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Abstract. The Michaelis-Menten (MM) function is a fractional linear func-

tion depending on two positive parameters. These can be estimated by non-
linear or linear least squares methods. The non-linear methods, based directly

on the defect of the MM function, can fail and not produce any minimizer.

The linear methods always produce a unique minimizer which, however, may
not be positive. Here we give sufficient conditions on the data such that the

nonlinear problem has at least one positive minimizer and also conditions for

the minimizer of the linear problem to be positive.
We discuss in detail the models and equilibrium relations of a classical

operator-repressor system, and we extend our approach to the MM problem
with leakage and to reversible MM kinetics. The arrangement of the sufficient

conditions exhibits the important role of data that have a concavity property

(chemically feasible data).

1. Introduction. Michaelis-Menten kinetics, 100 years after the original paper
by Michaelis and Menten [5], and fundamental research by Briggs and Haldane
[1], Segel and Slemrod [7], and many others, still poses interesting mathematical
problems in singular perturbation theory and quasi-steady state approximation,
in particular in the reversible case, see [6]. There are many other mathematical
problems in enzyme kinetics, for example operator-repressor kinetics, [8] [4]. As
the operator-repressor system is one example where least squares methods have
been applied, we include an extended analysis of the kinetics and the equilibrium
relations of that system and discuss the approximation given by Yagil & Yagil [8].

Our main goal is parameter identification. The Michaelis-Menten function de-
pends on two positive parameters that can be fitted to data by a least squares
approach. In general the least squares problem is not well-posed as the infimum
may be assumed at zero or infinity. In [2] sufficient conditions for the existence of
a minimizer have been given by studying the behavior of the goal function at the
boundary of a two-dimensional domain, i.e., for parameter values near 0 and∞ and
subsequent use of the Chebyshev sum inequality. Already there it turned out that
a concavity property of the data plays a role.
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Here we study the same problem and we apply two analytical tricks that had
escaped our attention five years ago. The first trick: keep one parameter fixed and
minimize the goal function with respect to the other. Then minimize the resulting
function of one variable. We recover the results from [2] and rearrange them in
such a way that the logical interdependence becomes obvious. The proofs get much
shorter. The second trick: Rearrange the inequalities in such a way that the role of
the concavity property (and hence the chemical or physical meaning of the required
inequalities) becomes evident. It turns out that the Chebyshev sum inequality is
not needed any more.

The novel approach can be extended to other functions that occur in enzyme
kinetics. The first trick can be used to eliminate all parameters that occur linearly
and to reduce the dimension of the least squares problem. The second trick of
rearranging the data in ascending order leads to useful expressions for the derivative
of the goal function and the formulas for optimal parameters.

In section 2 we review the reversible Michaelis-Menten (for short MM) kinetics
using the results of [6], and in section 3 we extend the discussion of the operator-
repressor system of [8] and [4]. In section 4 we define chemically feasible data. In
section 5 we give conditions for the estimated parameters in a linear function to
be positive. In section 6 we present the least squares approximation for the non-
reversible MM, and in section 7 for decaying data. In section 8 we discuss problems
with three parameters in general, and in sections 9, 10 least squares approximations
for MM with leakage and reversible MM, respectively. Finally, in section 11 we study
linear least squares approximations for the MM function. Most proofs are deferred
to section 12. The paper closes with a discussion in section 13.

2. Michaelis-Menten kinetics. We present a short derivation of the MM kinet-
ics. An enzyme E binds to a substrate S to form a complex C, the complex splits
into the enzyme and the final product P . Both reactions may be reversible,

E + S
k1
−→
←−
k−1

C
k2
−→
←−
k−2

E + P

These reactions are described by the following four differential equations,

ṡ = −k1es+ k−1c

ċ = k1es− k−1c− k2c+ k−2ep

ṗ = k2c− k−2ep
ė = −k1es+ k−1c+ k2c− k−2ep. (2.1)

The total amount of enzyme e0 and the total amount of substrate s0 provide two
invariants of motion

e+ c = e0

s+ c+ p = s0. (2.2)

These can be used to reduce the system to two equations for the enzyme and the
substrate,

ṡ = −k1(e0 − c)s+ k−1c

ċ = k1(e0 − c)s− k−1c− k2c+ k−2(e0 − c)(s0 − s− c). (2.3)

We have a two-dimensional system. The positive quadrant R2
+ is positively invari-

ant. The set S = {(s, e) : 0 ≤ c ≤ e0, s ≥ 0, s + c ≤ s0} (the set of chemically
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meaningful solutions: a triangle or a convex quadrangle, depending on the param-
eters) is positively invariant and attracts all trajectories in R2

+. In R2
+ there is a

single stationary point and no periodic orbit. The stationary point is a stable node
and attracts all solutions in R2

+.
Chemists are interested in the short time behavior of the solution starting at

s = s0 > 0, c = 0 as it runs towards the stationary point. The MM idea is to
describe this behavior by a scalar differential equation for the variable s alone.

The MM approach is based on the quasi steady state assumption ċ = 0. Then
the second equation in (2.3) becomes

0 = k1(e0 − c)s− k−1c− k2c+ k−2(e0 − c)(s0 − s− c). (2.4)

In the classical case the second reaction is non-reversible, k−2 = 0. Then the
stationary point is (0, 0). In this case the equation (2.4) is linear in c. We can solve
for c,

c =
e0k1s

k1s+ k−1 + k2
(2.5)

and insert this expression into the first equation of the system (2.3),

ṡ = − e0k2s

s+ k−1+k2
k1

. (2.6)

We replace s, ṡ as

x = s, y = − ṡ

e0
. (2.7)

Then the equation (2.6) assumes the form of an MM function

y =
ax

b+ x
(2.8)

with

a = k2, b =
k−1 + k2

k1
. (2.9)

In the reversible case (2.4) is a quadratic equation and the same procedure would
lead to nasty expressions with square roots. If we write the ċ equation in (2.3) as

c =
e0(k1s+ k2(s0 − s))− k−2(e0 − c)c− ċ

k1s+ k−1 + k2 + k−2(s0 − s)
(2.10)

and insert this expression into the ṡ equation, then we get

ṡ = −e0[k1k2s− k−1k−2(s0 − s)] + (k1s+ k−1)(ċ+ k−2(e0 − c)c)
k1s+ k−1 + k2 + k−2(s0 − s)

