φ)v),

(29)

which was obtained from the System (11) through the change of variables (25) and
(26), does not have an equilibrium point at u = v = 0 for φ < δ . For φ = δ,
equilibrium u = v = 0 is not hyperbolic; it contains a hyperbolic sector for positive
u, v.

(b) Making the transformation

(N, z)→ (u = 1/z, w = N/z), z 6= 0 (30)

and putting it together with expression (26), we obtain the following System:
du

dτ
=u(δ(1 + w)− u(γ(1 + w)− ew(αc1 − 1 + c2(1− α))),

dw

dτ
=w(δ(1 + w) + c2 − φ− γu(1 + w)− φw − euw(1− c2)

+α((φ− w)(1 + w) + (c1 − c2)(1 + euw)))

(31)

This System has the only one new equilibrium (when compared with equation
(27)): (u = 0, w = 0). Eigenvalues at this point, namely λ1 = δ, λ2 = αc1 + (1 −
α)(c2 − φ+ δ), are positive. Thus, it is an unstable node for all α. Combining the
results, we get the following proven statement:

Proposition 2. For α ∈ (0, 1] in the first quadrant of (N,z) -plane, System (11)
1) has a source at the end N -axis,
2) has a source node at the end z -axis and a saddle point at the end of the axis,

where v∗(α) is a non-negative root of Equation (28) if α(c2−c1−φ)+φ−δ−c2 > 0,
3) has a saddle point at the end z -axis if α(c2 − c1 − φ) + φ− δ − c2 < 0.

Typical structures of the System behaviors in the first quadrant of (N, z)-plane
are shown in Figure 9. For all initial values of trajectories do not leave the first
quadrant.

A.4. Heteroclinis, homoclinics and limit cycles.

A.4.1. Heteroclinis and homoclinics. An attractive parabolic sector in the positive
vicinity of the non-hyperbolic point O appears when separatrix of O coincides with
the separatrix of the saddle point in the equator of the Poincaré sphere (“at infin-
ity”), creating the heteroclinics at (N, z) phase plane. The boundary K corresponds
to this bifurcation in the parameter portrait; it divides the Domain into sections,
where a parabolic sector exists, and where it does not (see Figure 10a).

Another important heteroclinic connection forms, when the outgoing separatrix
of saddle equilibrium B coincides with the incoming separatrix of equilibrium O.
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Figure 9. (a) Only equilibrium B is attractive, (b) equilibrium
O is attractive and repelling (contains an elliptic sector in its vicin-
ity), no more attracting equilibria, (c) equilibrium O is attractive,
other attractive manifolds have to exist, (d) O is repelling a saddle,
attractive manifold(s) have to be present in a bounded part of the
first quadrant.

Figure 10. Schematic bifurcation diagrams of heteroclinics-
and Hopf bifurcations in the System (11): (a) appear-
ance/disappearance of attractive parabolic sector in the vicinity
of the origin; (b) appearance/disappearance of unstable limit cycle
containing Aα, and (c) generalized Hopf bifurcation L1(H) = 0 in
a neighborhood of Aα.
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The unstable limit cycle is generated, containing nontrivial equilibrium Aα (see,
Figure 10b, where parametric boundary S corresponds to this bifurcation).

Elliptic sector in the vicinity of point O, is shown in Figure 8, Domain 3 and in
Figure 9b, consists of a family of homoclinics tending to O with t→ ±∞

A.4.2. Hopf bifurcations. Equilibrium Aα of System (11) can change stability via
Hopf bifurcation for a range of parameter values that belong to the surface Hα (see
Equation (20)). To understand whether the bifurcation is sub- or supercritical, we
compute the first Lyapunov value L1 [2].

For α = 1, Hα=1 : γ
e =

c1(c1−1)(c1+2δ+c1δ+c
2
1)

(c1+1)2(c1+δ)
, and the first Lyapunov value is

L1(Hα=1) ∼= (c1−1)6c1
6δ(c1

2+c1+2δ−c1δ)
(c1+1)10(c1+δ)5

.Thus, L1 > 0 for (c1
2 +c1 +2δ−c1δ) > 0 and

L1 < 0 for (c1
2+c1+2δ−c1δ) < 0. Since dTr(A)

d(γ/e) 6= 0, the former case corresponds to

the subcritical Hopf bifurcation, and the latter case corresponds to the supercritical
Hopf bifurcation (see [18]).

The case L1(Hα=1) = 0 corresponds to Bautin (generalized Hopf) bifurcation of
co-dimension 2. It happens in the System (11), α = 1 for large δ; the schematic bi-
furcation diagram is presented in Figure 10c. Next, we analyze the Hopf bifurcation
for α = 0.

Proposition 3. Equilibrium Aα of System (11) with α = 0 changes stability only
via subcritical (catastrophic) Hopf bifurcation.

