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Abstract. The spread of an infectious disease is sensitive to the contact pat-

terns in the population and to precautions people take to reduce the transmis-

sion of the disease. We investigate the impact that different mixing assumptions
have on the spread an infectious disease in an age-structured ordinary differen-

tial equation model. We consider the impact of heterogeneity in susceptibility

and infectivity within the population on the disease transmission. We apply
the analysis to the spread of a smallpox-like disease, derive the formula for

the reproduction number, <0, and based on this threshold parameter, show

the level of human behavioral change required to control the epidemic. We
analyze how different mixing patterns can affect the disease prevalence, the

cumulative number of new infections, and the final epidemic size. Our analysis

indicates that the combination of residual immunity and behavioral changes
during a smallpox-like disease outbreak can play a key role in halting infec-

tious disease spread; and that realistic mixing patterns must be included in the
epidemic model for the predictions to accurately reflect reality.

1. Introduction. The spread of infectious diseases depends upon contact patterns
among people in the infected population. These contact patterns can help guide
public health workers identify people at high risk of contracting an infection and
where an outbreak can be effectively intercepted. Mathematical disease transmis-
sion models can be useful tools in understanding the complex dynamics between
the population and disease transmission. The knowledge gained from these models
can help improve the effectiveness of intervention strategies in slowing the spread.
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A realistic model for the spread of an infectious diseases must take into account
the mechanism of its transmission including the pattern of mixing among the pop-
ulation, the susceptibility within the population, the virulence of the infection, the
probability of transmission per contact, and the changes in behavior in the affected
population in response to an epidemic. The simplest mathematical models assume
that the population mixes homogeneously, where it is equally likely that the disease
can be transmitted between any two people, regardless of their age, where they live
or work, or any other behavior traits that the individuals might have.

The assumption of a homogeneously mixing population is often sufficient to ob-
tain general insights once an epidemic is well established in a population. However,
there can be significant differences in the early stages of an epidemic and in the
final epidemic size. In particular, homogeneous mixing can lead to an overestima-
tion of the final epidemic size and the magnitude of the interventions needed to
stop an epidemic [52]. For example, before smallpox was eradicated worldwide in
the 1970s, smallpox vaccinations were routinely administered to the population;
therefore, more than half of the U.S. population has received the smallpox vaccine,
and recent studies have shown that some of these individuals may still have par-
tial protection against smallpox [2, 13]. Because the vaccine itself carries potential
health risks, the U.S. discontinued smallpox vaccinations in 1972 [7]. This protec-
tion should greatly reduce the number of severe and fatal cases of disease expected
in a potential bioterrorist attack. Similarly, recent pertussis studies have shown
that infection-acquired immunity against pertussis disease wanes after 4-20 years
and protective immunity after vaccination wanes after 4-12 years [56]. Therefore,
there are clear age-dependent differences in susceptibility that must be taken into
account when developing models that will guide public health policy.

Mathematical models have demonstrated the importance of accounting for het-
erogenous mixing patterns in the population by using mixing functions or mixing
matrices defined in compartmental and networks models [4, 26, 27, 30, 31, 35, 37, 57].
Techniques have been developed to incorporate non-random mixing into epidemic
models, including proportional mixing (mixing between groups is proportional to
the activity levels) [24, 46], restricted or preferred mixing (some contacts are chosen
within a group and the rest are chosen proportionally) [34, 25, 46], and selective
mixing (mixing between groups is based on desirability, acceptability, ad availabil-
ity) [26, 38]. Network epidemic models have been used to investigate sequential
partnership patterns [39], concurrency in relationships [39], the impact of various
social biases on the spread of epidemics [16, 50], and other topics related to mixing
[40]. Network and compartmental epidemic models have been used to model sev-
eral infectious diseases; however, very few models have incorporated the impact of
realistic mixing patterns in the presence of population heterogeneity.

Age-dependent risks and residual protection have been mostly neglected in the
mathematical models proposed to guide response strategies for a smallpox outbreak
[5, 14, 36, 41, 44], although some mathematical models of the dynamics of smallpox
have incorporated the effects of residual immunity [23, 45]. Halloran et al. [23] used
a stochastic simulation of smallpox in a community of 2,000 people in their efforts to
compare mass vaccination versus ring vaccination under different scenarios. They
concluded that ring vaccination would be more effective in the presence of preex-
isting immunity. However, their model divided the population into only two classes
(with and without residual immunity), did not consider age-dependent risks, hetero-
geneous mixing, and behavioral changes in response to a disease outbreak. Nishiura
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et al. [45] used a deterministic model with a population of 1 million people to study
the impact of long-lasting vaccine-induced immunity. They divided the population
into three classes (never vaccinated, one vaccination, two vaccinations) and assumed
homogeneous mixing; however, they did not incorporate age-dependent risks and
behavioral changes. They observed that an epidemic could be greatly affected by
the residual immunity within the population and that vaccination should be given
in accordance to immunity level. Similarly, the recent 2009 H1N1 pandemic showed
age-dependent risk; that is, people who received the 1976 swine flu vaccine had
some protection against the virus [43]. Because many vaccinations are highly corre-
lated to a persons age, these studies all support the need for models to incorporate
age-dependent residual protection when predicting the disease dynamics within a
population.