. (2.11)

In [6] it has been proved that in a quasi steady state approach not only ċ is small
but also the term k−2c is small. Hence (2.11) can be reduced to

ṡ = − e0[k1k2s− k−1k−2(s0 − s)]
k1s+ k−1 + k2 + k−2(s0 − s)

. (2.12)

We define three positive parameters

a =
k1k2

k1 − k−2
+

k−1
k1 − k−2

k−2 (2.13)

b =
k−1 + k2
k1 − k−2

+
1

k1 − k−2
k−2s0 (2.14)

c =
k−1

k1 − k−2
k−2s0. (2.15)
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Again we use the notation (2.7). Then the equation (2.12) has the form

y =
ax− c
b+ x

. (2.16)

The parameter c has nothing to do with the variable c in the differential equations.
We shall also consider the function that describes MM kinetics with “leakage”,

y =
ax

b+ x
− c (2.17)

with positive parameters a, b, c.

3. Operator-repressor dynamics. The reaction (following the Jacob-Monod ap-
proach to inducible systems)

R+ nE
k1
−→
←−
k−1

C, R+O
k2
−→
←−
k−2

D (3.1)

describes an operator O and an effector E “competing” for a repressor R to form
complexes C = EnR (of one unit of R and n units of E; so EnR is the standard
notation, as in H2O for water), and D = OR. A classical reference for this sys-
tem is [8]. The goal of the paper [8] is to find “a simple relation connecting the
rate of enzyme synthesis with effector concentration”. Indeed the authors found a
linear approximative relation between some proportions that can be used to deter-
mine reaction constants by least squares fitting. However, this relation has been
derived under a certain smallness assumption that may be not justified. Here we
derive the exact (nonlinear) relation from the kinetic equations and show that the
approximation is valid under a different smallness assumption.

The authors [8] discuss whether a system with a very small number of molecules
(up to four operators per cell) can be described by equilibrium equations (or dif-
ferential equations in the present case). Their answer is affirmative in case the
experiment is performed with a large number of cells.

3.1. The approach of Yagil & Yagil. We follow [8], with Ki = k−i/ki. The
total amount of operator is

[Ot] = [O] + [OR] (3.2)

and the total amount of repressor is

[Rt] = [R] + [EnR] (+[OR]) (3.3)

where [OR] is considered negligible as compared to [EnR] and [R]. This is an
approximation, the term +[OR] is omitted. Here is the critical step in the derivation
of [8]: Is [OR] small against [R] and [EnR]?

We have two equilibrium equations

K1 =
[R][E]n

[EnR]
, K2 =

[O][R]

[OR]
. (3.4)

We multiply equation (3.3) by K1 and replace the expression K1[EnR] from the
first equation in (3.4),

K1[Rt] = K1[R] + [R][E]n

and hence

[R] =
K1[Rt]

K1 + [E]n
. (3.5)



MICHAELIS-MENTEN AND LEAST SQUARES 1545

We consider the proportion of free operator [O]/[Ot] and of bound operator
[OR]/[Ot]. We form the quotient, use the second equation in (3.4), and then (3.5),

[O]

[OR]
=

[O]K2

[O][R]
=
K2

[R]
= K2

K1 + [E]n

K1[Rt]
=

K2

[Rt]
+

K2

K1[Rt]
[E]n. (3.6)

Thus, we have a relation between the quotient and the effector,

[O]

[OR]
=

K2

[Rt]
+

K2

K1[Rt]
[E]n. (3.7)

The authors [8] take logarithms,

log

(
[O]

[OR]
− K2

[Rt]

)
= log

K2

[Rt]
− logK1 + n log[E] (3.8)

and use this formula for a least squares approach. The goal is to check the validity of
the model and to find n and K1 under the condition that K2/[Rt] is known. Notice
the difference: the functions in section 2 describe some time course and the present
function describes some relation at equilibrium. The authors [8] have applied the
formula to a large set of experimental data (including data on the lac operon) and
have found that in many cases plotting the left hand side of (3.8) against log[E]
produced a straight line with small deviations, whereby typically the value of n
turned out to be about two.

3.2. The complete dynamics. We formulate the system of kinetic equations for
the reaction (3.1), investigate their dynamic behavior, and find the only stationary
point. We write e = [E], r = [R], c = [EnR], d = [OR], o = [O]. The reactions are
described by five differential equations

ė = −nk1enr + nk−1c

ṙ = −k1enr + k−1c− k2or + k−2d

ċ = k1e
nr − k−1c

ḋ = k2or − k−2d
ȯ = −k2or + k−2d. (3.9)

There are three invariants of motion for the three constitutive species r, e, o,

r + c+ d = r0

ne+ c = e0

o+ d = o0. (3.10)

The invariants can be used to eliminate all variables except e and o from (3.9). We
are left with a two-dimensional system for the effector e and the operator o,

ė = −nk1r0en + (nk1e
n + nk−1)(e0 − ne) + nk1e

n(o0 − o)
ȯ = −k2r0o+ (k2o+ k−2)(o0 − o) + k2o(e0 − ne). (3.11)

The nonlinearity depends on all chemical constants and the total effector e0, the
total operator o0, and the total repressor r0.

