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Abstract. A discrete SIS epidemic model with the bilinear incidence depend-
ing on the new infection is formulated and studied. The condition for the

global stability of the disease free equilibrium is obtained. The existence of

the endemic equilibrium and its stability are investigated. More attention is
paid to the existence of the saddle-node bifurcation, the flip bifurcation, and

the Hopf bifurcation. Sufficient conditions for those bifurcations have been

obtained. Numerical simulations are conducted to demonstrate our theoretical
results and the complexity of the model.

1. Introduction. Differential equations and difference equations are widely ap-
plied in epidemiological modeling. They are two typical mathematical approaches
for modeling infectious diseases. Since the theory and method for dynamical stud-
ies of differential equations have developed much more completely than those for
difference equations, there are relatively less difference equations in epidemiological
modeling compared with differential equations. In recent years, there were increas-
ing interest and research results on discrete epidemic models [1,2,10–12,14,30,32].
The fact that the epidemiological data are usually collected in discrete time units,
such as daily, weekly or monthly, makes the discrete model a natural choice to de-
scribe a disease transmission. The straightforward recurrence relationship of the
difference equation models is easier to be understood, which is also a prominent ad-
vantage over the differential equation models. The direct comparison of the model
results with the actual data provides us a fast and simple way to validate the model
structure and parameter estimation. The fact that the discrete models exhibit richer
dynamical behavior than the continuous models brings more challengeable problems
for researches, and more interesting results can be obtained. For example, the sim-
ple logistic model xn+1 = rxn(1−xn/K), Ricker model xn+1 = xne

r−xn/K [23–25],
and Hassell model xn+1 = λxn(1 + axn)−b [18] exhibit rich dynamical behavior.
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There are increasing interest and more studies on the discrete time epidemic
models recently. Various discrete epidemic models have been successfully applied to
describe the infectious disease transmission, such as SARS, tuberculosis, HIV/AIDS
[6–8, 28, 29, 31]. The theoretical study of discrete epidemic models focus on the
computation of the basic reproduction number [3,9,22], the existence and the global
stability of the disease free equilibrium [7, 8, 11, 12, 28], the existence and local
stability of the endemic equilibrium [4,15], and the persistence of the disease [7,8].
The attention has also be paid to various bifurcations of the discrete epidemic
models, the equilibrium bifurcation [10, 19–22], the transcritical bifurcation, flip
bifurcation, saddle-node bifurcation, Hopf bifurcation, and the bifurcation to chaos
[10–12].

Similar to the continuous epidemic models, most of the discrete epidemic models
have the compartment structures. The total population is grouped into different
epidemiological compartments, such as the susceptibles, the infectives, and the re-
moved. The key step in formulating discrete epidemic models is to find the recurrent
relationships among those epidemiological compartments between time t and time
t + 1. Two main approaches are frequently used to describe the population move-
ment among those compartments. The first one is analogous to the discretization
of the corresponding continuous models [1, 2], and the second one is to seek the
probability from one compartment to another [10–12]. The transmission rate, the
death rate, and recovery rate used in the first approach make those kinds of models
can be directly applied to a specific infectious disease. The probabilities used in the
second approach make the solutions of those models often positive.

Following the modeling approach by Allen and Burgin [1,2], we propose a discrete
SIS model and study its dynamical behavior. In Section 2, we present the SIS model
with the bilinear incidence depending on the new infection and simplify it. We define
the basic reproduction number and the invariant domain for the model. In Section
3, we discuss the existence and the number of the endemic equilibria. In Section
4, we study the global stability of disease free equilibrium, and the local stability
of the endemic equilibria. In Section 5, we investigate the flip bifurcation, saddle-
node bifurcation and Hopf bifurcation of the model. Numerical simulations are
conducted to demonstrate our theoretical results and show the complexity of the
model dynamics. Concluding remarks and discussions are given in the last section.

2. The SIS model and its basic reproductive number. The incidence plays
a crucial role in dynamics of epidemic models. The bilinear incidence and the stan-
dard incidences are two simple and frequently used ones in continuous and discrete
models. We consider a discrete epidemic model with SIS structure and use the bi-
linear incidence depending on the new infection. The bilinear incidence depending
on the new infection is a better choice to describe the influence of control measures.
Let N(t) represent the number of the total population in a community at time
t. We divide the total population into susceptible and infectious compartments,
where S(t) and I(t) denote the numbers of individuals in the susceptible and infec-
tious compartments at time t, respectively. The discrete SIS model with bilinear
incidence depending on the new infection is

S(t+ 1) = S(t) + Λ− βS(t)I(t)e−kI(t−1)S(t−1) − µS(t) + γI(t),
I(t+ 1) = I(t) + βS(t)I(t)e−kI(t−1)S(t−1) − (µ+ γ)I(t),

(1)

where Λ is the constant recruitment of the population, µ is the per capita natural
death rate, and γ is the per capita recovery rate. All parameters are positive, and
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0 < β < 1 and 0 < µ+ γ ≤ 1. The number of new infection between time interval
[t, t + 1] is βS(t)I(t)e−kI(t−1)S(t−1). The factor e−kI(t−1)S(t−1) describes the fact
that effective control measures will be implemented to reduce the transmission of
the disease. The impact of the control measures depends on the new infection: more
infection will lead to more stringent control, which will reduce the infection.

Following the next generation matrix approach [3], we know that the basic re-
productive number, R0, of model (1) is

R0 =
Λβ

µ(µ+ γ)
.

R0 is the average number of secondary cases produced by a typical single infected
case in a completely susceptible population. R0 is a useful quantity to predict
whether or not the disease can spread: if R0 < 1, the infection will ultimately die
out, while if R0 > 1, the infection will keep persistence in the population. If R0

is large, it will be very harder to control the disease spread and a major epidemic
may outbreak.

