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Abstract. Chronic myeloid leukemia, a disorder of hematopoietic stem cells,
is currently treated using targeted molecular therapy with imatinib. We com-

pare two models that describe the treatment of CML, a multi-scale model
(Model 1) and a simple cell competition model (Model 2). Both models de-

scribe the competition of leukemic and normal cells, however Model 1 also

describes the dynamics of BCR-ABL, the oncogene targeted by imatinib, at
the sub-cellular level. Using clinical data, we analyze the differences in es-

timated parameters between the models and the capacity for each model to

predict drug resistance. We found that while both models fit the data well,
Model 1 is more biologically relevant. The estimated parameter ranges for

Model 2 are unrealistic, whereas the parameter ranges for Model 1 are close

to values found in literature. We also found that Model 1 predicts long-term
drug resistance from patient data, which is exhibited by both an increase in the

proportion of leukemic cells as well as an increase in BCR-ABL/ABL%. Model

2, however, is not able to predict resistance and accurately model the clinical
data. These results suggest that including sub-cellular mechanisms in a math-

ematical model of CML can increase the accuracy of parameter estimation and
may help to predict long-term drug resistance.

1. Introduction. Chronic myeloid leukemia (CML) is a cancer of the white blood
cells. It is a disorder of hematopoietic stem cells characterized by the increased
growth of myeloid cells in the bone marrow and the excessive presence of these
cells in the blood. CML can be molecularly diagnosed by detecting the presence
of the Philadelphia (Ph) chromosome and the fusion oncogene BCR-ABL. This
oncogene is the result of translocation of the BCR, or breakpoint cluster, gene
located on chromosome 22 and the ABL, or Ableson leukemia virus, gene located
on chromosome 9 [3] . The progression of CML consists of three phases. The first
phase, called the benign chronic phase, is typically asymptomatic and can last for
several years untreated. The accelerated phase then follows and leads to the last
phase, called blast crisis, which is characterized by an abnormally high number of
stem cells and precursor cells in the blood or bone marrow [1]. CML can advance
from the chronic phase to the fatal blast crisis phase in a timespan of 3 to 5 years
[3].
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For CML patients in which the BCR-ABL oncogene is detected, targeted molec-
ular therapy can be used to inhibit the growth of stem cells. Imatinib, also known
as STI-571 and Gleevec [12], is a tyrosine kinase that binds to the ATP binding site
of BCR-ABL kinase, stopping cell-growth signals and decreasing cell proliferation
[5]. Previously, treatment options included other drugs, such as hydroxyurea or in-
terferon alpha, and allogeneic bone marrow transplants. Imatinib, which is effective
in all phases of CML progression, is now a widely used primary treatment option
for BCR-ABL positive CML patients [1].

BCR-ABL transcript levels are obtained using quantitative reverse transcription
polymerase chain reaction for diagnosis and to determine the effect of treatment
[17]. The amount of BCR-ABL transcript is then normalized using some control
gene, usually BCR or ABL. Thus the data is presented as BCR-ABL/control gene
percentages (BCR-ABL/ABL%) [17, 14].

Most CML patients with imatinib treatment exhibit a biphasic profile, which
means that the patients exhibit an initial rapid decline followed by a gradual de-
cline in BCR-ABL/ABL%. However, some patients exhibit a monophasic or tripha-
sic profile. The BCR-ABL/ABL% for a monophasic profile gradually decline over
time. Patients with a triphasic profile can exhibit a rapid BCR-ABL/ABL% decline
followed by a relatively gradual BCR-ABL/ABL% decline, followed by a rapid BCR-
ABL/ABL% increase [18]. The increase in the triphasic profile is most likely caused
by mutations in the BCR-ABL gene that encode resistance to Imatinib [18, 5, 6, 7],
although gene amplification is also a possible cause for resistance [6]. When treat-
ment is stopped, the BCR-ABL/ABL% of some patients rapidly increases to levels
at or beyond pre-treatment baseline [13]. There are different hypotheses as to the
cause of this increase and mathematical modeling techniques have the potential to
be helpful in elucidating the underlying mechanisms of therapy resistance.

Several groups have utilized mathematical modeling to study the effect of tar-
geted treatment and imatinib on CML, including Roeder et al. and Michor et al.
[17, 13, 11]. Roeder et al. describe a computational model in which cells tran-
sition between two environments. In this scenario, stem cells can proliferate and
differentiate in one of the environments and are quiescent in the other environment.
Roeder et al. demonstrated both a biphasic decline as well as the rapid increase
in BCR-ABL/ABL% when treatment is stopped. Roeder et al. hypothesized a
degradation of proliferating stem cells during treatment and concluded that ima-
tinib treatment can eradicate the disease, assuming no mutations. When treatment
is stopped, the relapse can be attributed to the proliferation of dormant stem cells
that were not affected by the proliferation-specific degradation effect. Michor et
al. proposed a different mathematical model that describes four cellular subpopula-
tions in a CML patient: stem cells, progenitors, differentiated cells, and terminally
differentiated cells. Michor et al. also demonstrated a biphasic decline as well as
the rapid increase when treatment is stopped. Their model incorporated the ex-
pansion of imatinib resistant stem cells during imatinib treatment and concluded
that leukemic stem cells are not depleted during imatinib therapy and thus imatinib
therapy cannot eradicate the disease.