The system (3.11) is a two-dimensional competitive system. From the general
theory of cooperative and competitive systems (see [3]) we know that every bounded
trajectory goes to equilibrium. The rectangle {(e, o) : 0 < e < e0, 0 < o < o0} is
positively invariant and attracts all trajectories from R2

+. In the rectangle there is a
single stationary point (for a proof see subsection 3.5). Hence this point is globally
attracting.
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3.3. The exact formula. At any stationary point of (3.11) we have the two equa-
tions

0 = −k1r0en + (k1e
n + k−1)(e0 − ne) + k1e

n(o0 − o)
0 = −k2r0o+ (k2o+ k−2)(o0 − o) + k2o(e0 − ne). (3.12)

As in the approach of Yagil & Yagil we want a chemically meaningful relation
between e and o at the equilibrium without knowing the total amount e0 of effector.
We can form arbitrary combinations of the two equations in (3.12) to get single
equations for these unknowns but there is only one that is independent of the total
amount of effector e0. We solve in both equations of (3.12) for e0 − ne and equate
the expressions,

k1r0e
n − k1en(o0 − o)
k1en + k−1

=
k2r0o− (k2o+ k−2)(o0 − o)

k2o
. (3.13)

In this way we obtain a relation at equilibrium between o and en that depends only
on the total amount of operator o0, the reaction constants, and the total amount
of repressor r0. The relation (3.13) holds for any amount e0 of total effector. The
equation (3.13) can be reformulated as follows,

o

o0 − o
=

1

r0 − (o0 − o)
k−2
k2

(
1 +

k1
k−1

en
)
. (3.14)

On the left hand side we have the quotient [O]/[OR]. The right hand side depends
on [OR] = o0 − o. If we assume that o0 − o is small against r0 then we can neglect
the term o0 − o and get

o

o0 − o
=

1

r0

k−2
k2

(
1 +

k1
k−1

en
)

(3.15)

which is (3.7). To render this approximation meaningful we should estimate the
error in terms of some small parameter. We choose o0 as a parameter.

In (3.13) we solve for en and get

en = F (o) ≡ k−1
k1

k2
k−2

r0o− (k−2

k2
+ o)(o0 − o)

o0 − o
. (3.16)

The right hand side is negative for small values of o/(o0 − o). The behavior of the
function F and its inverse is described in the following proposition.

Proposition 3.1. The amount of free effector e can be expressed as an explicit
function of the amount of free operator as in (3.16). There is a value ō ∈ (0, o0)
such that F (o) < 0 for 0 < o < ō and F (o) > 0 for ō < o < o0. The function
F : (ō, o0)→ (0,∞) is onto and strictly increasing, hence invertible.

The inverse function G : (0,∞)→ (ō, o0) is given by

o = G(en) ≡ 1

2

[√
(r0 +Q(en)− o0)2 + 4Q(en)o0 − (r0 +Q(en)− o0)

]
(3.17)

where

Q(en) =
k−2
k2

(1 +
k1
k−1

en). (3.18)

Proof. The function F is a rational function, the degree of the numerator is 2, the
degree of the denominator is 1. There is one pole, at o = o0. Since the numerator
is negative for o = 0, there is one negative zero o, and one positive zero ō. Since
the numerator is positive for o = o0, we have 0 < ō < o0. The derivative F ′ has the
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denominator (o0−o)2, the numerator is a quadratic polynomial. Since the function
F goes to +∞ for o → −∞ and to −∞ for o → +∞, it has a minimum at some
point in (o, ō) and a maximum in (o0,∞). The derivative F ′ has no other zeros
and we see, without further calculation, that the function F is strictly increasing in
(ō, o0).

The equation F (o) = en is equivalent with the equation

k−2
k2

(1 +
k1
k−1

en) =
r0 − o0(1− o

o0
)

1− o
o0

o

o0
. (3.19)

If we put

x =
o

o0
, ε = o0, (3.20)

then (3.19) becomes
r0x− εx(1− x) = Q(en)(1− x). (3.21)

Now compute the larger root of this quadratic equation and replace x, ε from
(3.20). �

The expression (3.17) is complicated and the expression for o/(o0 − o) is even
more complicated. Furthermore, the latter depends explicitly on o0 which usually
cannot be measured. The formula (3.7) of Yagil & Yagil is an approximation that
is independent of o0. We want to find out in what sense it is an approximation.

3.4. Discussion of the approximation. We show the following proposition.

Proposition 3.2. The formula (3.7), equivalently (3.15), of Yagil & Yagil is an
approximation for small amounts of total operator. It gives the proportion o/(o0−o)
in the limit where the total amount o0 goes to zero. The next term in the expansion
in powers of o0 is given in

o

o0 − o
=

1

r0

k−2
k2

(
1 +

k1
k−1

en
)(

1 +
1

r0 + k−2

k2
(1 + k1

k−1
en)

o0 + · · ·

)
. (3.22)

The formula (3.15) is an approximation for small o0. Although o0 is small, the
proportion o/o0 need not be small.

Proof. In equation (3.21) we put ε = 0 and solve for x. The first term of the
expansion is Q/(r0 +Q) with Q = Q(en). In (3.21) differentiate with respect to ε,

r0xε − x(1− x)− εxε(1− x) + εxxε = −Qxε, (3.23)

put ε = 0 and solve for xε. The second term of the expansion is Qr0/(r0 + Q)3.
From the expansion

x =
Q

r0 +Q
+

Qr0
(r0 +Q)3

ε+ · · · (3.24)

find
x

1− x
=
Q

r0
+

Q

r0(Q+ r0)
o0 + · · · , (3.25)

replace Q = Q(en) and x as before. �
We see that [8] got the right result with a somewhat weak argument. We are

not allowed to assume that d = [OR] is small without making assumptions on
other quantities. However, if we assume that o0 = [Ot] is small against r0 = [Rt]
then also o = [O] and d = [OR] become small and the formula (3.15) is justified.
Mathematically, the formula (3.22) is an improvement of (3.15). However, it can
only be used if o0 is known.
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In [4] the formula (3.15) is used to describe gene regulatory dynamics (with
different notation, Ki = ki/k−i, the formulas look slightly different).

3.5. Uniqueness of the stationary state. We show that the system (3.11) has a
unique stationary state. From (3.16) and the second equation in (3.12) we have two
equations for the stationary state (these together are equivalent to the equations
(3.12)),

e =

[
k−1
k1

k2
k−2

r0o− (k−2

k2
+ o)(o0 − o)

o0 − o

]1/n
(3.26)

e =
1

no

[
e0o−

[
r0o− (

k−2
k2

+ o)

]]
. (3.27)

The square bracket in (3.26) is negative for small o > 0 and positive and increasing
in (ō, o0) where ō is the positive solution of

(
k−2
k2

+ o)(o0 − o) = r0o. (3.28)

The function (3.27) is large and positive for small o > 0 and is decreasing in (0, o0).
If it has a positive zero o then

(
k−2
k2

+ o)(o0 − o) = (r0 − e0)o (3.29)

and hence this zero is in (ō,∞). Therefore the graphs of (3.26) and (3.27) have a
unique intersection in (0, o0).