Let N(t) = S(t) + I(t), adding all equations in (1), we can obtain the equation
for the total population N(t)

N(t+ 1) = Λ + (1− µ)N(t). (2)

It is clear that equation (2) has a unique equilibrium N∗ = Λ
µ , which is globally

asymptotically stable. That is, lim
t→∞

N(t) = N∗. Substituting S(t) = N∗− I(t) into

the second equation of model (1) leads to the following limiting system

I(t+ 1) = I(t) + β
(
N∗ − I(t)

)
I(t)e−kI(t−1)

(
N∗−I(t−1)

)
− (µ+ γ)I(t). (3)

The limiting system of model (1) is one dimensional difference equation with delay.
After defining x1(t) = I(t), y1(t) = I(t−1), and N = N∗, model (3) can be rewrote
as

x1(t+ 1) = x1(t) + β(N − x1(t))x1(t)e−ky1(t)(N−y1(t)) − (µ+ γ)x1(t),
y1(t+ 1) = x1(t).

(4)

The qualitative equivalence of a dynamical system and its limiting system has been
established by Thieme [26, 27] for continuous systems. We study the dynamical
behavior of model (4) since model (4) exhibits the same qualitative dynamics as
those of system (1). From the expression of model (2) and model (3), it is not
difficult to obtain the dynamical equivalence of those models.

After introducing new variables x(t) = x1(t)
N , y(t) = y1(t)

N , and parameters a =

βN , b = kN2, c = µ+ γ, model (4) can be simplified to

x(t+ 1) = x(t) + a(1− x(t))x(t)e−by(t)(1−y(t)) − cx(t),
y(t+ 1) = x(t).

(5)

The simplified model (5) has less parameters and is easier to analyse.
The epidemiological interpretation requires that 0 < c < 1 and 0 ≤ x(t) ≤ 1. A

sufficient condition for 0 ≤ x(t) ≤ 1 is that the parameters c and a locate in the
domain

P+ = { (c, a) | 0 < c < 1, 0 ≤ a ≤ (1 +
√
c)2 }.

The condition (c, a) ∈ P+ is very strong to ensure that the solution of (5) satisfies
0 ≤ x(t) ≤ 1 and 0 ≤ y(t) ≤ 1 if 0 ≤ x(0) ≤ 1 and 0 ≤ y(0) ≤ 1. We assume
that (c, a) ∈ P+ when we discuss the stability of equilibrium of model (5). The
requirement (c, a) ∈ P+ may be released when we investigate the bifurcation of
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model (5). In the remaining part of this paper, we will focus on the study of model
(5). The stability and bifurcation results of model (5) will equivalently hold true
for the original model.

3. The existence of equilibria. This section deals with the existence of the
equilibria of model (5). It is clear that E0(0, 0) is an equilibrium point of model
(5). There also exists the positive equilibrium points E(x, y) when c < a, which
implies that R0 > 1. Namely, when R0 > 1, model (5) has the positive equilibrium
points E(x, y), and the positive equilibrium points E(x, y) satisfies the following
equations:

a(1− x)e−bx(1−x) = c, y = x.

We denote

f(x) = a(1− x)e−bx(1−x), x ∈ [0, 1].

Obviously, f(x) ≥ 0 for x ∈ [0, 1], f(0) = a, and f(1) = 0. Furthermore, we have

f ′(x) = −ae−bx(1−x)
(
2bx2 − 3bx+ b+ 1

)
,

and

f ′′(x) = −abe−bx(1−x)
(
(2x− 1)(2bx2 − 3bx+ b+ 1) + (4x− 3)

)
.

Denoting g1(x) = 2bx2 − 3bx+ b+ 1, x ∈ [0, 1], we have

(i) If b− 8 ≤ 0, then g1(x) ≥ 0 for x ∈ [0, 1].
(ii) If b − 8 > 0, then g1(x) > 0 for x ∈ (0, x∗1) ∪ (x∗2, 1), and g1(x) < 0 for

x ∈ (x∗1, x
∗
2), where, x∗1 =

3b−
√
b(b−8)

4b , x∗2 =
3b+
√
b(b−8)

4b .

From the fact that

f ′′(x∗1) = abe−bx
∗
1(1−x∗

1)

√
b(b− 8)

b
> 0

and f ′′(x∗2) = −abe−bx
∗
2(1−x∗

2)

√
b(b− 8)

b
< 0,

we obtain the following results:

(i) If b− 8 ≤ 0, then f(x) is monotone decreasing for x ∈ [0, 1].
(ii) If b − 8 > 0, then f(x) is monotone decreasing for x ∈ (0, x∗1) ∪ (x∗2, 1), and

f(x) is monotone increasing for x ∈ (x∗1, x
∗
2).

Let c1 = a(1− x∗1)e−bx
∗
1(1−x∗

1) and c2 = a(1− x∗2)e−bx
∗
2(1−x∗

2). In the case where
R0 > 1 (which is equivalent to c < a), the existence and the number of the positive
equilibria of model (5) are given in the following theorem.

Theorem 3.1. When R0 > 1 and b − 8 ≤ 0, model (5) has only one positive
equilibrium point E1(x1, x1). When R0 > 1 and b− 8 > 0, there are these cases:

(i) Model (5) has only one positive equilibrium point E2
1(x2

1, x
2
1) (E1

1(x1
1, x

1
1)) if

c2 < c < a (c < c1).
(ii) Model (5) has two positive equilibria points, E−2 (x−1 , x

−
1 ) and E∗2 (x∗2, x

∗
2) (E∗1

(x∗1, x
∗
1) and E+

2 (x+
2 , x

+
2 )) if c = c2 (c = c1).