Responses to an infectious disease in a community can reduce morbidity and mor-
tality; for example, significant changes in behavior among men who engage in sex-
ual activity with men have been credited with decreases in prevalence of HIV/AIDS
and other sexually transmitted diseases [22, 25, 28, 55]. Experiences with the severe
acute respiratory syndrome (SARS) epidemic in 2003 and most recently, the 2009
H1N1 pandemic indicate that an outbreak of a deadly disease would generate dra-
matic behavioral changes [10, 47, 48, 17]. Del Valle et al. [11] used a deterministic
model to study the effects of behavioral changes during a smallpox outbreak. They
demonstrated that behavioral changes can have a dramatic impact in slowing an
epidemic and reducing the total number of cases; however, they used homogeneous
mixing and differences in susceptibility based on age were not incorporated.

We derived and age-structured model for transmission that combines the effects
of age-dependent residual immunity with age-dependent mixing. We then compare
the results of assuming different mixing patterns to determine the effects these
assumptions have on the size and duration of epidemics. In our simulations, we
assume that the population is closed (no immigration, births or natural deaths are
considered, although we include disease-induced death) and that there is only one
disease in operation.

Our simulations quantify how the different mixing assumptions lead to differences
in the disease prevalence, the cumulative number of new infections, and the final
epidemic size. We verify that reducing the number of contacts in the population
slows the spread of the epidemic and observe that reducing the distribution of
contacts also reduces the spread. That is, if people mix with a much smaller subset
of the overall population, then the transmission rates are reduced.

We also quantify how the residual immunity to smallpox reduces the final epi-
demic size. We also observe that the age groups with high susceptibility are less
affected by the mixing assumptions than those with less susceptibility. One impli-
cation of this result is that if smallpox vaccination becomes necessary, the smallpox
vaccine should be given first to the most susceptible population groups. Defining
the basic reproductive number, <0, allows us to quantify the level of behavioral
change required to control an epidemic. This can help guide public health officials
in persuading the population to change their behavior by reducing their number of
contacts or changing their contact patterns.

2. The mathematical model.

2.1. Differential equations. We formulate the transmission dynamics model for
a single outbreak of smallpox in a heterogeneously mixing population. We divide
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the population into three main epidemiological classes, susceptible (S), infected (I)
and recovered (R) [29]. These classes are further divided into age groups with
heterogeneous mixing, different susceptibilities, and infectiousness based on age
and residual immunity from previous vaccinations. The infectious class is further
divided into infectious stages, which allows us to take into account the differences in
infectivity for diseases such as smallpox, i.e., latent or incubation period, prodromal
period, and symptomatic or infectious period. We apply the model to a smallpox
outbreak, and assume that the course of the outbreak is short compared with the
life of an individual, therefore, births, aging, and natural deaths are not included.
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Figure 1. Schematic relationship for the multi-group SIR model
with staged progression with 91 age groups and 3 infection stages.
The arrows that connect the boxed groups represent movement of
individuals from one group to an adjacent one. Susceptible in-
dividuals Si of age i are infected at a rate, λi, and then progress
through various infection stages at rates of disease progression, ωij ,
before entering the recovered state. Infected individuals die from
the disease at a rate, µij .

For our multi-group susceptible-infected-recovered (SIR) model with staged pro-
gression [29], we consider 91 age groups (n = 91) with 1-year intervals: 1, 2, 3,
. . . , 90, 91 and 3 infection stages (m = 3; exposed (no symptoms), prodromic (early
symptoms), and infectious (symptomatic)). Each 1-year interval corresponds to age
groups, for example, group 1 corresponds to infants up to 1 year of age, group 2
corresponds to children between 1 and 2 years of age, and so on, except for group
91, which corresponds to all people aged over 90 years of age. Using the trans-
fer diagram in Figure 1, we arrive at the following nonlinear system of differential
equations:
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dSi
dt

= −λi(t)Si(t), for 1 ≤ i ≤ n

dIi1
dt

= λi(t)Si(t)− (ωi1 + µi1)Ii1(t),

dIik
dt

= ωi,k−1Ii,k−1(t)− (ωik + µik)Iik(t), for 2 ≤ k ≤ m

dRi
dt

= ωimIim (1)

where λi(t) is the force of infection (defined later in (3)); ωik is the relative rate of
disease progression for a person in age group i and infection stage k; and µik is the
disease-induced relative death rate for age group i in infectious stage k. We define
the total population size of each group i as

Ni = Si +

m∑
k=1

Iik +Ri. (2)

We define λi as the relative rate at which the susceptible population in age group
i is infected and progresses to stage Ii1. We calculate this as the sum of the rate
of disease transmission from each infected subgroup, Ijk, to the susceptible group,
Si. This means that a susceptible person in group i can be infected by an infected
person in any group or infection stage. That is,