4. Chemically feasible data. The Michaelis-Menten function (2.8) depends on
two positive parameters a, b that can be fitted to data. The function is positive,
increasing and concave with respect to zero, i.e., y(x)/x is a decreasing function.
Data to be fitted by a MM function should reflect these properties as follows. The
xi are ordered as

0 < x1 ≤ x2 ≤ · · · ≤ xn, x1 < xn. (4.1)

The yi are non-decreasing,

0 < y1 ≤ y2 ≤ · · · ≤ yn. (4.2)

The quotients are non-increasing,

y1
x1
≥ y2
x2
≥ · · · ≥ yn

xn
. (4.3)

We require that there is at least one pair such that

i > k, xi > xk, yi > yk, (4.4)

and at least one pair such that

i > k, xi > xk,
yi
xi
<
yk
xk
. (4.5)

We call such data chemically feasible. In the next sections we show various sufficient
conditions for positivity and existence of minimizers. These conditions are satisfied
for chemically feasible data. Hence the notion of chemically feasible data appears
quite natural in connection with the MM problem.
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In the following there are many formulas that involve sums. These formulas
become clumsy unless we use a simplified notation. Our subscripts run always from
1 to n but may be restricted by some inequalities. We use∑

i

∑
i,k

∑
i>k

for

n∑
i=1

n∑
i,k=1

n∑
i,k=1
i>k

.

5. Fitting a linear function. Here we show that the notion of chemically feasible
data is useful even in the case of a linear function as it yields a criterion for positivity
of the estimated parameters.

We estimate the parameters of the function y = ax+b by a least squares method,
i.e., we minimize the expression

F =
∑
i

pi(axi + b− yi)2 (5.1)

over a, b ∈ R. Here the pi are given positive weights. We assume (4.1).

Proposition 5.1. The optimal parameters are

a =

∑
i>k pipk(xi − xk)(yi − yk)∑

i>k pipk(xi − xk)2

b =

∑
i>k pipkxixk(xi − xk)( ykxk

− yi
xi

)∑
i>k pipk(xi − xk)2

. (5.2)

Corollary 5.1. Suppose that the data are chemically feasible. Then the estimated
parameters (5.2) are positive.

It is surprising that the conditions that appear relevant for the MM problem
(see the next section) also play a role in fitting a linear function. Of course the
conditions are not necessary for a, b to be positive.

6. Least squares: Michaelis-Menten. Here we consider the least-squares prob-
lem for the MM function (2.8). Suppose we have data (xi, yi), with (4.1) and yi > 0
for i = 1, . . . , n. We want to fit a MM curve (2.8) to these data with a least squares
approach, i.e., we want to minimize the expression

F =
∑
i

pi(
axi
b+ xi

− yi)2 (6.1)

in the range a, b > 0, where the pi > 0 are some given weights.
In [2] the function F has been minimized on the two-dimensional set of parame-

ters a, b > 0. Here we fix the parameter b and take the minimum over a. This step
is easily done as the function F is quadratic in a. There is a unique minimizer â(b)
(which turns out to be positive),

â(b) =

∑
i pi

xiyi
b+xi∑

i pi
x2
i

(b+xi)2

. (6.2)

We introduce this value into (6.1) and get

F =
∑
i

piy
2
i − φ(b) (6.3)
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where

φ(b) =
(
∑
i pi

xiyi
b+xi

)2∑
i pi

x2
i

(b+xi)2

. (6.4)

Minimizing F amounts to maximizing φ(b) on 0 < b <∞. Our problem is that the
function φ(b) may assume its supremum at b = 0 or for b→∞ such that no feasible
maximizer exists. The next theorem gives two sets of sufficient conditions for the
existence of a minimizer of the function F .

Theorem 6.1. Suppose any of the two sets of two inequalities is satisfied:
i) ∑

i piyi∑
i pi

>

∑
i pi

yi
xi∑

i pi
1
xi

and
(
∑
i pixiyi)

2∑
i pix

2
i

≤
(
∑
i piyi)

2∑
i pi

(6.5)

ii)
(
∑
i pixiyi)

2∑
i pix

2
i

≥
(
∑
i piyi)

2∑
i pi

and

∑
i pix

2
i yi∑

i pix
3
i

<

∑
i pixiyi∑
i pix

2
i

. (6.6)

Then the function F has at least one minimizer with a, b > 0.

An immediate consequence is the following theorem.

Theorem 6.2. Suppose the following two inequalities are satisfied∑
i piyi∑
i pi

>

∑
i pi

yi
xi∑

i pi
1
xi

and

∑
i pix

2
i yi∑

i pix
3
i

<

∑
i pixiyi∑
i pix

2
i

. (6.7)

Then the function F has at least one minimizer with a, b > 0.

Theorem 6.1 has been shown in [2]. Theorem 6.2 follows from Theorem 6.1. But
Theorem 6.1 is the stronger result. One can construct examples for n = 3 such that
(6.5) or (6.6) is satisfied but not (6.7). On the other hand, Theorem 6.2 covers the
case of chemically feasible data, as will be shown below.

If there are only two data points, n = 2, then the least squares problem becomes
an interpolation problem. The exact values for a and b are

b =
y2 − y1
y1
x1
− y2

x2

, a =
1
x1
− 1

x2

y1
x1
− y2

x2

y1y2. (6.8)

The values a, b are positive if and only if the data are chemically feasible.
In [2] it has been shown, using the Chebyshev sum inequalities, that chemically

feasible data satisfy (6.7). Here we give a much more transparent proof based on
the following proposition.