(iii) Model (5) has three positive equilibria points, E1
3(x1

3, x
1
3), E2

3(x2
3, x

2
3), and

E3
3(x3

3, x
3
3) if c1 < c < c2.
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Theorem 3.1 can be proved directly by using the intermediate value theorem
for continuous function. We omit the detailed process and demonstrate the idea
by Figure 1. The subplot (a) of Figure 1 corresponds to the case b < 8 and
c < a. There exists one endemic equilibrium E1(0.127464, 0.127464) with a = 0.8,
b = 3, and c = 0.5. The subplots (b), (c), and (d) of Figure 1 correspond to
the cases (i), (ii) and (iii), with a = 0.8, b = 9 and c = 1/3, c = 0.036089,
or c = 0.037, respectively. The curve of the function f(x) = a(1 − x)e−bx(1−x)

is displayed completely in subplots (a) and (b) for x ∈ [0, 1]. The curve of the
function f(x) is partially displayed in subplots (c) and (d) to emphasize its max-
imal and minimal points. When a = 0.8 and b = 9, we have x∗1 = 0.666667,
x∗2 = 0.833333, c1 = 0.0360894, and c2 = 0.038201. The unique endemic equi-
librium for c = 1/3 is E2

1(0.095223, 0.095223). The two endemic equilibria for
c = 0.036089 are E∗1 (0.666667, 0.666667) and E+

2 (0.894601, 0.894601). The three en-
demic equilibria for c = 0.037 are E1

3(0.596399, 0.596399), E2
3(0.750201, 0.750201),

and E3
3(0.881962, 0.881962), respectively.
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Figure 1. The equilibria of model (5) for different parameters

4. The stability of equilibria. Let E(x, x) be a positive equilibrium point of
model (5). The linearization matrix of (5) at the equilibrium point E(x, x) is

A =

(
1− c+ a(1− 2x)e−bx(1−x) ab(1− x)x(2x− 1)e−bx(1−x)

1 0

)
.

The characteristic equation of matrix A is

λ2 −
(
1− c+ a(1− 2x)e−bx(1−x)

)
λ− ab(1− x)x(2x− 1)e−bx(1−x) = 0. (6)

Let λ1 and λ2 be the two roots of Eq. (6), we use the following definitions and
conclusions [19,20].
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(1) If |λ1| < 1 and |λ2| < 1, then E(x, x) is called a sink and E(x, x) is locally
asymptotical stable.

(2) If |λ1| > 1 and |λ2| > 1, then E(x, x) is called a source and E(x, x) is unstable.
(3) If |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1), then E(x, x) is called a

saddle.
(4) If |λ1| = 1 and |λ2| 6= 1 (or |λ1| 6= 1 and |λ2| = 1), then E(x, x) is called

non-hyperbolic.

In the following, we will discuss the stability of the disease free equilibrium and
endemic equilibria of model (5).

4.1. The stability of the disease free equilibrium. We consider the solution
of (5) with the initial condition satisfying 0 ≤ x(0) ≤ 1 and 0 ≤ y(0) ≤ 1.

Theorem 4.1. If (c, a) ∈ P+ and R0 < 1, then the disease free equilibrium of
system (1) is globally asymptotically stable.

Proof. The condition R0 < 1 implies that 0 < a < c < 1. When E(x, x) = E0(0, 0),
we have

A =

(
1− c+ a 0

1 0

)
.

In this case, the eigenvalues of matrix A are λ1 = 1−c+a and λ2 = 0, respectively. It
is obvious to see that |λ1| < 1 and |λ2| < 1. Therefore, E0 is locally asymptotically
stable when R0 < 1.

In order to prove the global stability of the disease free equilibrium we rewrite
model (5) to be

x(t+ 1) = x(t) + a(1− x(t))x(t)e−bx(t−1)(1−x(t−1)) − cx(t). (7)

From Eq. (7) and the fact 0 ≤ x(t) ≤ 1, we have

x(t+ 1) ≤ (1− c)x(t) + a(1− x(t))x(t)

= (1− c+ a)x(t)

(
1− ax(t)

1− c+ a

)
.

(8)

The variable substitution z(t) =
ax(t)

1− c+ a
leads to the comparison equation

z(t+ 1) = (1− c+ a)z(t)(1− z(t)).

The famous result on the dynamics of the discrete population model implies that
z(t+ 1) = rz(t)(1− z(t)) has a zero equilibrium point, which is globally asymptot-
ically stable if 0 ≤ r < 1. Therefore, the comparison theorem implies that the zero
solution of Eq. (7) is globally asymptotically stable if 0 < 1 − c + a < 1. From
the equivalence of 0 < 1 − c + a < 1 and R0 < 1, we know that the disease free
equilibrium E0 of model (5) is globally asymptotically stable when R0 < 1.

4.2. The stability of the endemic equilibria. Next, we discuss the stability
of the endemic equilibria of model (5). The equation a(1 − x)e−bx(1−x) = c of
the positive equilibrium can simplify the linearized matrix A of model (5) at the
equilibrium E(x, x)

A =

(
1−(1+c)x

1−x bc(2x− 1)x

1 0

)
.
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The characteristic equation of matrix A is

h(λ) = λ2 − 1− (1 + c)x

1− x
λ− bc(2x− 1)x = 0.

Following results give the relationship between roots and coefficients of a quadratic
equation.