Stein et al. [18] compared different hypotheses of the models described above.
Assuming a biphasic decline in BCR-ABL/ABL%, which was demonstrated by both
models, there are two slopes: α, which corresponds to the initial rapid decrease and
β, which corresponds to the long-term response. One hypothesis, supported by
Roeder et al., was the proliferating-quiescent hypothesis, where α is due to the
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proliferating stem cells and β is due to the quiescent stem cells. Another was the
late-early progenitors hypothesis, supported by Michor et al., where α is due to the
late progenitor cells and β is due to the early progenitor cells. Stein et al. also
considered a third hypothesis, the early stem cell hypothesis, which states that α is
due to a decline of early progenitor cells and β is due to a decline of late progenitor
cells. Stein et al. rejected the late-early progenitors hypothesis and concluded that
β is due to late progenitor depletion. However, the factors contributing to the
parameter α are still unknown.

These previous CML models described different cell environments and different
cell populations, but not sub-cellular dynamics, which may provide insights into the
sub-cellular origins of proliferation and resistance. Recently, Portz et al. [16] de-
scribed a cell quota model that describes a treatment for patients with prostate can-
cer called intermittent androgen suppression, a hormone therapy. Normal prostate
cells as well as most prostate cancer cells depend on androgen signaling for sur-
vival and proliferation. Androgen suppression treatment lowers the androgen levels,
which prevents the growth of cancer cells. The treatment can be initially success-
ful, however most patients experience a relapse. Portz et al. suggest that during
the relapse, androgen-independent cells (AI), which can grow in low-androgen lev-
els, replace androgen-dependent cells (AD). In their final model, the growth rate
of both the AD and AI populations are described by Droops cell quota models,
which introduce two new variables to represent the cell quotas for androgen. The
switching rates between the two populations are modeled using the hill equations.
The marker for prostate cancer, prostate-specific antigen (PSA), is assumed to be
dependent on androgen levels in the model. This assumption was an important
addition in the final model when comparing the model to clinical data. It is not al-
ways possible to determine the dependence of cancer cell phenotypes on sub-cellular
factors. Portz et al. exemplified how mathematical modeling can yield insights into
how sub-cellular dynamics may contribute to malignant cell growth.

Similar to prostate cancer, the proliferation of malignant cells in CML is de-
pendent on the production of sub-cellular factors, namely the BCR-ABL protein.
Therefore, it is natural to adapt the cell quota modeling approach of Portz et al.
to CML. Additionally, the increases in BCR-ABL% that occur in some CML pa-
tients are comparable to the increases in androgen levels seen in prostate cancer
patients following cessation of androgen therapy. Portz et al. showed that a cell
quota model can accurately capture such increases in sub-cellular molecular factors
that contribute to malignant proliferation [16]. Here, we compare two mathemat-
ical models, a cell quota model similar to that of Portz et al. [16] and a density
dependent model based on a model described in Michor et al. [11, 12], for the treat-
ment of CML. Our results show that additional insights into imatinib treatment for
CML patients can be gained by accounting for the dynamics of BCR-ABL at the
sub-cellular level.

2. Model 1: A cell quota model. Our goal is to gain a more in-depth under-
standing of CML and imatinib treatment by developing a model which may produce
plausible solutions that reasonably match clinical data. Our model is based on the
model framework of Portz, Kuang, and Nagy [16]. The growth rate of the BCR-ABL
dependent and independent populations are modeled using the Droop’s cell quota
model, where Q(t) represents the cell quota for BCR-ABL. The BCR-ABL depen-
dent, BCR-ABL independent, and normal populations are modeled respectively by
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the following:

dx1
dt

= r1
(
1− q1

Q

)
x1 − d0x1 −m12(Q)x1 +m21(Q)x2, (1)

dx2
dt

= r2
(
1− q2

Q

)
x2 − d0x2 +m12(Q)x1 −m21(Q)x2, (2)

dx3
dt

=
( r3

1 + p3(x1 + x2 + x3)

)
x3 − d0x3. (3)

The BCR-ABL dependent population is equivalent to non-resistant cells and the
BCR-ABL independent population is equivalent to the resistant cells. We assume
that the proliferation rates, ri(1 − qi

Q ), i = 1, 2, of both BCR-ABL dependent and

independent populations are BCR-ABL cell quota dependent while the proliferation
rate, r3

1+p3(x1+x2+x3)
, for the normal population is density dependent. Notice that

ri, i = 1, 2, 3 are the corresponding maximum proliferation rates, and p3 is the
parameter that simulates the crowding effect. qi, i = 1, 2 are minimum BCR-ABL
cell quota for BCR-ABL dependent and independent cells. We assume q1 > q2
since BCR-ABL independent cells are more likely to proliferate than BCR-ABL
dependent cells in low BCR-ABL environment. ri(1 − qi

Q ), i = 1, 2 implies that

at minimum BCR-ABL cell quota (Q = qi), corresponding leukaemia cells do not
proliferate, while the proliferation rate increases and approaches the maximum as
the BCR-ABL cell quota increases. The death rate, d0 is also assumed to be the
same for all stem cells.