Proposition 6.1. The stationary points of the function φ(b) are the zeros of the
function ∑

i>k

pipk
x2ix

2
k(xi − xk)

(b+ xi)3(b+ xk)3

[
yi − yk − b

(
yk
xk
− yi
xi

)]
. (6.9)

If the function (6.9) changes from positive to negative at some value b then this b
is a local maximum of the function φ.

Any zero b of the function (6.9) satisfies

b =

∑
i>k qik(yi − yk)∑
i>k qik

(
yk
xk
− yi

xi

) , with qik = pipk
x2ix

2
k(xi − xk)

(b+ xi)3(b+ xk)3
. (6.10)
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Evidently, terms with xi = xk drop out. This fact does not imply that the optimal
b is independent of such data, since the weights qik depend on the unknown b. From
the properties of generalized arithmetic means it follows: If all inequalities (4.3) are
strict then any minimizer satisfies the inequality

min
i>k

yi − yk
yk
xk
− yi

xi

≤ b ≤ max
i>k

yi − yk
yk
xk
− yi

xi

. (6.11)

Thus, in the case of chemically feasible data, we can restrict the search for b to a
bounded interval (6.11) depending only on the given data.

Proposition 6.1 allows us to reformulate the condition iii) of theorem 6.1.

Theorem 6.3. Suppose that the inequalities∑
i>k

pipk

(
1

xk
− 1

xi

)
(yi − yk) > 0 (6.12)

∑
i>k

pipkx
2
ix

2
k(xi − xk)

(
yk
xk
− yi
xi

)
> 0 (6.13)

are satisfied. Then the least squares problem has a solution.

This theorem allows immediate application to chemically feasible data. Indeed,
for such data each term of the sum, apart from a positive factor, is either zero or a
linear function that decreases from positive to negative values.

Corollary 6.1. Suppose the data are chemically feasible. Then the least squares
problem (6.1) has a solution.

It seems nearly impossible to find a useful criterion for uniqueness of the min-
imizer of F . However, once the inequalities (4.3) are strict, it is easy to find the
maximum of φ(b) in the bounded interval (6.11) for b by some numerical method.

7. Least squares: Decaying function. Here we extend our findings to the func-
tion

y =
a

b+ x
. (7.1)

We minimize
F =

∑
i

pi(
a

b+ xi
− yi)2. (7.2)

For the MM function we had found that the conditions for chemically feasible data
describe in discrete terms the behavior of the expected function. Can we find
a similar set of inequalities for the present problem? As compared to (2.8) the
present function (7.1) has opposite properties: the function y is decreasing and the
function y(x)x is increasing. Hence we expect that we should require the following
inequalities for the data

y1 ≥ y2 ≥ · · · ≥ yn > 0

x1y1 ≤ x2y2 ≤ · · · ≤ xnyn (7.3)

with the additional property that there is a pair xi > xk such that yi < yk and also
a pair xi > xk such that xiyi < xkyk. We call such data feasible for the problem
(7.1). If there are only two data points, n = 2, then the least squares problem
becomes an interpolation problem and the exact values for a, b are

b =
x2y2 − x1y1
y1 − y2

, a =
y1y2(x2 − x1)

y1 − y2
. (7.4)
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If the inequalities (7.3) are strictly satisfied, then a, b are positive.
We keep b fixed and determine the optimal a, given b. After similar steps as in

section 6 we get an expression for the optimal a,

â(b) =

∑
i pi

yi
b+xi∑

i pi
1

(b+xi)2

(7.5)

and then we maximize the functional

φ(b) =
(
∑
i pi

yi
b+xi

)2∑
i pi

1
(b+xi)2

. (7.6)

The first result is an analogue of proposition 6.1.

Proposition 7.1. The stationary points of the function φ(b) are the zeros of the
function ∑

i>k

pipk
xi − xk

(b+ xi)3(b+ xk)3
[xiyi − xkyk − b(yk − yi)] . (7.7)

If the function (7.7) changes from positive to negative at some b, then this b is a
local maximum of φ(b).

An immediate consequence is the following result.

Theorem 7.1. Suppose the following inequalities are satisfied:∑
i>k

pipk
xi − xk
x3ix

3
k

(xiyi − xkyk) > 0 (7.8)

∑
i>k

pipk(xi − xk)(yk − yi) > 0. (7.9)

Then the functional F has a minimum.

Again we have a result for feasible data.

Corollary 7.1. Let the data be feasible in the sense of (7.3). Then the function F
has a minimum.

8. Three-parameter problems. In the next two sections we treat problems re-
lated to the general fractional linear function (a11x+ a12)/(a12x+ a22). Although
this formula depends on four parameters, it really represents a three-parameter fam-
ily of functions: The function does not change if numerator and denominator are
multiplied with the same factor. However, the family of functions cannot be repre-
sented as a smooth three-parameter family. This mathematical difficulty shows up
also in the least squares problem: it makes a difference which three parameters are
subject to variation. We are interested in two special cases,

y =
ax

b+ x
− c, (8.1)

and

y =
αx− γ
β + x

. (8.2)

Of course, for b, β > 0 these formulas are equivalent if we identify parameters

β = b, α = a− c, γ = bc. (8.3)



MICHAELIS-MENTEN AND LEAST SQUARES 1553

Hence the two least squares problems

F =
∑
i

pi

(
axi
b+ xi

− c− yi
)2

(8.4)

F =
∑
i

pi

(
αxi − γ
β + xi

− yi
)2

(8.5)

for β, b > 0, α, γ, a, c ∈ R are equivalent. If one of the problems has a minimizer
then (8.3) yields a minimizer for the other.

However, if we fix β = b > 0 and minimize over a, c ∈ R or α, γ ∈ R, respectively,
then we get different functions of one parameter β = b. This fact becomes very
clear if we look at the two minimization problems for constant β = b > 0 in a
more abstract manner. In (8.4) we minimize over all linear combinations of the
functions x/(b+ x) and −1 while in (8.5) we minimize over all linear combinations
of x/(β+ x) and −1/(β+ x). There is no reason why the minimizers should be the
same function.