λi(t) =

n∑
j=1

m∑
k=1

λijk(t). (3)

Here, λijk is the rate of disease transmission from the infected people Ijk in stage
k of age group j to the susceptible individuals in age group i. We define λijk in
(3) as the product of the number of contacts per unit time that each individual
in age group i has with age group j, γij ; the probability of disease transmission
per contact between an infected in group j and a susceptible in group i (which is
the product of the susceptibility αi of someone in Si, the infectivity ξjk, and the
probability of transmission Pij (defined later in (5)) based on the average duration
of contacts between age groups i and j); and the proportion of contacts with the
infected subgroup. That is,

λijk =

 Number of
contacts per

unit time

 Probability of
disease transmission

per contact

 Proportion of
contacts that
are infected


λijk(t) = (γij(t))(αiξjkPij)

(
Ijk(t)

Nj(t)

)
, (4)

where we assume that the probability function Pij follows a Poisson distribution
given by

Pij = 1− e−ζTij , (5)

where Tij is the average duration of a contact of an individual from age group i
with someone from age group j, and ζ is the mean number of transmission events
per unit time (set in our simulations to 3 events per day [12]).

Summing over all the infection stages gives the force of infection from all infected
individuals to the susceptible people in group i. Multiplying λi(t) by the number
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of susceptible individuals in age group i as in (1) gives the rate of change of new
infected people in group i.

2.2. The basic reproduction number, <0. The basic reproduction number is
defined as the average number of secondary cases produced by one infected in-
dividual during the infected individual’s entire infectious period assuming a fully
susceptible population. In an epidemic model, the magnitude of <0 determines
whether or not an epidemic occurs. Typically, there is no epidemic if <0 < 1, but
there is an epidemic if <0 > 1. In a simple SIR model, where γ is the average
number of contacts per unit time per individual, β the probability of transmitting
the infection per contact, τ the mean duration of the infection period, and the basic
reproduction number can be expressed by the following intuitive formula:

<0 = γβτ. (6)

However, since we are working with heterogeneous population, we use the “next-
generation operator” approach [54] to find an expression for the basic reproduction
number <0. Note that we use a broad definition of susceptible individuals here
that include partially susceptible individuals from prior vaccine campaigns. This is
reasonable because we are not modeling current vaccination strategies that would
create a separate vaccinated immune class; and all individuals in the population are
susceptible, albeit with differential susceptibility.

We compute <0 by linearizing system (1) around the disease-free steady state
and by identifying conditions that guarantee growth in the infected classes. The
disease-free steady state has I11, I12, I13, I21, I22, I23, . . . , I91,1, I91,2, I91,3 equal
to zero and positive values for the equilibrium number of susceptible individuals
each group, S0

i > 0 for 1 ≤ i ≤ n. We denote the total equilibrium population
of group i by N0

i . The resulting 273 dimensional linearized system is of the form

Ẋ = (F−V) X, where

X =
[
I11 I12 I13 · · · I91,1 I91,2 I91,3

]T
,

The matrix, F, has nonzero entries in every column of rows 1, 4, 7, etc. and all
zeros in rows 2, 3, 5, 6, 8, 9, etc. The entries in the 3 columns 3(j − 1) + 1, 2, 3 of
row 1 + 3(i− 1) are

γijαiξj1Pij
N0
j

,
γijαiξj2Pij

N0
j

,
γijαiξj3Pij

N0
j

. (7)

The V matrix is block diagonal with 3× 3 blocks of the form

B =

 ωj1 + µj1 0 0
−ωj1 ωj2 + µj2 0

0 −ωj2 ωj3 + µj3

 , (8)

which has an inverse of the form
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B−1 =

 1
ωk1+µk1

0 0
ωk1

ωk1+µk1

1
ωk2+µk2

1
ωk2+µk2

0
ωk1

ωk1+µk1

ωk2

ωk2+µk2

1
ωk3+µk3

ωk2

ωk2+µk2

1
ωk3+µk3

1
ωk3+µk3



=


1

ωk1+µk1
0 0

qk2

ωk2+µk2

1
ωk2+µk2

0
qk3

ωk3+µk3

qk3/qk2

ωk3+µk3

1
ωk3+µk3


(9)

with

qj1 = 1, qj2 =
ωj1

ωj1 + µj1
, qj3 =

ωj1
ωj1 + µj1

ωj2
ωj2 + µj2

. (10)

These qjk factors are the proportion of infected individuals in the j age group that

reach stage k. FV−1 has zeros in the rows 2, 3, 5, 6, 8, 9, etc., so the eigenvectors
must also have zeros in these rows 2, 3, 5, 6, 8, 9, etc. Thus, we can consider the
91×91 matrix consisting of the rows 1+3(i−1) and columns 1+3(j−1) of FV−1.
This matrix E = FV−1 will have ij entries given by

Eij =
αiS

0
i γijPij
N0
j

(
ξj1

ωj1 + µj1
+

ξj2qj2
ωj2 + µj2

+
ξj3qj3

ωj3 + µj3

)
. (11)

The basic reproduction number <0 is the largest eigenvalue of the matrix E =
FV−1 [54]. We cannot obtain an explicit form of the <0 for our general model
(1). Therefore, <0 is estimated numerically for a given set of parameter values and
initial population size for the different mixing assumptions.