Lemma 4.2. [13] Let F (λ) = λ2 +Bλ+C, where B and C are constants. Let λ1

and λ2 be two roots of F (λ) = 0. Suppose F (1) > 0, then we have

(1) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and C < 1;
(2) λ1 = −1 and |λ2| 6= 1 if and only if F (−1) = 0, B 6= 0 or 2;
(3) |λ1| < 1 and |λ2| > 1 if and only if F (−1) < 0;
(4) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and C > 1;
(5) λ1 and λ2 are the conjugate complex roots with |λ1| = |λ2| = 1 if and only if

B2 − 4C < 0 and C = 1.

Let us define g2(x) = 2bcx3 − 3bcx2 + (bc− c− 2)x+ 2. It is easy to have

h(1) =
cx

1− x
(
2bx2 − 3bx+ b+ 1

)
, h(−1) =

1

1− x
g2(x).

The function g2(x) is a cubic polynomial and satisfies g2(x) → −∞ as x → −∞,
g2(0) = 2 > 0, g2(1) = −c < 0, and g2(x) → +∞ as x → +∞. The intermediate
value theorem for continuous function implies that g2(x) has three roots, x1

g, x
2
g

and x3
g. They locate in the interval (−∞, 0), (0, 1) and (1,+∞), respectively. x2

g

is the unique positive root of g2(x) = 0 in the interval (0, 1). From the continuity
of g2(x) we know that g2(x) > 0 if x ∈ (0, x2

g), g2(x) = 0 if x = x2
g, and g2(x) < 0

if x ∈ (x2
g, 1). Consequently, h(−1) > 0 if x ∈ (0, x2

g), h(−1) = 0 if x = x2
g, and

h(−1) < 0 if x ∈ (x2
g, 1).

Based on the analysis of h(1) and h(−1), we can prove following stability results.

Theorem 4.3. If R0 > 1 and b < 8, then the stability results of the unique endemic
equilibrium E1(x1, x1) of model (5) are as follows:

(i) E1 is a sink and is locally asymptotical stable if x1 ∈ (0, x2
g).

(ii) E1 is non-hyperbolic if x1 = x2
g.

(iii) E1 is a saddle if x1 ∈ (x2
g, 1).

Proof. When b < 8, Theorem 3.1 shows that E1(x1, x1) is the unique endemic

equilibrium of model (5). The function 2bx2
1 − 3bx1 + b+ 1 has its minimum

8− b
8

at x1 =
3

4
. The condition b < 8 implies that

h(1) =
cx1

1− x1

(
2bx2

1 − 3bx1 + b+ 1
)
> 0 for x1 ∈ (0, 1).

The function −bc(2x1 − 1)x1 has its maximum
bc

8
at x1 =

1

4
. Consequently,

−bc(2x1 − 1)x1 < 1 for x1 ∈ (0, 1). From the aforementioned results on h(−1)
and Lemma 4.2, we know that the conclusions given in Theorem 4.3 hold true.

When b = 8, the similar stability result of E1(x1, x1) can be obtained if x1 6=
3

4
.

More careful analysis should be done for the case x1 =
3

4
.
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When b > 8 more endemic equilibria may appear and the stability analysis
will be more complicated. We use following special case to show the number and
stability of endemic equilibria of model (5). When we take b = 9 and a = 1, then
x∗1 = 0.6667, x∗2 = 0.8333, c1 = 0.04511, and c2 = 0.04775. The existence and
stability of endemic equilibria are given in the following statements.

Assume that b = 9 and a = 1, then

(i) Model (5) has one endemic equilibrium E1
1 (E2

1) if 0 < c < c1 (c2 < c < a).
E1

1 (E2
1) is a stable sink.

(ii) Model (5) has two endemic equilibria E∗1 (0.6667, 0.6667) and E+
2 (0.8946,

0.8946) (E∗20.8333, 0.8333) and E−2 (0.5627, 0.5627)) if c = c1 (c = c2). E∗1
(E∗2 ) is non-hyperbolic, and E+

2 (E−2 ) is a sink and it is locally stable.
(iii) Model (5) has three endemic equilibria E1

3 , E2
3 , and E3

3 if c1 < c < c2. E1
3 is

a sink and it is locally stable, E2
3 is a saddle, and E3

3 is a sink and it is locally
stable.

These statements are obtained numerically. In fact, we have tried different pa-
rameter values of a and b to investigate the number and stability of the endemic
equilibria of model (5). We have got similar results.

5. The bifurcation. Bifurcation may lead to different dynamical behaviors of a
model when parameters pass through a critical value. Bifurcation usually occurs
when the stability of an equilibrium changes. In this section, we will discuss the
flip bifurcation, the saddle-node bifurcation, and the Hopf bifurcation of model (5).

5.1. The flip bifurcation. We investigate the flip bifurcation under the condition
b < 8 and R0 > 1. In this case, model (5) has the unique endemic equilibrium
E1(x1, x1). The stability analysis in Section 4 shows that the endemic E1 has a
eigenvalue −1 when x1 = x2

g, and E1(x2
g, x

2
g) is non-hyperbolic. The flip bifurca-

tion can occur in the neighborhood of the endemic equilibrium E1(x2
g, x

2
g) when

parameters pass through a critical point.

The calculation of flip bifurcation is quite complicated and we take a = 3ce
2b
9 to

make the process simple. In the case, the endemic equilibrium E1(x2
g, x

2
g) of model

5 is E1

(
2
3 ,

2
3

)
. The linearization matrix of (5) at the equilibrium point E1

(
2
3 ,

2
3

)
is

A =

(
1− 2c 2

9bc
1 0

)
,

and the characteristic equation of matrix A is

λ2 − (1− 2c)λ− 2

9
bc = 0.

When b = 9(1−c)
c and c 6= 1

2 , the eigenvalues of matrix A are λ1 = −1 and |λ2| =
|2(1− c)| 6= 1. Following theorem confirms the flip bifurcation of model (5).