The problem (8.4) occurs in what is called MM with leakage (2.17) while (8.5)
shows up in connection with the reversible MM kinetics (2.16).

9. Least squares: MM with leakage. The MM function with leakage (2.17)
depends on three positive parameters a, b, c. The least squares function is given in
(8.4). For positive a, b the function (2.17) is increasing. Therefore we assume that
the data have the properties stated in (4.1) and (4.2). Since the function F is linear
in a and c, we can fix b and then find the minimum of F over a, c, given b.

Proposition 9.1. The minimization problem over a, b, c for the function F is equiv-
alent to the maximization problem for the function φ(b) over b, where

φ(b) =

(∑
i>k pipk

(xi−xk)(yi−yk)
(b+xi)(b+xk)

)2
∑
i>k pipk

(xi−xk)2

(b+xi)2(b+xk)2

. (9.1)

Once an optimal b has been found, then the corresponding value of a is

â(b) =

∑
i>k pipk

(xi−xk)(yi−yk)
(b+xi)(b+xk)∑

i>k pipk
(xi−xk)2

(b+xi)2(b+xk)2

(9.2)

and finally the value for c is

ĉ(b) = â(b)
∑
i

pi
xi

b+ xi
−
∑
i

piyi. (9.3)

Clearly the value â(b) is positive. However, the value ĉ(b) need not be positive.
We do not have an a priori condition on the data that would ensure positivity of
ĉ(b). Next we give a sufficient condition for the existence of a maximizer.

Theorem 9.1. Suppose that the data satisfy the inequalities∑
i>k pipk(x2i − x2k)(yi − yk)∑
i>k pipk(x2i − x2k)(xi − xk)

<

∑
i>k pipk(xi − xk)(yi − yk)∑
i>k pipk(xi − xk)(xi − xk)∑

i>k pipk( 1
x2
k
− 1

x2
i
)(yi − yk)∑

i>k pipk( 1
x2
k
− 1

x2
i
)( 1
xk
− 1

xi
)

<

∑
i>k pipk( 1

xk
− 1

xi
)(yi − yk)∑

i>k pipk( 1
xk
− 1

xi
)( 1
xk
− 1

xi
)
. (9.4)

Then the functional φ(b) in (9.1) has a maximizer.
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10. Least squares: Reversible MM. For the reversible MM function (2.16),
compare also (8.5), the goal function is

F =
∑
i

pi

(
axi − c
b+ xi

− yi
)2

. (10.1)

For fixed b > 0 the minimizer is â(b), ĉ(b) where

â(b) =

∑
i>k pipk

xi−xk

(b+xi)2(b+xk)2
[b(yi − yk) + xiyi − xkyk]∑

i>k pipk
(xi−xk)2

(b+xi)2(b+xk)2

(10.2)

ĉ(b) =

∑
i>k pipk

xixk(xi−xk)
(b+xi)2(b+xk)2

[b( yixi
− yk

xk
) + yi − yk]∑

i>k pipk
(xi−xk)2

(b+xi)2(b+xk)2

. (10.3)

Proposition 10.1. The minimization problem over a, b, c for the function F is
equivalent to the maximization problem for the function φ(b) over b, where

φ(b) =∑
i

pi
(b+xi)2

(
∑
i
pixiyi
b+xi

)2 + 2
∑
i

pixi

(b+xi)2

∑
i
pixiyi
b+xi

∑
i
piyi
b+xi

+
∑
i

pix
2
i

(b+xi)2
(
∑
i
piyi
b+xi

)2∑
i

pix2
i

(b+xi)2

∑
i

pi
(b+xi)2

− (
∑
i

pixi

(b+xi)2
)2

.

(10.4)

Suppose b is a maximizer. If the yi are increasing as in (4.2) then â(b) > 0. We
want a meaningful condition on the data such that also ĉ(b) > 0. The function

b+ x

x
y(x) =

b+ x

x

ax− c
b+ x

= a− c

x

is increasing. Hence we require that the data satisfy, with this particular b,

i > k ⇒ b+ xi
xi

yi >
b+ xk
xk

yk. (10.5)

Corollary 10.1. Let b be a maximizer of φ. Suppose that the data satisfy (4.1)
and (10.5). Then â(b) > 0, ĉ(b) > 0.

11. Linear least squares again. As has been observed in [2], the parameters can
also be estimated from linear least squares problems. But then the estimated pa-
rameters need not be positive. However, as it turns out, in some cases the conditions
for positivity of the solution to the linear problem are very similar to the condi-
tions of existence for the nonlinear problem. In particular for the standard MM, for
chemically feasible data, all solutions exist and are meaningful. The standard MM
function (2.8) leads to

G =
∑
i

pi(axi − byi − xiyi)2. (11.1)

Proposition 11.1. The solution of the least squares problem (11.1) is

â =

∑
i>k pipkxixkyiyk(xi − xk)

(
yk
xk
− yi

xi

)
∑
i>k pipkx

2
ix

2
k

(
yk
xk
− yi

xi

)2 (11.2)
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b̂ =

∑
i>k pipkx

2
ix

2
k(yi − yk)

(
yk
xk
− yi

xi

)
∑
i>k pipkx

2
ix

2
k

(
yk
xk
− yi

xi

)2 . (11.3)

If the data are chemically feasible in the sense of section 4 then â, b̂ > 0.

The function (7.1) leads to

G =
∑
i

pi(a− byi − xiyi)2. (11.4)

Proposition 11.2. The solution to the least squares problem (11.4) is

â =

∑
i>k pipkyiyk(xi − xk)(yk − yi)∑

i>k pipk(yk − yi)2
(11.5)

b̂ =

∑
i>k pipk(yk − yi)(xiyi − xkyk)∑

i>k pipk(yk − yi)2
. (11.6)

If the data are chemically feasible in the sense of (7.3) then â, b̂ > 0.

The reversible MM function (2.16) leads to

G =
∑
i

pi(axi − byi − c− xiyi)2. (11.7)

Although the optimal parameters can be easily expressed in terms of determinants
using Cramer’s rule, there seems to be no way to get conditions on positivity.