2.3. Contact patterns. The pattern of contacts between different age groups
plays an essential role in determining the spread of disease. Several theoretical
studies have developed mixing functions to account for heterogeneous mixing pat-
terns [34, 6, 27]; however, very few studies have developed functions that mimic
empirical studies [21]. In this paper, we use mixing patterns based on both empiri-
cal and theoretical studies to determine the impact that different mixing functions
have on disease spread. Our study makes use of four different mixing models that we
refer as normal mixing, reduced mixing, proportional mixing, and segregate mixing.

The force of infection λi is the relative rate at which susceptible people of age
i acquire infection. In homogeneous mixing, a person’s contacts are randomly dis-
tributed among all others in the population. One immediate implication of this
assumption is that the force of infection is the same for all ages. However, in
real populations the mixing in a population is heterogeneous and contacts are not
random. For heterogeneous mixing, the forces of infection reflect the age-related
changes in the degree of mixing and contact, within and among age groups, which
are important factors for understanding disease spread. Furthermore, changes in
behavior can alter the contact patterns in the population, which are also key in
understanding disease spread.

We used the average number of contacts γij , the susceptibility αi, the infectivity
ξjk, and the probability of transmission Pij matrices to estimate the transmission
rate βij for each mixing assumption. Here βij is defined as the transmission rate
between a susceptible of age i with people in age j, which is the product of the
average number of contacts, the susceptibility, the infectivity, and the probability
of disease transmission; that is, βij = γij × αi × ξjk × Pij .
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2.3.1. Normal mixing.

Definition 2.1. Normal mixing reflects the preferential mixing between the ages on
a normal (typical) day in the absence of disease. The mixing function is generated
from simulations based on empirical studies for the population of Portland, Oregon
[12].

In normal mixing, the transmission matrix is estimated from empirical studies
described in Del Valle et al. [12]. In short, we generated a synthetic population with
demographic distributions drawn from census data and assigned activity patterns
based on household travel surveys. From these two sets of information and land use
data, we computed which individuals are together at the same location at the same
time. The simulation keeps track of every single individual on a second-by-second
basis and is therefore able to determine the contacts, including identities of those
in contact, the location, the duration of the contact, and the nature of the activity
where the contact took place. We calculated the total number of contacts, Cij ,
generated over a typical day, and evaluated the average number of contacts, γij ,
per person.

The normal contact matrix is formed by two blocks of mixing and a weak coupling
between parents and their children. Glasser et al. [21] recently developed a function
that can mimic the mixing patterns observed in these empirical studies.

2.3.2. Reduced mixing.

Definition 2.2. For reduced mixing, we scaled the normal mixing matrix, described
above, by multiplying it by a factor, 0 ≤ x < 1, to account for a reduction in the
number of contacts.

People will make changes in behavior (e.g. reduce their number of contacts) in
response to knowledge of an epidemic. These changes will not only reduce the
number of contacts of the entire population, but also change the mixing patterns in
the population. For example, if schools close, as a preventive measure to control an
epidemic, the contact patterns of school children will change from children of their
own age to their parents or family members.

For simplicity in the reduced mixing model, we incorporated behavioral changes
by reducing the total number of contacts generated in the population, by multi-
plying the contact matrix Cij by a desired factor, x. This approach keeps the
same distribution of mixing in the population, while reducing the total number of
contacts. In the numerical simulations presented here, we reduced the number of
contacts by half.

While recognizing the crude introduction of behavioral changes into this model,
this approach will serve as the foundation for later models that include validated
behavioral changes in response to an outbreak. Note that the original version of the
empirical studies presented here did not incorporate behavioral changes; however,
new versions of the simulation now incorporate age-dependent behavior changes
[53].

2.3.3. Proportional mixing.

Definition 2.3. For proportional homogenous mixing, a potential contact is ran-
domly selected from the entire population of Portland, which implies a greater
probability of meeting people whose populations are larger.
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We assume people in each age group behave the same way when selecting a
contact, but have biases between age groups. In other words, mixing within each
age group is assumed to be homogeneous but there is heterogeneous mixing among
the age groups.

Models with varying populations must ensure that as the relative size of each
group changes, the number of contacts between each group changes accordingly.
One constraint on dynamically changing the number of contacts between groups
is that the total number of contacts between two groups must be symmetric; that
is, the total number of contacts between group i and group j must be equal to the
total number of contacts between group j and group i. In multi-group models where
an attempt is made to directly control the number of contacts formed between age
groups, these balance conditions are usually artificially enforced, or the average
number of contacts per individual per unit time is assumed to be constant.