Theorem 5.1. If b = 9(1−c)
c and c ∈ (0.782, 1), then model (5) will undergo a

flip bifurcation at E1

(
2
3 ,

2
3

)
. Moreover, the periodic-2 solution bifurcated from the

equilibrium E1

(
2
3 ,

2
3

)
is stable.

Proof. In order to use the center manifold theory we treat µ as a state variable.

The transformation x̃ = x − 2
3 , ỹ = y − 2

3 , and µ̃ = b − 9(1−c)
c take model (5) into
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the form

x̃(t+ 1) = (1− c)x̃(t) + 3c( 1
3 − x̃(t))( 2

3 + x̃(t))e(µ̃(t)+
9(1−c)

c )( 1
3 ỹ(t)+ỹ2(t)) − 2

3c,
µ̃(t+ 1) = µ̃(t),
ỹ(t+ 1) = x̃(t).

(9)
Taylor expansion of model (9) at (x̃, ỹ, µ̃) = (0, 0, 0) is

x̃(t+ 1) = (1− 2c)x̃(t) + 2(1− c)ỹ(t) + P̃ (x̃(t), µ̃(t), ỹ(t)),
µ̃(t+ 1) = µ̃(t),
ỹ(t+ 1) = x̃(t),

(10)

where

P̃
(
x̃(t), ỹ(t), µ̃(t)

)
= −3cx̃2(t)− 3(1− c)x̃(t)ỹ(t) +

2c

9
µ̃(t)ỹ(t) +

3(1− c2)

c
ỹ2(t)

− 9(1− c)x̃2(t)ỹ(t)− c

3
x̃(t)µ̃(t)ỹ(t)− 9(1− c2)

2c
x̃(t)ỹ2(t)

+
2

3
µ̃(t)ỹ2(t) +

3(3c− 9c2 + 5c3 + 1)

c2
ỹ3(t) +

c

27
µ̃2(t)ỹ2(t)

− cx̃2(t)µ̃(t)ỹ(t)− µ̃(t)(cµ̃(t) + 18)

18
x̃(t)ỹ2(t) + µ̃(t)

(1 + 2c− 3c2

c

+
(1 + c)

9
µ̃(t) +

c

243
µ̃2(t)

)
ỹ3(t) + o((x̃4, µ̃, ỹ4).

(11)

Let

T =

 −1 0 2(1− c)
0 1 0
1 0 1

 , and T−1 =

 1
2c−3 0 −2(1−c)

2c−3

0 1 0
−1

2c−3 0 −1
2c−3

 .

Using the transformation  x̃(t)
µ̃(t)
ỹ(t)

 = T

 u(t)
µ(t)
v(t)

 ,

for model (10) yields u(t+ 1)
µ(t+ 1)
v(t+ 1)

 =

 −1 0 0
0 1 0
0 0 2(1− c)

 u(t)
µ(t)
v(t)



+


1

2c− 3
P (u(t), µ(t), v(t))

0

− 1

2c− 3
P (u(t), µ(t), v(t))

 ,

(12)
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where

P (u(t), v(t), µ(t))

=
2c

9
µu+

2c

9
µv +

(−3(3c2 − c− 1)

c
+

2 + c

3
µ+

∞∑
k=2

p1kµ
k
)
u2

+
(−18c3 + 15c2 − 3c+ 6

c
+

∞∑
k=1

p2kµ
k
)
uv

+
(−12c4 + 18c3 − 3c2 − 6c+ 3

c
+

∞∑
k=1

p3kµ
k
)
v2

+
(39c3 − 72c2 + 27c+ 6

2c2
+

∞∑
k=1

p4kµ
k
)
u3

+
(27c4 − 18c3 − 45c2 + 27c+ 9

c2
+

∞∑
k=1

p5kµ
k
)
u2v

+
(72c5 − 180c4 + 189c3 − 126c2 + 27c+ 18

2c2
+

∞∑
k=1

p6kµ
k
)
uv2

+
(36c5 − 117c4 + 132c3 − 54c2 + 3

c2
+

∞∑
k=1

p7kµ
k
)
v3 + o(u4, µ, v4)

(13)

From the center manifold theory of discrete system we know that there exists a
local manifold of model (12) [5]. The local manifold has the following expansion

v(t) = h(u(t), µ(t))

= m1u
2(t) +m2u(t)µ(t) +m3µ

2(t) +m4u
3(t) +m5u

2(t)µ(t)

+m6u(t)µ2(t) +m7µ
3(t) + o(u4, µ, v4).

(14)

After substituting the expansion into model (12) and using the invariant property
of the local manifold, the straightforward and careful calculation gives

m1 =
3(3c2 − c− 1)

c(1− 2c)(3− 2c)
, m2 = − 2c

9(3− 2c)2
, m3 = 0.

From the second equation of model (12) we know that µ(t) is always constant.
Therefore, the one dimensional model induced by the center manifold is

u(t+ 1) = G(u(t), µ)

where

G =
(
− 1 +

2c

9(2c− 3)
µ+

∞∑
k=2

n1kµ
k
)
u(t) +

(−3(3c2 − c− 1)

c(2c− 3)
+

∞∑
k=1

n2kµ
k
)
u2(t)

+
(−18c3 + 15c2 − 3c+ 6

c(2c− 3)
m1 +

39c3 − 72c2 + 27c+ 6

2c2(2c− 3)
+

∞∑
k=1

n3kµ
k
)
u3(t)

+ o(u, µ).