The mutation or switching rates between the BCR-ABL dependent and indepen-
dent populations are given by the hill equations

m12(Q) = k1
Kn

1

Qn +Kn
1

, (4)

m21(Q) = k2
Qn

Qn +Kn
2

. (5)

The maximum BCR-ABL dependent to independent mutation rate is given by
k1 and similarly, the maximum BCR-ABL independent to dependent mutation rate
is given by k2. K1 and K2 represent the BCR-ABL dependent to independent, and
independent to dependent, mutation half-saturation level respectively.

We assume the cell quotas for BCR-ABL for both the BCR-ABL dependent and
independent cells are the same and are modeled by

dQ

dt
= vm(qm1 −Q)− µm(Q− q1)− bQ. (6)

The maximum cell quota is qm1 and the minimum cell quota is q1, with q1 > q2.
We assume that the utilization of BCR-ABL for growth in both the dependent and
independent population is µm(Q− q1), and that µm(q1 − q2) represents utilization
of BCR-ABL for some cellular process unique to the independent population, which
we do not consider here. The parameter vm represents the cell quota production
rate. According to Abbott and Michor [1], the Ph chromosome contributes to the
cell growth and so we assume BCR-ABL is used within the cells for growth at rate
µm. We assume BCR-ABL degrades at a constant rate b.

Portz et al. [16] assumed two cell quota variables, one for the dependent popu-
lation and one for the independent population. However, the two cell quotas were
very similar. Thus we assume that the cell quotas for both the dependent and in-
dependent cells are the same for simplicity. It should be noted that this was not a
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biologic assumption but an assumption based on the results of Portz et al. Future
works includes considering two cell quota variables.

3. Basic analysis of model 1. In the following we show that solutions of (1), (2),
(3), and (6) with biologically appropriate initial values stay positive. Specifically,
we assume that x1(0) ≥ 0, x2(0) ≥ 0, x3(0) ≥ 0, qm1 ≥ Q(0) ≥ q1, and all the
parameters are positive. These assumptions are natural for our application.

Proposition 1. Solutions of (1), (2), (3), and (6) stay in the region {(x1, x2, x3, Q) :
x1 ≥ 0, x2 ≥ 0, 0 ≤ x3 ≤ max{ 1

d0p3
(r3 − d0), x3(0)}, q1 µm

µm+b ≤ Q ≤ qm1} provided

that x1(0) ≥ 0, x2(0) ≥ 0, x3(0) ≥ 0, qm1 ≥ Q(0) ≥ q1.

Proof. Observe that

Q′ = vm(qm1 −Q)− (µm + b)

(
Q− q1

µm
µm + b

)
.

It is easy to see that qm1 ≥ Q(t) ≥ q1
µm

µm+b for t > 0 with initial condition qm1 ≥
Q(0) ≥ q1. A straightforward application of standard comparison argument will
establish the positivity of x1, x2 and x3.

We consider now the boundedness of x3.

x′3 =

(
r3

1 + p3(x1 + x2 + x3)
− d0

)
x3 ≤

(
r3

1 + p3x3
− d0

)
x3

=
1

1 + p3x3
(r3 − d0 − d0p3x3)x3.

From this, we see that lim
t→∞

x3(t) ≤ max{ 1
d0p3

(r3−d0), 0}, and x3(t) ≤ max{ 1
d0p3

(r3−
d0), x3(0)} for t ≥ 0.

We are now in a position to consider the uniform boundedness of x1 and x2.

x′1 + x′2 = r1(1− q1
Q

)x1 + r2(1− q2
Q

)x2 − d0(x1 + x2).

Since Q(t) ≤ qm1, we have

x′1 + x′2 ≤M(x1 + x2)− d0(x1 + x2) = (M − d0)(x1 + x2),

where M = max{r1(1− q1
qm1

), r2(1− q2
qm1

)}. We see that x1 + x2 ≤ x1(0) + x2(0) if

M − d0 ≤ 0. Biologically, M − d0 ≤ 0 amounts to say that even at the maximum
intracellular BCR-ABL concentration qm1, the populations x1 and x2 grow at a rate
less than their death rate d0, which trivializes this modeling task. A much more
natural mechanism that shall ensure the boundedness of solutions is the density
dependent death rate. In more plausible CML models with more desirable long
term dynamics, one can add an additional term such as d1x

2
1 to (1) and d1x

2
2 to (2).