Here, we use the heterogenous mixing approach developed in [27] to maintain
the detailed balance for mixing between the age groups as their populations change.
We present the proportional contact matrix, with the element in the ith row and
jth column represented by dij . Thus, dij is the expected (desired) distribution of
contacts that one has as a function of age, that is, dij is the preference that a person
of age i has for contacts with a person of age j.

The contact matrix need not be symmetric (i.e., dij 6= dji, when i 6= j), but the
probability of a contact forming is symmetric since djidij = dijdji. Also, we note
that there is no constraint on

∑n
j=1 dij , which may be less than or greater than one.

We define ai to be the preferred number of social contacts per unit time for a
person in age group i. Assuming no preferences, the probability that a contact
is with a person from age group j is ajNj/(

∑n
k=1 akNk) where Nj is the total

population size of age group j defined in (2). This also characterizes the availability
of contacts in age group j. Hence, the probability of a contact forming between
individuals from age group i and age group j is dijdjiajNj/(

∑n
k=1 akNk).

We denote the total number of contacts per unit time of people in age group i
with people in age group j by Cij ,

Cij = dijdji
ajNj∑n
k=1 akNk

aiNi = djidij
aiNi∑n
k=1 akNk

ajNj = Cji. (12)

Thus, the balance constraints are automatically satisfied as a natural consequence
of the model. As the population size can change, the number of contacts with people
in group j that one individual in group i can expect to have at time t is then,

γij(t) =
Cij(t)

Ni(t)
= aidijdji

ajNj(t)∑n
k=1 akNk(t)

, (13)

and the total number of contacts that an individual in group i has at time t is,

γi(t) = ai

 n∑
j=1

dijdji
ajNj(t)∑n
k=1 akNk(t)

 . (14)

Definitions and units of the contact parameters are summarized in Table 1.
To compare the proportional mixing matrix with the normal contact matrix,

we matched the total of contacts of the proportionally mixing population with the
total number of contacts of the normal mixing population as described in [12].
The adequate transmission rate matrix βij (Figure 3) is consistent with the age
distribution of the population; that is, there are well-defined regions (shown by
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Table 1. Parameter definitions and units used to describe the
contact patterns.

Parameter Description Units
ζ Mean number of transmission events per Time−1

unit time
dij Desired distribution of contacts between 1

age i and age j
aij Preferred number of contacts per person Time−1

per unit time
Cij Total number of contacts per unit time People/Time
γij Average number of contacts per person Time−1

per unit time
Pij Probability of disease transmission per 1

contact
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Figure 2. The total number of proportional contacts between age
group i and j. The contact rates are defined by the elements of
the n × n matrix, Cij , where Cij represents the total number of
proportional contacts of all people of age i with people of age j per
day. Note that the contacts between age group i and j is the same
as between age group j and i, resulting in a symmetric graph.

different colors) of adequate contacts, which are due to the age distribution of the
population.

In general, the population is more likely to have adequate contacts with people
from the age groups with larger sizes (35–45 years) than with people from the age
groups with smaller sizes (> 55 years), which is consistent with what we would
expect for a proportionally mixing population.
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Figure 3. Transmission rate matrix βij estimated using a propor-
tionally mixing population. The transmission rate matrix is the
average number of adequate contacts between a susceptible of age
i with people of age j. Notice that the probability of transmission
is determined by the size of the population in each age group.

2.3.4. Segregate mixing.

Definition 2.4. For segregate mixing, we assume that people mix with people of
the same age only.

We defined dij = 1 if i = j and dij = 0 otherwise. That is, each age group
will have the same number of contacts but all their contacts will be with their own
age group. Even though this type of mixing may not be realistic, this assumption
allows us to determine whether the number of contacts or the heterogeneous mixing
among the population are driving the epidemic.

3. Parameter estimation. The smallpox infection period is divided into three
phases: exposed or incubation period, prodromal period, and infectious period. The
incubation period for smallpox has been reported to be from 7 to 19 days, but the
most common reported range is 10 to 14 days with a mean of 12 days [18, 49, 51].
Thus the latent phase has a relative rate of ωi1 = 1/12. Afterward, smallpox
patients experience a prodromal phase with symptoms such as fever, malaise, pros-
tration, headache, backache, and vomiting. This period lasts for 2 to 4 days with a
mean of 3 days [8, 18]. Therefore, the prodromal relative rate is ωi2 = 1/3. Data
on previous outbreaks show that patients have very low infectivity during the pro-
dromal phase [14, 19, 42]. We assume that during both the exposed period and the
prodromal period, individuals are non-infectious. Patients remain contagious for a
period of approximately 14 to 17 days with a mean of 16 days [18, 32, 33]. Hence, we
set the relative rate in the infectious phase as ωi3 = 1/16 and the relative infectivity
as 1. Once these patients recover, they have complete, permanent immunity.
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The United States discontinued smallpox vaccinations in 1972 because the vac-
cine itself carries potential health risks [7]. Therefore, more than half of the U.S.
native population has received the smallpox vaccine, and recent findings have shown
that these individuals may still have partial protection against smallpox [2, 13].
Therefore, we assume that all individuals born after 1972 are completely suscepti-
ble to smallpox. Thus, the relative susceptibility of people between the ages of 1
and 40 is set to 1. We assume that individuals between the ages of 41 and 65 have
partial immunity to smallpox and thus the relative susceptibility is set to 0.3 [13].
Furthermore, we assume that people between the ages of 66 and 80 have a relative
susceptibility of 0.7, and people between the ages of 81 and above have a relative
susceptibility of 0.9 due to their age-dependent risk of infection [13].