(15)
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It is not difficult to verify that G(0, µ)=0,
∂G(0, 0)

∂u
= −1,

∂2G(0, 0)

∂u∂µ
=

2c

9(2c− 3)
<

0, and
∂3G2(0, 0)

∂u3
=

18(26c4 − 61c3 + 24c2 + c+ 4)

c2(3− 2c)(2c− 1)
. Numerical computation shows

that
∂3G2(0, 0)

∂u3
< 0 when c ∈ (0.782, 1) (see Fig 2(a)). Therefore, model (5) will

undergo a flip bifurcation at E1

(
2
3 ,

2
3

)
and the bifurcation solution of period 2 is

stable [16].

The period 2 solution from the flip bifurcation of model (5) is shown in Figure
2(b), where parameter values are a = 3.9569, b = 2.25, and c = 0.8, respectively.
Numerical simulation demonstrate that the solution from the flip bifurcation is
stable.

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6
(a)

c

26c4−61c3+24c2+c+4

c=0.782

300 310 320 330 340 350

0.6667

0.6667

0.6667

0.6667

0.6667

0.6667

0.6667

t

x

(b)

Figure 2. (a) The curve (b) The flip bifurcation

5.2. The saddle-node bifurcation. The saddle-node bifurcation, or the fold bi-
furcation, describes the phenomenon that a non-hyperbolic equilibrium separates
into two equilibria, one is a saddle, and the other is a node. In this subsection, we
will prove the existence of the saddle-node bifurcation by a direct calculation of the
number of the equilibria and their stability though there exist the standard theory
and schedule to determine the saddle-node bifurcation.

From the existence result in Section 3, we know that E∗1 (x∗1, x
∗
1) is an positive

equilibrium of model (5) if b > 8 and c = c1. The stability analysis in Section
4 shows that one eigenvalue of the linearization matrix of (5) at the equilibrium
E∗1 (x∗1, x

∗
1) is 1, which implies that the model (5) may undergo the saddle-node bifur-

cation. Following theorem conforms the saddle-node bifurcation at the equilibrium
E∗1 (x∗1, x

∗
1).

Theorem 5.2. If b > 8, then model (5) will undergo a saddle-node bifurcation at

E∗1 (x∗1, x
∗
1) with x∗1 =

3−
√

1− 8/b

4
when the parameter c increases from the critical

value c1, where

c1 =
a

4

(
1 +

√
1− 8

b

)
e
− b

16

(
3−
√

1− 8
b

)(
1+
√

1− 8
b

)
.
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Proof. When b > 8 and c = c1, we see that E∗1 (x∗1, x
∗
1) is an positive equilibrium of

model (5). Further calculation shows that the eigenvalues of the linearized matrix
of model (5) at E∗1 (x∗1, x

∗
1) are

λ1 = 1, and λ2 =
a

4

(
3−

√
1− 8

b

)
e
− b

16

(
3−
√

1− 8
b

)(
1+
√

1− 8
b

)
.

Let u be a small positive number. The straightforward calculation shows that
x∗1 − u and x∗1 + u are two roots of the equation f(x) = c, where,

c = c1 +
u2

2

√
b(b− 8)e

− b
16

(
3−
√

1− 8
b

)(
1+
√

1− 8
b

)
.

From relationship between the equilibrium of model (5) and the root of the equation
f(x) = c we know that E1

3(x∗1 − u, x∗1 − u) and E2
3(x∗1 + u, x∗1 + u) are the positive

equilibria of model (5). The equilibria E1
3 and E2

3 are very close to E∗1 when u is
sufficiently small. Those two equilibria will collide and become E∗1 (x∗1, x

∗
1) when u

tends to zero.
Next, we will determine the stability and the type of those two positive equilibria

E1
3 and E2

3 . We give the detailed analysis for E2
3 , and the analysis of E1

3 is omitted
since the process is similar. The characteristic equation of the linearized matrix at
E2

3 is ϕ(u, λ) = 0, where

ϕ(u, λ) = λ2 − 1− (1 + c)x2
3

1− x2
3

λ− bcx2
3(2x2

3 − 1), and x2
3 = x∗1 + u.

Let λ1(u) and λ2(u) be two roots of equation ϕ(u, λ) = 0. From the expression
ϕ(u, λ) we know that the eigenvalue, λ1(u) or λ2(u), is continuously differentiable
with respect to u, satisfying

λ1(0) = 1, and λ2(0) =
a

4

(
3−

√
1− 8

b

)
e
− b

16

(
3−
√

1− 8
b

)(
1+
√

1− 8
b

)
.

The direct calculation gives that

∂ϕ

∂x2
3

=
c

(1− x2
3)2

(
λ− b(4x2

3 − 1)(1− x2
3)2
)
,
∂x2

3

∂u
= 1,

∂ϕ

∂c
=

x2
3λ

1− x2
3

− bx2
3(2x2

3 − 1),
∂ϕ

∂λ
= 2λ− 1− (1 + c)x2

3

1− x2
3

,

∂c

∂u
= u

√
b(b− 8)e−

b
16 (3−

√
1− 8

b )(1+
√

1− 8
b ).

By using the derivative rule for implicit functions we have

dλ

du
= −

∂ϕ
∂u
∂ϕ
∂λ

= −
∂ϕ
∂x2

3

∂x2
3

∂u + ∂ϕ
∂c

∂c
∂u

∂ϕ
∂λ

.

When u = 0, we have λ = 1, x2
3 = x∗1, c = c1,

∂c

∂u
= 0, and

dλ

du

∣∣∣∣
u=0

= −
c1
(
1− b(4x∗1 − 1)(1− x∗1)2

)
(1− x∗1)

(
1− x∗1 + c1x∗1

) > 0.
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The last inequality holds true since c1 > 0, b > 8, x∗1 =
3−

√
1− 8/b

4
<

3

4
, and

1− b(4x∗1 − 1)(1− x∗1)2 = 1− 1

8

(
b+

√
b2 − 8b+ 4

√
1− 8

b

)
< 0.