In the following, we assume that(
r1

(
1− q1

Q1

)
− d0 −m12(Q1)

)(
r2

(
1− q2

Q1

)
− d0 −m21(Q1)

)
6= m12(Q1)m21(Q1),

where

Q1 =
vmqm1 + µmq1
vm + µm + b

.

The following proposition provides some basic local stability results for Model 1.
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Proposition 2. System (1), (2), (3) and (6) has no positive periodic solutions. It
has two possible boundary equilibria: E0 = (0, 0, 0, Q1), E1 = (0, 0, r3−d0p3d0

, Q1) and

no interior equilibrium.

1. Assume that r1(1− q1
Q1

) + r2(1− q2
Q1

)− 2d0 −m12(Q1)−m21(Q1) < 0 and(
r1(1− q1

Q1
)− d0 −m12(Q1)

)(
r2(1− q2

Q1
)− d0 −m21(Q1)

)
−m12(Q1)m21(Q1) > 0.
(a) If r3 < d0, then E0 is the unique equilibrium and it is (locally) stable.
(b) If r3 > d0, then we have equilibria E0 and E1, while E0 is unstable and

E1 is (locally) stable.
2. If r1(1− q1

Q1
) + r2(1− q2

Q1
)− 2d0 −m12(Q1)−m21(Q1) > 0 or(

r1(1− q1
Q1

)− d0 −m12(Q1)
)(

r2(1− q2
Q1

)− d0 −m21(Q1)
)

−m12(Q1)m21(Q1) < 0, then both E0 and E1 are unstable.

Proof. Observe that

Q′ = −(vm + µm + b)Q+ vmqm1 + µmq1.

It is easy to see that lim
t→∞

Q(t) = Q1. Then we can look at the limiting case of (1)

and (2):
dx1
dt

= r1
(
1− q1

Q1

)
x1 − d0x1 −m12(Q1)x1 +m21(Q1)x2,

dx2
dt

= r2
(
1− q2

Q1

)
x2 − d0x2 +m12(Q1)x1 −m21(Q1)x2.

Since there is no positive steady state for the limiting case, then by the positivity
of the solutions and the fact that a periodic orbit must enclose at least one equilib-
rium, there are no periodic solutions for the limiting case. Thus, (x1, x2) is either
unbounded or approaches the steady state (0,0), which makes x3 approach a steady
state by observing (3). Hence there are no nontrivial periodic solutions for (1), (2),
(3), and (6).

We now only need to consider the stability of (x1, x2, x3). Routine local stability
analysis leads to that the stability of the equilibria depends on eigenvalues such
that

λ1 + λ2 = r1(1− q1
Q1

) + r2(1− q2
Q1

)− 2d0 −m12(Q1)−m21(Q1),

λ1λ2 =

(
r1(1− q1

Q1
)− d0 −m12(Q1)

)(
r2(1− q2

Q1
)− d0 −m21(Q1)

)
−m12(Q1)m21(Q1),

and

λ3 = − r3p3x3

(1 + p3(x1 + x2 + x3))
2 +

r3
1 + p3(x1 + x2 + x3)

− d0.

It is straightforward to conclude the linear stability for the three different cases.

Proposition 2 implies that there is no oscillatory behavior on the BCR-ABL/ABL
% (see (9)), which suggests that the oscillatory nature of some individual patients’
data may be caused by stochastic factors not considered here. Also notice that
E1 corresponds to 0% in BCR-ABL/ABL(%), while BCR-ABL/ABL(%) does not
apply to E0.
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4. Model 2: A simple density dependent model. The second model, based
on a model by Michor [11, 12], describes the change in abundances of normal stem
cells x and leukemia stem cells y respectively:

x′ = [rxΦ− d0]x where Φ =
1

[1 + cx(x+ y)]
(7)

y′ = [ryφ− d0]y where φ =
1

[1 + cy(x+ y)]
(8)

rxΦ, ryφ represent the density dependent cell dividing rates, and cx, cy are pa-
rameters that simulate the crowding effect that is seen in the bone marrow mi-
croenvironment. The normal and leukemia stem divide at rates at most rx, ry,
respectively, per day. The death rate of both normal and leukemia stem cells is rep-
resented by d0. This model assumes that cells can reproduce both symmetrically
and asymmetrically.

5. Basic analysis of model 2. Our first proposition presents the positivity and
boundedness results for Model 2.

Proposition 3. Solutions of (7) and (8) stay in {(x, y) : 0 ≤ x ≤ max{ 1
d0cx

(rx −
d0), x(0)}, 0 ≤ y ≤ max{ 1

d0cy
(ry − d0), y(0)}} provided that x(0) ≥ 0, y(0) ≥ 0.

Proof. We show first that x(t) > 0 and y(t) > 0 when exist for t > 0. If not, there
is a first time t1 > 0 such that x(t1) = 0 or y(t1) = 0. Assume first that x(t1) = 0.
Then for t ∈ [0, t1], we see that x′(t) ≥ −d0x(t) and hence x(t1) ≥ x(0)e−d0t1 > 0,
a contradiction. Similar contradiction can be obtained by assuming that y(t1) = 0,
proving the positivity of the solutions.