The relative death rate of smallpox varies, but is reported to be about 30%
among unvaccinated individuals [18, 32, 33]. The fraction in the model that die
from smallpox is µi3/(ωi3 + µi3); setting this equal to 0.3 yields µij = 0.0268.
Smallpox deaths usually occurred 18 days or more after the onset of symptoms [32].
Therefore, we assume that the relative death rate for each infected stage is 0, 0,
and 0.0268, respectively.

Recent estimates on the transmission of smallpox indicate that one infected per-
son may infect three to six others [20]. Therefore, we set ζ = 3 so that <0 would
equal 3 for both the normal and proportional mixing matrices. However, for the
reduced contact matrix, we multiplied the normal matrix by 0.5, resulting in <0

equal to 1.5. Notice that by reducing the number of contacts by half, <0 was also
cut by half. This result provided an estimate of how much people must reduce their
contacts in order to halt an epidemic. For example, if the number of contacts were
reduced to less than one third, there would be no epidemic because <0 would be
less than one. For the segregate matrix, we used the normal contact matrix and
grouped all the entries for each age group into the diagonal. This process resulted
in different values of <0 for each age group.

4. Results. We used a differential equation solver designed for multi-group SIR
models with staged progression developed by Chitnis et al. [9] to examine the impact
that the four mixing assumptions have on the final epidemic size and final susceptible
population size for our model. All simulations assumed initial conditions of only
susceptible individuals except for one infected individual in each age group in the
incubation phase. We used the baseline parameters in Table 2 in our simulations
and the synthetic population of Portland, Oregon, as the initial population for each
age group.

Table 3 summarizes the results of the epidemic size and final susceptible popu-
lation size for the four mixing assumptions. The final epidemic size includes both
the total number of recovered cases (shown in Figures 4, 5, 6, and 7) and the total
number of people who died from the disease (not included in figures but given by
D = N−(S+I)) at 120, 360, and 1,000 days after the introduction of smallpox into
the population). One column in Table 3 identifies the basic reproduction number
<0 for each mixing assumption. The final day column represents the day when the
number of cases reaches 99% of the final epidemic size, which is a measure of the
length of the smallpox outbreak.

The first entry in Table 3 shows the simulations results for normal mixing. With
normal mixing, we obtained a cumulative total of 1,321,590 smallpox cases after
1,000 days and a final day of 324 days. However, when we assumed reduced mixing,
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Table 2. Parameter definitions and values that fit the cumulative
number of cases for the model.

Parameter Description Units Baseline Ref.
N Initial population size 1 1,615,860 [12]
Ii1 Initial infected population 1 91 Sec. 6
αi Susceptibility of a person 1 1 [13]

in Si for i = 1, ..40
αi Susceptibility of a person 1 0.3 [13]

in Si for i = 41, ..., 65
αi Susceptibility of a person 1 0.7 [13]

in Si for i = 66, ..., 80
αi Susceptibility of a person 1 0.9 [13]

in Si for i = 81, ..., 91
ξik Relative infectivity 1 k = (0, 0, 0.1)∀i [14, 42]
ωik Relative rates of disease Day−1 k = (1/12, 1/3, 1/16) [18]

progression ∀i
µik Relative death rate Day−1 k = (0, 0, 0.0268)∀i [18]

Table 3. Cumulative smallpox cases at 120, 360, and 1,000 days
for different mixing assumptions. Reducing the number of contacts
by 50% (reduced mixing) decreases the final size for epidemic (nor-
mal mixing) by about 35%. and that the segregate mixing model
epidemic takes off much faster than the other mixing assumptions.
Although the normal and a proportional mixing models have the
same <0, the epidemic infects more people when there is propor-
tional mixing.

Mixing Total Cases at Final
Matrix <0 120 days 360 days 1,000 days Final cases daya

Normal 3 33,460 1,317,460 1,321,590 1,321,590 324
Reduced 1.5 1,060 54,460 866,580 866,580 841
Proportional 3 56,760 1,429,100 1,429,660 1,429,660 280
Segregate 152,960 786,760 1,207,470 1,241,710 1325

a Days from infection of index cases until outbreak is controlled (when the number of cases

reaches 99% of the final epidemic size).

which resulted in a smaller number of contacts per day, the number of cases was
reduced to 866,580 and the final day was prolonged to 841 days. When proportional
mixing is used, the number of smallpox cases increases to 1,429,660 and a final day
is shorten to 280. The reason why the epidemic is shorten is because the mixing
is assumed to be random so more people contract the disease faster. For segregate
mixing, the number of smallpox cases further decreases to 1,207,470, but the final
day is prolonged to 1,325. The total susceptible, recovered and disease prevalence
for all mixing assumptions described in Table 3 are shown in Figures 4, 5, 6, and 7.