Therefore, λ1(u) > 1 if u > 0 and u is sufficiently small. 0 < λ2(0) < 1 and
dλ

du

∣∣∣∣
u=0

> 0 say that 0 < λ2(u) < 1 for sufficiently small u. The fact that λ1(u) >

1 and 0 < λ2(u) < 1 implies that the positive equilibrium E2
3(x∗1 + u, x∗1 + u)

is an unstable saddle. The similar argument and process show that the positive
equilibrium E1

3(x∗1 − u, x∗1 − u) is a stable node for sufficiently small u. Combining
those results together we know that saddle-node bifurcation will be bifurcated from
the equilibrium E∗1 (x∗1, x

∗
1) when c increases from c1. The proof of Theorem 5.2

completes.

Remark 1. If b > 8, the similar arguments can confirm that (5) will undergo
the saddle-node bifurcation at E∗2 (x∗2, x

∗
2) when the parameter c decreases from the

critical value c2, where

c2 =
a

4

(
1−

√
1− 8

b

)
e
− b

16

(
3+
√

1− 8
b

)(
1−
√

1− 8
b

)
.

The saddle-node bifurcation of model (5) is shown in Figure 3. Parameter values
a = 0.008 and b = 9 are same for those two subplots, whereas c = c1 = 0.036089 for
subplot (a) and c = 0.036094 for subplot (b), respectively. Figure 3 (a) shows that
E∗1 is a non-hyperbolic equilibrium. The solutions initiating from the left part of the
neighborhood tend to E∗1 when time goes to infinity, whereas the solutions initiating
from the right part of the neighborhood leave E∗1 when time goes to infinity. Figure 3
(b) shows that E∗1 separates into a stable node E1

3(0.6611, 0.6611) and and a saddle
E2

3(0.6722, 0.6722) when c increases a little from the critical value c1. Solutions
starting in the neighborhood of E1

3 tend to it when time goes to infinity, whereas
solutions starting in the neighborhood of E2

3 leave the neighborhood when time goes
to infinity.
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0.65
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y

(a)

E
1
* (x

1
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1
* )

0.65 0.655 0.66 0.665 0.67 0.675 0.68
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0.675

0.68

x

y

(b)

E
3
1(0.6611,0.6611)

E
3
2(0.6722,0.6722)

Figure 3. The Saddle-Node bifurcation of system (5) at E∗1
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5.3. The Hopf bifurcation. The Hopf bifurcation (Neimark-Sacker bifurcation)
for the discrete models is similar to that of continuous models. In this subsection
we discuss the Hopf bifurcation of model (5) when b > 8 and a = 4

3ce
3b
16 . In this

case E1
3

(
1
4 ,

1
4

)
is a positive equilibrium of (5), and the linearization matrix of (5)

at the equilibrium point E1
3 is

A =

(
3−c

3 − 1
8bc

1 0

)
.

The characteristic equation of matrix A is

λ2 − 3− c
3

λ+
1

8
bc = 0.

If b = 8
c , then the characteristic roots of matrix A satisfy that |λ1| = |λ2| = 1.

Therefore, system (5) may undergo a Hopf bifurcation at E1
3 .

Theorem 5.3. If b = 8
c , then model (5) will undergo a Hopf bifurcation at E1

3 .

Proof. Let x̃ = x− 1
4 , and ỹ = y − 1

4 , then model (5) becomes

x̃(t+ 1) = (1− c)x̃(t) + 4
3c(

3
4 − x̃(t))( 1

4 + x̃(t))eb(−
1
2 ỹ(t)+ỹ2(t)) − 1

4c,
ỹ(t+ 1) = x̃(t).

(16)

The Taylor expansion of model (16) at (x̃, ỹ) = (0, 0) is

x̃(t+ 1) = 3−c
3 x̃(t)− 1

8bcỹ(t) + P̃ (x̃(t), µ̃(t), ỹ(t)),
ỹ(t+ 1) = x̃(t),

(17)

where

P̃
(
x̃(t), ỹ(t)

)
= −4c

3
x̃2(t)− 1

3
bcx̃(t)ỹ(t) +

1

4
bc(1 +

b

8
)ỹ2(t) +

2

3
bcx̃2(t)ỹ(t)

+
2

3
bc(1 +

b

8
)x̃(t)ỹ2(t)− 1

4
b2c(

1

2
+

b

48
)ỹ3(t) + o((|x̃|+ |ỹ|)4).

(18)

The eigenvalues of the linearized matrix are

λ1,2 =
1

2

(
3− c

3
±
√

1

2
bc− (3− c)2

9
i

)
,

and

|λ| = 1

2

√
(3− c)2

9
+

1

2
bc− (3− c)2

9
=

√
1

8
bc.

Let b be the bifurcation parameter and b0 = 8
c . The direct calculation yields that

λ1,2(b0) =
1

2

(
3− c

3
±
√

1

2
bc− (3− c)2

9
i

)∣∣∣∣
b=b0

=
1

2

(
3− c

3
±
√

27 + 6c− c2
3

i

)
.

|λ(b0)| = 1,
d(|λ|)
db

∣∣∣∣
b=b0

=
c

16
√
bc/8

=
c

16
> 0.