Next to establish the boundedness of solutions. Observe that

x′ = [
rx

1 + cx(x+ y)
− d0]x ≤ (

rx
1 + cxx

− d0)x

y′ = [
ry

1 + cy(x+ y)
− d0]y ≤ (

ry
1 + cyy

− d0)y.

By a comparison argument, we can conclude that x is bounded by max{ 1
d0cx

(rx −
d0), x(0)} and y is bounded by max{ 1

d0cy
(ry − d0), y(0)}.

The next proposition presents stability results for Model 2.

Proposition 4. There are three possible boundary equilibria: E0 = (0, 0), E1 =
(0, 1

d0cy
(ry − d0)) (when ry > d0), E2 = ( 1

d0cx
(rx − d0), 0) (when rx > d0), and no

interior equilibrium. There are no periodic solutions of (7) and (8).

1. If rx < d0 and ry < d0, then E0 is the unique equilibrium and E0 is (globally)
stable.

2. If rx > d0 and ry < d0, we have equilibria E0 and E2, while E0 is unstable
and E2 is (globally) stable.

3. If rx < d0 and ry > d0, we have equilibria E0 and E1, while E0 is unstable
and E1 is (globally) stable.

4. If rx > d0 and ry > d0, we have all three equilibria: E0, E1, and E2. E0 is
unstable.
(a) If 1

cx
(rx−d0) < 1

cy
(ry−d0), then E1 is (globally) stable and E2 is unstable;

(b) If 1
cx

(rx − d0) > 1
cy

(ry − d0), then E1 is unstable and E2 is (globally)

stable.
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Proof. All the equilibria can be easily calculated. Since there is no interior equi-
librium and the solutions are bounded, then by the fact that a periodic orbit must
enclose at least one equilibrium, there are no periodic solutions of (7) and (8).

Routine local stability analysis leads to that the stability of the equilibria depends

on eigenvalues λ1 = rx − d0, λ2 = ry − d0; λ1 =
cy(rx−d0)−cx(ry−d0)
cy+

1
d0
cx(ry−d0)

,

λ2 = −d0ry (ry−d0); and λ1 = − d0rx (rx−d0), λ2 =
cx(ry−d0)−cy(rx−d0)
cx+

1
d0
cy(rx−d0)

for E0, E1, and

E2 respectively. Then it is straightforward to conclude the linear stability for the
four different cases. Since we have eliminated the existence of periodic solutions,
local stability implies global stability for case (1), (2), and (3).

Proposition 4 implies that there is no oscillatory behavior on the BCR-ABL/ABL
%, again suggests that the oscillatory nature of some individual patients’ data may
be caused by stochastic factors not considered here. Also notice that E1 corresponds
to 100% in BCR-ABL/ABL(%) and E2 corresponds to 0% in BCR-ABL/ABL(%),
while BCR-ABL/ABL(%) does not apply to E0.

6. Data. We used data from a previous study [14, 17] that consists of samples
from patients who were recruited in Germany between June 2000 and January
2001 and enrolled in the International Randomized Study of Interferon and STI571
(IRIS study). Müller et al. [14] studied 139 patients, who were recently diagnosed
BCR-ABL positive chronic phase CML patients. Out of these patients, 69 were
treated with imatinib and 70 were treated with interferon (IFN)/Ara-C. Our anal-
ysis only considers the 69 patients who were treated with imatinib. These patients
received 400mg orally daily. The blood samples were collected, either by mail or
locally, after months 1, 2, and 3, and then were collected at three month intervals.
The data consists of BCR-ABL/ABL% from months ranging from 0 to 66 from
each patient. The BCR-ABL transcripts were obtained using qualitative reverse
transcriptase-polymerase chain reaction and ABL was used as the control gene. For
more information, see [14].

To compare the clinical data to Model 1, we used the following to approximate
the percents:

0.5x1 + 0.5x2
0.5x1 + 0.5x2 + x3

× 100% (9)

To compare the clinical data to Model 2, we used the following to approximate
the percents:

0.5y

0.5y + x
× 100% (10)

In using these approximations, we assume that a BCR-ABL positive cell also
contains a non mutated chromosome 9 and 22 and thus the BCR-ABL/ABL%
values cannot be over 100. Therefore we did not analyze any patients with BCR-
ABL/ABL values over 100% and only analyzed data from the remaining 51 patients.
Since the data ranges from 0 to 66 months and after month 3, the samples were
collected every 3 months, ideally each patient should have 25 data points. Out of
these 51 patients, 11 patients had fewer than 10 data points. Since we are comparing
the two models to the data, we only considered the 40 patients with more than 10
data points. We assume that, for each patient, the initial BCR-ABL/ABL% value
consists of 99% BCR-ABL dependent cells and 1% BCR-ABL independent cells.