The differences in susceptibility of the different age groups causes the different
age groups to be affected differently by the epidemic. Figure 8 shows the cumulative
numbers of recovered cases, the susceptible population, and disease prevalence for
age groups i = 20, 50, 65, and 85 for a normally mixing population. Age groups
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Figure 4. Normal Mixing Epidemic: Solutions of the multi-group
SIR model with staged progression for a normally mixing popula-
tion. The figure shows the total susceptible (S), infected (I), and
recovered (R) populations for a period of 500 days.

between 1 and 40 resemble the distributions shown in Figure 8, part A. Because
the under 40 population has no residual immunity, they are affected by the disease
than the rest of the population. Age groups between 41 to 61 and 66 to 71 resemble
the distributions shown in Figure 8, part B, even though they had different sus-
ceptibilities. Age groups between 62 to 65 and 72 to 81 resemble the distributions
shown in Figure 8, part C; notice that these age groups are the least affected by the
disease. Finally, age groups between 82 and 91 resemble the distributions shown in
Figure 8, part D.

When the mixing among the population is reduced based on assumed behavioral
changes, the number of total cases decreases dramatically. The cumulative numbers
of recovered cases, the susceptible population, and the disease prevalence for some
age groups are shown in Figure 9. Notice that the combination of residual immunity
and behavioral changes plays a key role in halting the spread of the epidemic. In
Figure 9, part A resembles the distributions of age groups 1-40; part B resembles the
distributions of age groups 41-65; part C resembles the distributions of age groups
66-80; and part D resembles the distributions of age groups 81-91.

When proportional mixing is assumed, all age groups are affected accordingly to
their assumed susceptibility (Figure 10). Figure 10, part A resembles the distribu-
tions of age groups 1-40; part B resembles the distributions of age groups 41-65;
Part C resembles the distributions of age groups 66-80; and Part D resembles the
distributions of age groups 81-91. Since for segregate mixing <0 is different for all
age groups, the epidemic curves vary drastically for all age groups (Figure 11). Age
groups between 1 and 40 are still the most affected (as seen with previous mixing
assumptions) due to their lack of residual immunity (Figure 11, part A). Most age
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Figure 5. Reduced Mixing Epidemic: Solutions of the multi-group
SIR model for a population that reduces the number of contacts by
50% (reduced mixing). The smallpox outbreak starts much slower
than the normal mixing population model (Figure 4) and the peak
of the epidemic is delayed almost 200 days. Note that the epidemic
is show for the first 800 days.

groups manage to maintain a large number of susceptible individuals at the end of
the epidemic because of their present residual immunity (Figure 11, part B & D).
However, there are a few age groups (> 60 years old) that avoid infection due to
their <0 being less than unity (Figure 11, part C).

5. Discussion. Assuming that a population is mixing homogeneously and has a
homogenous susceptibility to a disease can often provide general insights into how
a disease will spread. However, heterogenous differences in the susceptibility of a
population and the contact mixing patterns within a population both affect the
transmission of infectious diseases. When the population mixing patterns are corre-
lated to the partial immunity of a population to an infectious disease, then including
more realistic contact patterns within a population can lead to more accurate esti-
mates of the effect of residual immunity on disease spread.

We investigated the impact of different mixing assumptions on outcomes re-
lated to epidemic spread in the presence of population heterogeneity. Four mixing
scenarios were discussed: normal, reduced, proportional, and segregate mixing. Our
results confirm and quantify the epidemiological picture proposed in previous works;
that mixing assumptions have a great influence in the overall behavior of epidemic
spreading and that residual immunity can play a key role in halting an epidemic
such as smallpox.



1490 SARA Y. DEL VALLE, JAMES M. HYMAN AND NAKUL CHITNIS

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18
x 10

5

Days

P
o

p
u

la
ti

o
n

 S
iz

e

Total population in Susceptible, Infected, and Recovered groups

 

 

S

I

R

Figure 6. Proportional Mixing Epidemic: Solutions of the multi-
group SIR model for a proportionally mixing population start
slightly faster than the model with normal mixing and the final
epidemic size is larger.
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Figure 7. Segregate Mixing Epidemic: Solutions of the multi-
group SIR model for a segregate mixing population where people
mix primarily with others their own age. There is an extremely
rapid early burst of new infections, followed by a smaller delayed
second epidemic. Note that this plot is for the first 1000 days of
the epidemic.
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Figure 8. Solutions of the multi-group SIR model with stage pro-
gression for a normal contact matrix for age groups 20 (A), 50 (B),
65 (C), and 85 (D). Notice the impact that partial immunity has
on the final epidemic size on age groups < 41 years of age. The
epidemic takes off faster in this age group and nearly all of the
people are eventually infected. Because in a real epidemic there
would certainly be significant behavior changes, this prediction il-
lustrates why the behavior changes must be included before any
model predictions are used to guide policy.