12. Proofs. The proof of proposition 5.1 is straightforward. The proof of theorem
6.1 is based on the intermediate value theorem, applied to the derivative φ′(b). We
determine φ(0), the limit φ(∞), then φ′(0) and a quantity ψ that has the same
sign as φ′(b) for all large b. Then the following situations ensure the existence of a
maximizer of φ (and hence a minimizer of F ).
i) φ′(0) > 0 and φ(∞) ≤ φ(0).
ii) φ(∞) ≥ φ(0) and ψ < 0.
iii) φ′(0) > 0 and ψ < 0.

We determine the required quantities. We find immediately

φ(0) =
(
∑
i piyi)

2∑
i pi

. (12.1)

We write φ(b) differently,

φ(b) =
(
∑
i pi

bxiyi
b+xi

)2∑
i pi

b2x2
i

(b+xi)2

, (12.2)

and we see that

φ(∞) = lim
b→∞

φ(b) =
(
∑
i pixiyi)

2∑
i pix

2
i

. (12.3)

We determine the derivative

φ′(b) =

2
∑
i pi

xiyi
b+xi

(
∑
i pi

x2
i

(b+xi)2
)2

[∑
i

pi
xiyi
b+ xi

∑
i

pi
x2i

(b+ xi)3
−
∑
i

pi
xiyi

(b+ xi)2

∑
i

pi
x2i

(b+ xi)2

]
(12.4)



1556 KARL PETER HADELER

and find

φ′(0) =
2
∑
i piyi

(
∑
i pi)

2

[∑
i

piyi
∑
i

pi
1

xi
−
∑
i

pi
yi
xi

∑
i

pi

]
. (12.5)

Next we investigate the sign of φ′(b) for large b. Consider the square bracket in
(12.4) and multiply by b4,

b4

[∑
i

pi
xiyi
b+ xi

∑
i

pi
x2i

(b+ xi)3
−
∑
i

pi
xiyi

(b+ xi)2

∑
i

pi
x2i

(b+ xi)2

]
. (12.6)

Put b = 1/ε,∑
i

pi
xiyi

1 + εxi

∑
i

pi
x2i

(1 + εxi)3
−
∑
i

pi
xiyi

(1 + εxi)2

∑
i

pi
x2i

(1 + εxi)2
(12.7)

and expand,∑
i

pixiyi(1−εxi)
∑
i

pix
2
i (1−3εxi)−

∑
i

pixiyi(1−2εxi)
∑
i

pix
2
i (1−2εxi). (12.8)

The terms without a factor ε cancel. The factor of ε is

ψ =
∑
i

pix
2
i yi
∑
i

pix
2
i −

∑
i

pixiyi
∑
i

pix
3
i . (12.9)

Now we have all tools for the proofs.
Proof of theorem 6.1. Check the cases i), ii), iii) above.
Proof of theorem 6.2. Suppose (6.7) holds and (6.5) does not hold. Since the
first equality is the same in (6.7) and (6.5), the second inequality in (6.5) does not
hold. Hence the converse strict inequality holds and hence the first inequality of
(6.6). The second inequality of (6.6) holds because it is the same as the second
inequality of (6.7).
Proof of proposition 6.1. The square bracket in (12.4) can be written as∑

i,k

pipk

[
xix

2
kyi

(b+ xi)(b+ xk)3
− xiyix

2
k

(b+ xi)2(b+ xk)2

]
. (12.10)

Rearrange, ∑
i,k

pipk
xiyix

2
k

(b+ xi)(b+ xk)2

(
1

b+ xk
− 1

b+ xi

)
(12.11)

∑
i,k

pipk
xiyix

2
k

(b+ xi)2(b+ xk)3
(xi − xk) (12.12)

∑
i>k

pipk
xiyix

2
k

(b+ xi)2(b+ xk)3
(xi − xk) +

∑
i<k

pipk
xiyix

2
k

(b+ xi)2(b+ xk)3
(xi − xk) (12.13)

∑
i>k

pipk
xiyix

2
k

(b+ xi)2(b+ xk)3
(xi − xk)−

∑
i>k

pipk
xkykx

2
i

(b+ xk)2(b+ xi)3
(xi − xk) (12.14)

∑
i>k

pipk
xixk(xi − xk)

(b+ xi)2(b+ xk)2

(
yixk
b+ xk

− ykxi
b+ xi

)
(12.15)

∑
i>k

pipk
xixk(xi − xk)

(b+ xi)3(b+ xk)3
[b(yixk − ykxi) + yixkxi − ykxixk] (12.16)
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∑
i>k

pipk
xixk(xi − xk)

(b+ xi)3(b+ xk)3

[
bxixk

(
yi
xi
− yk
xk

)
− xixk(yk − yi)

]
. (12.17)

Proof of proposition 7.1: We find

φ′(b) =

2
∑
i pi

yi
b+xi

(
∑
i pi

1
(b+xi)2

)2

[∑
i

pi
yi

b+ xi

∑
i

pi
1

(b+ xi)3
−
∑
i

pi
yixi

(b+ xi)2

∑
i

pi
1

(b+ xi)2

]
.

(12.18)

As in the proof of proposition 6.1 the square bracket can be transformed to the
expression (7.7).
Proof of proposition 9.1: First find the minimum of F over c, given b, a. The
minimum is obtained for

c =
∑
i

piyi − a
∑
i

pi
xi

b+ xi
(12.19)

as

F = a2

∑
i

pi
x2i

(b+ xi)2
−

(∑
i

pi
xi

b+ xi

)2


−2a

(∑
i

pi
xiyi
b+ xi

−
∑
i

pi
xi

b+ xi

∑
i

piyi

)

+
∑
i

piy
2
i −

(∑
i

piyi

)2

. (12.20)

Hence the optimal a, given b, is

a =

∑
i pi

xiyi
b+xi

−
∑
i pi

xi

b+xi

∑
i piyi∑

i pi
x2
i

(b+xi)2
−
(∑

i pi
xi

b+xi

)2 . (12.21)