COMPARISON OF TWO CHRONIC MYELOID LEUKEMIA MODELS 1509

Model Average Median Range (Max-Min)
Model 1 2.030 0.9939 18.13 (18.14-0.0137)
Model 2 2.181 1.080 17.06 (17.06-0.0047)

Model 1-Model 2 -0.1514 -0.0897 2.887 (1.185-(-1.702))

Table 1. Error Statistics.

Parameter Meaning
r1 Maximum proliferation rate of BCR-ABL D population
r2 Maximum proliferation rate of BCR-ABL I population
r3 Maximum proliferation rate of Normal population
p3 Parameter that simulates the crowding effect
n Hill coefficient
q1 Minimum BCR-ABL D cell quota
q2 Minimum BCR-ABL I cell quota
k1 Maximum BCR-ABL D to BCR-ABL I mutation rate
k2 Maximum BCR-ABL I to BCR-ABL D mutation rate
K1 BCR-ABL D to BCR-ABL I mutation half-saturation level
K2 BCR-ABL I to BCR-ABL D mutation half-saturation level
qm1 Maximum BCR-ABL cell quota
vm Cell quota production rate
b Cell quota degradation rate
µm Rate at which BCR-ABL is used within the cell for growth

Table 2. Model 1 Parameter Meanings. BCR-ABL D refers to
BCR-ABL dependent and BCR-ABL I refers to BCR-ABL inde-
pendent.

7. A comparison of the two models.

7.1. Simulations. To compare the two models we ran simulations with MATLAB
using the clinical data of the 40 patients from the earlier study [14]. We used the
MATLAB built-in function fminsearch to find the optimum parameters for each
model for each patient. We calculated the error using the following equation:

error 2 =

∑
i(yi − ŷi)2

N
(11)

where N represents the total number of data points, yi represents the actual value,
and ŷi represents the estimated value from the models.

After comparing the errors for each patient from each of the models, 26 out of 40
patients had a smaller error associated with Model 1 compared to Model 2. Table
1 contains statistical information about the errors of the two models. The median
error for Model 1 was 0.9939 whereas the median error for Model 2 was 1.080. The
average error for Model 1 was 2.030 whereas the average error for Model 2 was
2.181. When comparing the difference between the errors for each model for each
patient, only 4 patients out of the 40 patients had a difference in error that was
greater than 1. Figure 1 contains the simulations for three patients whose Model
1 error was smaller than the Model 2 error. Figure 2 contains the simulations for
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Figure 1. The three rows show the data fitting for patients 15,
48, and 53 respectively where the blue solid line represents Model
1, the dashed red line represents Model 2, and the blue circles
represent the clinical data. The left column and the right column
both show the same data fitting. The left column has a y-axis
of BCR-ABL/ABL(%) whereas the right column have y-axis as
log10(BCR-ABL/ABL(%)) values.

three patients whose Model 2 error was smaller than the Model 1 error. Figure 3
contains the simulations for three patients where the two models were similar in
terms of error.
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Figure 2. The three rows show the data fitting for patients 17,
18, and 30 respectively where the blue solid line represents Model
1, the dashed red line represents Model 2, and the blue circles
represent the clinical data. The left column and the right column
both show the same data fitting. The left column has a y-axis
of BCR-ABL/ABL(%) whereas the right column have y-axis as
log10(BCR-ABL/ABL(%)) values.

7.2. Parameters. Tables 2 and 4 contain the parameter meanings for Model 1
and Model 2 respectively. Tables 3 and 5 contain statistical information about the
parameters for the 40 patients for Model 1 and Model 2 respectively. We used the
fminsearch function in Matlab to find optimal model parameters with respect to
the error defined in (11). The initial guesses for the parameters of the models were
initially fit by hand to provide good qualitative agreement with the clinical CML
data. Note that both models use the stem cell death rate, d0 = 0.003/day [13].
We can see that, although Model 2 has fewer parameters, the range of the values is
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Figure 3. The three rows show the data fitting for patients 10,
20, and 29 respectively where the blue solid line represents Model
1, the dashed red line represents Model 2, and the blue circles
represent the clinical data. The left column and the right column
both show the same data fitting. The left column has a y-axis
of BCR-ABL/ABL(%) whereas the right column have y-axis as
log10(BCR-ABL/ABL(%)) values.