We used an agent-based simulation model to generate mixing matrices and an
age-structure differential equation model to model the spread of an infectious dis-
ease. Agent-based models are computational expensive and typically require a long
time to run; however, they can include more detail than differential equation models.
In contrast, differential equation models can run on a personal computer and are
typically fast, but do not have the heterogeneity that agent-based models have. Al-
though, the differential equation model stratified the population by age groups, we
still assume homogeneous mixing patterns within each age group. This assumption
will lead to different results than an agent-based model, which treats each person
as an individual;. the homogeneous assumption will most likely over estimate the
spread of a disease and lead to worse epidemics.

The numerical simulations in Section 4 show that proportional mixing, results
in a greater number of new infections than does non-random mixing, even in the
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Figure 9. Solutions of the multi-group SIR model with stage pro-
gression for a reduced contact matrix for age groups 20 (A), 50 (B),
65 (C), and 85 (D). Notice the impact that partial immunity has
on the final epidemic size on age groups < 41 years of age.

presence of residual immunity. With normal mixing, the total number of cases
decreases and the final susceptible population size is larger. When moderate be-
havioral changes are introduced, the total number of cases is further reduced, com-
pared to the normal mixing, and the final susceptible population size increases.
We also observed that the disease affected specific age groups differently based on
their assumed immunity and their mixing patterns within the population; that is,
age groups with less residual immunity are more affected than age groups with
higher immunity. One implication of these results is that those without prior small-
pox vaccination should be vaccinated, if a smallpox vaccination campaign becomes
necessary. Furthermore, we observed that for normal mixing, the probability of
disease transmission among children is higher due to the frequency of their contacts;
however, for proportional mixing, the probability of disease transmission is higher
among young adults.

We studied an instance of segregate mixing to determine some of the factors
that are driving the epidemic. Our results suggest that the heterogeneous mixing
patterns have a greater impact on spreading the epidemic than does the number
of contacts. Furthermore, we found that for this system, <0 is proportional to the
average number of contacts. Therefore, we can estimate the necessary reduction in
contacts required to stop an epidemic.
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Figure 10. Solutions of the multi-group SIR model with stage
progression for a proportional contact matrix for age groups 20
(A), 50 (B), 65 (C), and 85 (D). Notice the impact that partial
immunity has on the final epidemic size on age groups < 41 years
of age.

Although parameter values were estimated using data, there is still uncertainty
associated with their values. Consistent with other studies, we found that all the
simulation results are highly sensitive to the number of index cases (initial infec-
tions) [11] , the level of residual immunity assumed to be present in the population
[45], and the value of the reproduction number [11] (results not shown here). We
also found that the model is slightly sensitive to changes in the relative infectivity
of the prodromal phase [19] (results not shown here). We also found that normal
and reduced mixing populations were more sensitive to variations in the size and
age distribution of the initially infected population than proportional mixing model
[57] (results not shown here).

Our reduced behavior change model is unrealistic because of its simplicity. We
reduced the number of all contacts by 50% to illustrate the importance that be-
havioral changes can have on the spread of an epidemic. In a real epidemic, the
behavioral changes will not only reduce the number of contacts and intensity but
will change the structure of the contact network. Because the model predictions
are so sensitive to assumptions about the behavioral changes, these changes must
be much better understood so they can be accurately included in the models. More
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Figure 11. Solutions of the multi-group SIR model with stage
progression for a segregate contact matrix for age groups 20 (A), 50
(B), 65 (C), and 85 (D). Notice the impact that partial immunity
has on the final epidemic size on age groups < 41 years of age.

data is needed to understand and predict the changes in behavior that a population
will undertake in the presence of disease and uncertainty.

Another limitation of our study is the lack of intervention strategies. We were
interested in investigating the effects of different mixing assumptions, therefore, for
simplicity we did not include intervention strategies such as isolation, quarantine,
and vaccination. Nevertheless, one must be aware that in the presence of a deadly
disease like smallpox, many intervention strategies will take place that will further
decrease the spread of the disease.

We conclude that for simulations of infectious diseases to be useful in guiding
public health policy, they must consider the impact of heterogeneous mixing, resid-
ual immunity and behavioral changes. Residual immunity within the population
as well as behavioral changes implemented in the affected population can greatly
affect the final epidemic size and reduce the number of vaccinations needed during
an outbreak. It is critically important to know the level of immunity in real pop-
ulations from epidemiological studies and predict how the population will respond
in the presence of an epidemic. The exact structure of the contact patterns in the
general population is, to a large extent, still unknown; therefore, more research is
needed to increase our understanding of the impact of human contact networks and
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human behavior on the spread of infectious diseases, and to assess the implications
of this for the planning of public health policy.
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