Proof. Hα=0 : γ
e = (c2−φ)(c2−1)(c2(δ+φ)+φ(δ−φ))

c2(c2δ+φ(c2−φ)) , N0(α = 0) = (c2−φ)2e(c2−1)
c2(c2δ+φ(c2−φ)) . The

sign of the first Lyapunov quantity L1 is calculated using the formula given in
[2]. We have shown that L1 = lL̂ , where l is a positive constant, and L̂1 =

δ(−(c2 − φ)(c2 − φ + δ) + c2(c2 − φ + 2δ))((c2 − 1)(c2 − φ)
2
e − c2δN0). It is easy

to verify that L̂1 = 0 forδ = 0 and δ = −φ(c2−φ)
c2+φ that are non-positive for positive

N0 . L̂1 = 0 also for δ = −φ(c2−φ)
c2−1 , which is negative for the required c2 > φ and

c2 > 1 ; if c2 < 1, then γ
e = (c2−φ)(1+φ)(c2−1)

c2
< 0 . Thus, L1(H) > 0 .

The statement is proven.

Summarizing, we have shown that for some parameter values L1(H) = 0 for
α = 1 , and L1(H) 6= 0 for α = 0. Due to the continuity arguments, there have to
exist α∗ ∈ (0, 1), such that System (11) has a stable limit cycle if 1 ≥ α > α∗ , and
has no one if 0 ≤ α < α∗ .

A.5. Bifurcation diagrams of System (11) and interpretation of model
dynamics.

A.5.1. Phase portraits of the System. In Figure 11 five phase portraits of System
(11), α = 0 are presented. Phase portraits of System (11) for α = 1 were presented
in [16]. The sequences of dynamical behaviors that are depicted in these portraits
are realized in the System for fixed 0 < α ≤ 1with variation of parameters c0
and/or c1, or for fixed c0 and/or c1 with variation of 0 < α ≤ 1. Note that the
phase-parameter portraits of System (11) with α = 0 were topologically similar to
those obtained at α = 1 with the addition of Domain 0 and exception of Domain
6. In the original formulation of the model with α = 0 [17] some trajectories
left the first quadrant for certain initial values, thus causing the model to lose
biological relevance. However, the change of variables dt

z(N+z) → dτ allowed to
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investigate the smooth System (11), which is topologically equivalent to System (1)
for N ≥ 0, z > 0.

Figure 11. Phase-parameter portraits of System (11) for α = 0.
In Domain 0 (where 0 < c2 < φ ), only the trivial equilibrium B
is an attractor. In Domain 1, non-trivial equilibrium point Aα is a
global attractor. Domain 2 is a region of bistability: there are two
attracting points, Aα and origin O, whose basins of attraction are
divided by separatrix of point O. In Domain 3, an unstable limit
cycle is formed around stable point Aα, further decreasing its basin
of attraction. In Domain 4, the limit cycle shrinks, sits on the point
Aα, making it unstable. Starting from Domain 2, some trajectories
in fact travel outside of the first quadrant, predicting positive pop-
ulation size for negative amount of resources, thus rendering the
model biologically irrelevant in this region of phase-parameter
space.

A.5.2. Bifurcation diagram. Based on results formulated in Propositions (1) - (3)
we are able to construct the schematic bifurcation diagram of System (11):

Theorem A.4. (1) For any α ∈ [0, 1], positive c1, c2, e, δ, γ -parameter space
of System (11), can be divided into seven domains of topologically non-equivalent
phase portraits with non-negative coordinates (N, z) :

(2) In Domain 0, c2 ∈ (0, φ), only point B(N = 0, z = γ
δ )is attractive (see Figure

9a). In Domain 1, the only non-trivial equilibrium pointAα(N̂α, ẑα) is attractive; its
coordinates are given in Equation (17). In Domains 2 and 3, point Aα shares basins
of attraction with equilibrium point O at the origin. The separatrix of O and the
unstable limit cycle that contains point Aα serve correspondingly as the boundaries
of the basins of attraction. In Domain 4, only equilibrium O is globally attractive;
it contains attractive parabolic sector. Equilibrium Aα is positive and unstable. In
Domain 5, only point O is globally attractive. It contains an elliptic sector in its
positive neighborhood. In this region, there is no non-trivial positive equilibrium.
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Domain 6 exists only for 1 ≥ α > α∗ > 0 (i.e., when α is closer to 1 than to 0).
It is a domain of bistability. In it there are two attractive manifolds: a stable limit
cycle, h contains an unstable equilibrium point Aα , and an equilibrium point O at
the origin.

(3) Boundaries between Domains correspond to the following bifurcations in Sys-
tem(12): K and S correspond to heteroclinic connection between point O, an in-
finitely removed saddle point (see Figure 10a,b), and point B . Boundary H cor-
responds to the Hopf bifurcation (H+ and H− correspond to sub- and supercritical
bifurcations respectively). Nul ≡ ∆ = 0 corresponds to the appearance of an unsta-
ble point A in the positive quadrant. Boundary C corresponds to the fold bifurcation
of limit cycles.

Note that parameter portraits in Figure 1 demonstrate the schematic slices of
complete bifurcation portrait, projected to the planes (α, c2, c1) and (N, z). The
boundary lines correspond to bifurcations of co-dimension 1, and points of intersec-
tions of the lines correspond to bifurcations of higher co-dimensions.
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