extremely large and biologically unrealistic. The maximum value for r3 in Model 1
is about 0.015 per day, whereas the maximum dividing rate for normal stem cells
in Model 2 is 6.518 × 109 per day. The average value for r3 in Model 1 is 0.0061
per day whereas the average value for rx in Model 2 is about 2.341 × 108 per day.
Previous literature [4] have used the value of 0.005 per day to represent the growth
rate of normal stem cells, which is much closer to the maximum and average values
for Model 1. Although the averages and ranges are very different for the normal
stem cell division rate for the two models, the median values are close. The median
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Parameter Average Median Range (Max-Min)
r1 0.0054 0.0036 0.021 (0.021-2.713E-11)
r2 0.0225 0.0235 0.042 (0.042-2.587E-4)
r3 0.0061 0.0053 0.015 (0.015-4.919E-8)
p3 1.208E-6 9.454E-7 3.559E-6 (3.563E-6-4.145E-9)
n 2.363 2.050 6.138 (6.238-0.099)
q1 0.2854 0.3210 1.011 (1.011-1.722E-8)
q2 0.2149 0.2302 0.674 (0.675-2.704E-4)
k1 0.0001 0.0001 0.001 (0.001-3.973E-5)
k2 0.0001 0.0001 2.091E-04 (2.132E-4-4.132E-6)
K1 0.0730 0.0753 0.151 (0.162-0.011)
K2 1.6722 1.772 4.025 (4.300-0.275)
qm1 5.0489 4.993 14.42 (14.42-0.005)
vm 6.5600E-4 2.879E-4 0.0101 (0.0101-1.3886E-11)
b 0.1469 0.1143 0.470 (0.474-0.004)
µm 0.0125 0.0127 0.061 (0.061-2.058E-8)

Table 3. Model 1 Parameter Statistics

Parameter Meaning
ry Maximum dividing rate of leukemic stem cells
rx Maximum dividing rate of normal stem cells
cy Parameter that simulates the crowding effect
cx Parameter that simulates the crowding effect

Table 4. Model 2 Parameter Meanings

value for r3 in Model 1 is about 0.005 while the median value for rx in Model 2 is
about 0.048. Both the median value of rx in Model 2 and the median value for r3
in Model 1 are essentially the same as the values found in literature.

In Model 1, the growth rate of the nonresistant leukemic stem cells has a maxi-
mum value of about 0.021 per day, which is relatively close to the value of 0.008 per
day used by Michor [13]. However, the maximum value of ry in Model 2 is about
4.392 × 107 per day, which is biologically unrealistic. For Model 1, the median
and average values for r1 are 0.0036 and 0.0054 respectively, while the median and
average values for ry in Model 2 are 0.011 and 1.738 × 106 respectively. Although
Model 2 seems to be a much simpler model and fit the data similarly to Model 1,
we can see that the parameter ranges are biologically unrealistic, suggesting that
Model 1 to be biologically more plausible.

7.3. Resistance. Some patients exhibit a triphasic profile where there is an in-
crease in BCR-ABL/ABL% values after the decline. This increase is most likely
due to resistance to Imatinib. Although both models were able to show resistance
for at least one patient, the resistance described by Model 1 seems more biolog-
ically relevant. The BCR-ABL dependent population in Model 1 represents the
non-resistant cells while the BCR-ABL independent population represents the re-
sistant cells. Model 1 suggests that a relapse occurs when the BCR-ABL dependent
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Parameter Average Median Range (Max-Min)
ry 1.738E+6 0.0109 4.392E+7 (4.392E+7-5.202E-9)
rx 2.341E+8 0.0480 6.518E+9 (6.518E+9-0.002)
cy 1.387E+10 217.6 3.352E+11(3.352E+11-0.075)
cx 1.466E+9 0.1282 2.319E+10 (2.319E+10-3.499E-8)

Table 5. Model 2 Parameter Statistics

population is replaced by the BCR-ABL independent population. Abbott and Mi-
chor describe a slightly more complex model [1], which also describes resistance,
however the model was not available nor completely described in the paper, so we
were not able to compare Model 1 to their model with resistance.

Models that describe resistance are important biologically since resistance is a
common problem in cancer treatments. A model by Foo et. al predicted that, for
every 100 patients treated with only imatinib, 89 will eventually develop resistance
[4]. Models can be used to determine when the patient will stop responding to treat-
ment based on their previous data. For chronic phase patients who start imatinib
treatment early, only 12% develop resistance within the first two years of treatment
[13]. This implies that resistance is probably not an immediate occurrence.

We searched for signatures of resistance using the parameters estimated from
patient data. Although clinical data only contains values up to about 5.5 years, we
ran the simulations for a longer time span to compare the ability of Model 1 and
Model 2 to predict long-term resistance. The simulation for patient 1 in Model 2
showed an increase in BCR-ABL/ABL% around day 1000 (Figure 4), suggesting
that the CML cell population started to outgrow the normal cell population. This
increase in the leukemia cell population was then verified by the simulation using
Model 2 for the proportion of the cell populations (Figure 4). However, patient 1
had the largest error out of all of the other patients for both models. The error
for patient 1 from Model 1 was 18.14 and the error from Model 2 was 17.06. The
next largest error out of all the patients for Model 1 was 6.858 and for Model 2
was 7.533, which are relatively small errors (errors for patient 20). Thus, neither
model accurately describes the patient 1 data, so it seems irrelevant that Model 2
describes resistance for patient 1. Figure 4 also contains graphs where resistance
was predicted by Model 1 by an increase in BCR-ABL/ABL%, an increase in the
proportion of CML cells, and a decrease in the proportion of normal cells. The
errors for these patients were relatively smaller than the errors for patient 1.