Hence the minimum is

F =
∑
i

piy
2
i −

(∑
i

piyi

)2

− φ(b) (12.22)

where

φ(b) =

(∑
i pi

xiyi
b+xi

−
∑
i pi

xi

b+xi

∑
i piyi

)2
∑
i pi

x2
i

(b+xi)2
−
(∑

i pi
xi

b+xi

)2 . (12.23)

Here the denominator can be simplified (compare the proof of proposition 6.1) to

b2
∑
i>k

pipk
(xi − xk)2

(b+ xi)2(b+ xk)2
(12.24)

and the expression in brackets in the numerator becomes

b
∑
i>k

pipk
(xi − xk)(yi − yk)

(b+ xi)(b+ xk)
. (12.25)
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Proof of theorem 9.1: The derivative is

φ′(b) =
2
∑
i>k pipk

(xi−xk)(yi−yk)
(b+xi)(b+xk)(∑

i>k pipk
(xi−xk)2

(b+xi)2(b+xk)2

)2 ×
×
[∑
i>k

pipk
(xi − xk)(yi − yk)

(b+ xi)(b+ xk)

∑
i>k

pipk
(xi − xk)2

(b+ xi)3(b+ xk)3
(2b− xi − xk)

−
∑
i>k

pipk
(xi − xk)(yi − yk)

(b+ xi)2(b+ xk)2
(2b− xi − xk)

∑
i>k

pipk
(xi − xk)2

(b+ xi)2(b+ xk)2
]
.

The next steps are multiplying the square bracket by b7, putting b = 1/ε and
expanding. These steps yield the expression∑

i>k

pipk(xi−xk)(yi−yk)(1−ε(xi+xk))
∑
i>k

pipk(xi−xk)2(2−ε5(xi + xk))

−
∑
i>k

pipk(xi−xk)(yi−yk)(2−ε3(xi+xk))
∑
i>k

pipk(xi − xk)2(1−ε2(xi+xk)).

The terms linear in ε give the desired value.
Proof of proposition 10.1: To understand the structure of the problem we look
at the general situation for two functions f, g (notice the − sign before c),

F =

n∑
i=1

pi (afi − cgi − yi)2 . (12.26)

The minimizer is

a =

∑
i pig

2
i

∑
i pifiyi −

∑
i pifigi

∑
i pigiyi∑

i pif
2
i

∑
i g

2
i − (

∑
i pifigi)

2
(12.27)

c = −
∑
i pif

2
i

∑
i pigiyi −

∑
i pifigi

∑
i pifiyi∑

i pif
2
i

∑
i pig

2
i − (

∑
i pifigi)

2
, (12.28)

and the minimum is∑
i

piy
2
i

−
∑
i pig

2
i (
∑
i pifiyi)

2 + 2
∑
i pifigi

∑
i pifiyi

∑
i pigiyi +

∑
i pif

2
i (
∑
i pigiyi)

2∑
i pif

2
i

∑
i pig

2
i − (

∑
i pifigi)

2
.

(12.29)

Specialize to the functions x/(β + x), −1/(β + x) to find

â(b) =

∑
i pi

1
(b+xi)2

∑
i pi

xiyi
b+xi

−
∑
i pi

xi

(b+xi)2

∑
i pi

yi
(b+xi)2∑

i pi
x2
i

(b+xi)2

∑
i pi

1
(b+xi)2

− (
∑
i pi

xi

(b+xi)2
)2

(12.30)

ĉ(b) = −
∑
i pi

x2
i

(b+xi)2

∑
i pi

yi
b+xi

−
∑
i pi

xi

(b+xi)2

∑
i pi

xiyi
b+xi∑

i pi
x2
i

(b+xi)2

∑
i pi

1
(b+xi)2

− (
∑
i pi

xi

(b+xi)2
)2

(12.31)

and the expression (10.4) for φ(b). Finally rearrange the terms in the numerator
and denominator in (12.30), (12.31) to obtain (10.2), (10.3).
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Proof of proposition 11.1: The optimal a, b satisfy the equations

a
∑
i

pix
2
i − b

∑
i

pixiyi =
∑
i

pix
2
i yi

−a
∑
i

pixiyi + b
∑
i

piy
2
i = −

∑
i

pixiy
2
i (12.32)

and hence

a =

∑
i pixiy

2
i

∑
i pixiyi −

∑
i pix

2
i yi
∑
i piy

2
i∑

i pix
2
i

∑
i piy

2
i − (

∑
i pixiyi)

2

b =

∑
i pix

2
i

∑
i pixiy

2
i −

∑
i pixiyi

∑
i pix

2
i yi∑

i pix
2
i

∑
i piy

2
i − (

∑
i pixiyi)

2
. (12.33)

Then reorder terms to arrive at (11.2)(11.3).
The proof of proposition 11.2 is almost the same as that of proposition 11.1.

13. Discussion. We have studied several examples where essential features of a
complex dynamics in higher dimension can be approximately described by a scalar
problem. In the classical case of the non-reversible Michaelis-Menten kinetics an
ordinary differential equation describes the time course of the substrate. In the
reversible case similar results hold as has been recently shown in [6]. We review the
equations from [8] [4] for an operator-repressor system, we interpret the dynamic
equations as a competitive system, we find the exact connection between concen-
trations of effector and operator and we discuss in what sense the approximation
given in [8] is valid.

In all these problems the essential features are represented in a simple fractional
linear function depending on two or three positive parameters. Our goal is to show
how these parameters can be estimated from data by a (weighted) least squares
approach. We distinguish between “nonlinear” (in the denominator) and “linear”
parameters in the fraction. Given the nonlinear parameters (typically only one) we
solve the least squares problem with respect to the linear parameters, thus reducing
the original least squares problem to finding the maximum of a function on the
real line. We provide sufficient criteria for such maximum to exist and therefore
also for the original least squares problem. It turns out that the least squares
problem has a solution if the data reflect some natural qualitative properties of the
expected function such as monotonicity and concavity, in particular, in the case of
the non-reversible MM kinetics, if the data have a property that we call “chemically
feasible”.

Acknowledgments. The author thanks Michael Mackey for the suggestion to
study the operator-repressor dynamics.
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