8. Discussion. The two models compared in this paper both describe the treat-
ment of chronic myeloid leukemia but do so in different ways. Model 2 describes
the competition of leukemic and normal stem cells. In Model 1, normal stem cells
are in competition with leukemic cells and the growth of leukemic cells depends on
the concentration of BCR-ABL. Model 1 also incorporates more biological detail
than Model 2 by describing the subcellular dynamics of BCR-ABL and allowing for
phenotypic switching between BCR-ABL dependent and independent leukemic cell
populations. We compared these two models using clinical data and simulations in
order to gain insights into how adding these biological details can more accurately
describe and predict resistance to imatinib treatment for CML patients. We found
that although Model 2 is a much simpler model, it still describes the data well for
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Figure 4. The three rows show simulations for patients 1, 20,
and 53 respectively. The left column shows the data fitting for
each patient with the y-axis as log10(BCR-ABL/ABL(%)) values,
where the blue solid line represents Model 1, the dashed red line
represents Model 2, and the blue circles represent the clinical data.
The right column shows the proportion of the cell populations,
where the green solid line represents the leukemic cells and the
dashed purple line represents the normal cells. The model that
showed resistance in the left column was used in the simulation
for the right column. Model 1 was used for the simulation of the
proportion of cells for patients 20 and 53 and Model 2 was used for
the simulation of the proportion of cells for patient 1.
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some patients. However, the parameter ranges for Model 2 are extremely large and
biologically unrealistic. In contrast, Model 1 fit the clinical data better for more
patients (26/40) and the estimated parameter ranges were more realistic. This re-
sult suggests that the additional biological mechanisms described in Model 1 are
relevant, since they can increase the accuracy in data fitting in a majority of patient
data.

A mathematical model that predicts treatment resistance in cancer can be a
valuable tool to increase the effectiveness of treatment strategies. This is especially
relevant for CML where 62% of accelerated phase patients treated with imatinib
develop resistance within 2 years of treatment [2]. Using simulations with parameter
estimates from patient data, Model 1 was able to predict resistance to imatinib in
terms of both an increase in BCR-ABL/ABL% and in the proportion of leukemic
cells in the total stem cell population. Model 2 predicted resistance in a single
patient, however, the error associated with Model 2 for this patient was relatively
large (2.265 times greater than any other patient). Since Model 2 is unable to
accurately fit the clinical data for this patient, it is unlikely that the consequent
prediction of resistance is accurate. Thus, Model 1 was able to show resistance in
some patients in a biologically meaningful way whereas Model 2 was not able to
show resistance and accurately model the clinical data.

The results we have discussed for Model 1, although promising, are mainly com-
putational and in need of further exploration. A thorough mathematical analysis
of Model 1 can provide additional insights into how the subcellular regulation of
BCR-ABL levels dictates the long-term transition of CML cells to an imatinib re-
sistant phenotype, i.e. BCR-ABL independent. In future computational work we
can further evaluate the accuracy of Model 1 to predict resistance by using patient
data that exhibits long-term (i.e. > 2 years) resistance to imatinib. For example,
the simulations for Model 1 where resistance occurs suggest that a more optimal
patient data set for evaluating the accuracy of Model 1 is on the time scale of 5-10
years post-treatment initiation.

A novel mechanism encoded in Model 1 is the BCR-ABL dependent switching
between BCR-ABL dependent and independent populations. We speculate that
these transitions could have an epigenetic basis. This is in contrast to previous
CML models that have only considered transitions due to genetic mutations [1] or
switching between a proliferative and non-proliferative state [17, 10]. Indeed, re-
cent studies have elucidated important epigenetic changes that may cause resistance
to the imatinib drug. For example, imatinib therapy could cause drug resistance
by affecting epigenetic alterations in cells that down-regulates tumor suppressor
genes [15]. Such alterations could lead to a reduced dependence of leukemic cells
on BCR-ABL to express a malignant phenotype, i.e. a BCR-ABL independent
cell population. Another study showed that aberrant changes in DNA methyla-
tion could be an epigenetic marker associated with imatinib resistance [8]. Our
computational work here highlights the importance of further experimental work
to ascertain the rate at which epigenetic transitions occur in CML, how this rate is
related to imatinib dosage, and how it affects imatinib resistance.

Kareva, Berezovskaya, and Castillo-Chavez [9] analyze the balance between im-
mature and mature myeloid cells and how this balance effects tumors. They claim
that if there is a small enough population of cancer cells, then there is a small re-
gion of initial conditions where the immune system alone will cure the cancer and
the patient will not need treatment. Future work could look into incorporating
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the mature and immature myeloid cell populations into the normal cell population
in Model 1 as well as combining intermittent imatinib therapy with the immune
system’s defense. The work can also be expanded in the future by using more bi-
ologically relevant function forms of p(x) and mortality, considering two cell quota
variables, and also comparing Model 1 to the model by Roeder et al. [17].
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