In addition, λm1,2 6= 1 for m = 1, 2, 3, 4. Let T =

(
t11 t12

t21 t22

)
with t11 = 1, t12 = 0,

t21 =
4(3− c)

3bc
, and t22 =

4

bc

√
1

2
bc− (3− c)2

9
. By performing the transformation(

x̃(t)
ỹ(t)

)
= T

(
u(t)
v(t)

)
,
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we obtain (
u(t+ 1)
v(t+ 1)

)

=

 3−c
6 − 1

2

√
1
2bc−

(3−c)2
9

1
2

√
1
2bc−

(3−c)2
9

3−c
6

( u(t)
v(t)

)
+

(
P1(u, v)
P2(u, v)

)
,

where

P1(u, v) =
(
− 4

3
c− 1

3
bcm+

1

4
bc(1 +

b

8
)m2

)
u2 −

(1

3
bcn− 1

2
bc(1 +

b

8
)mn

)
uv

+
1

4
bc(1 +

b

8
)n2v2 +

(2

3
bcm+

2

3
bc(1 +

b

8
)m2 − 1

4
b2c(

1

2
+

b

48
)m3

)
u3

+
(2

3
bcn+

4

3
bc(1 +

b

8
)mn− 3

4
b2c(

1

2
+

b

48
)m2n

)
u2v − 1

4
b2c(

1

2
+

b

48
)n3v3

+
(2

3
bc(1 +

b

8
)n2 − 3

4
b2c(

1

2
+

b

48
)mn2

)
uv2,

P2(u, v) = −m
n
P1(u, v), m =

4(3− c)
3bc

, n =
4

bc

√
1

2
bc− (3− c)2

9
.

(19)

From Theorem 3.5.3 of [17] we know that the existence of Hopf bifurcation can be
determined by the quantity θ, where,

θ = −Re
[ (1− 2λ)λ̄2

1− λ
l11l20

]
− 1

2
|l11|2 − |l02|2 +Re(λ̄l21),

and

l20 = 1
8

[
(P1uu − P1vv + 2P2uv) + i(P2uu − P2vv − 2P1uv)

]
,

l11 = 1
4

[
P1uu + P1vv + i(P2uu + P2vv)

]
,

l02 = 1
8

[
(P1uu − P1vv − 2P2uv) + i(P2uu − P2vv + 2P1uv)

]
,

l21 = 1
16

[
(P1uuu + P1uvv + P2uuv + P2vvv) + i(P2uuu + P2uvv − P1uuv − P1vvv)

]
.

By a straightforward and tedious calculation we obtain that

θ =
c6 − 14c5 − 23c4 + 144c3 − 405c2 + 54c− 405

324c2
< 0.

Using the Hopf bifurcation theorem in [17] we obtain that there exists a Hopf
bifurcation when b passes through b0. The proof completes.

The solution curve and the invariant curve of Hopf bifurcation are shown in
Figure 4. The parameters are taken to be c = 0.8, a = 6.9686, and b = 10.01,
respectively. The simulation demonstrates that the invariant curve exists when b is
a little bigger than b0.

Theorem 5.3 establishes the existence of Hopf bifurcation of model (5) when

b = b0 and a = 4
3ce

3b
16 . The choice of a = 4

3ce
3b
16 simplifies the calculation of

the Hopf bifurcation. In fact, when bc ≥ 8 and a = 4c

3+
√

1− 8
bc

e
b

(
1−
√

1− 8
bc

)
+4

c

8 ,
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Figure 4. The Hopf bifurcation of system (5) at ( 1
4 ,

1
4 )

E1
3

(
1−
√

1− 8
bc

4 ,
1−
√

1− 8
bc

4

)
is the positive equilibrium point of model (5). The char-

acteristic equation of the linearization matrix of (5) at the equilibrium E1
3 is

h(λ) = λ2 −
3− c+ (1 + c)

√
1− 8

bc

3 +
√

1− 8
bc

λ+ 1 = 0.

It is easy to have that h(1) =
3+c+(1−c)

√
1− 8

bc

3+
√

1− 8
bc

> 0, and

(
3−c+(1+c)

√
1− 8

bc

3+
√

1− 8
bc

)2

−4 < 0.

By Lemma 4.2, we know that the eigenvalues of the equation h(λ) = 0 are complex,
and satisfy that |λ1| = |λ2| = 1. Therefore, model (5) may undergo the Hopf

bifurcation at the endemic equilibria E1
3

(
1−
√

1− 8
bc

4 ,
1−
√

1− 8
bc

4

)
. The possible Hopf

bifurcation consists of a surface in parameter space: a = 4c

3+
√

1− 8
bc

e
b

(
1−
√

1− 8
bc

)
+4

c

8 .

6. Conclusion and discussion. We have studied a discrete SIS model with the
bilinear incidence depending on the new infection. The incidence can make the
model more realistic to describe an infectious when the control measures become
more stringent if the new infection increases. The global stability of disease free
equilibrium, the existence and local stability of endemic equilibrium, the flip bi-
furcation, the saddle-node bifurcation, and the Hopf bifurcation of the model have
been studied. Although the bifurcation results in this paper are given under certain
assumptions, numerical simulations shows that those bifurcation hold true for more
values of parameters.

The bifurcation results of model (5) indicate that the simple model exhibits very
complex dynamical behaviors. Although those bifurcations are investigated sepa-
rately in the paper, it is very possible that two bifurcations may happen together
at one equilibrium, that is, if the eigenvalues of the linearized matrix are 1 and -1,
then more complicated bifurcation may appear. Besides those three kinds of bifur-
cation in our analysis, we can also find the chaotic behavior for certain parameters.
The numerical simulation, given in Figure 5, shows that model (5) exhibits chaotic
behavior for b < 8. From Figure 5 we see that the endemic equilibrium bifurcates
at R0 = 1. The endemic equilibrium is stable when R0 is not large enough, then the
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endemic equilibrium becomes unstable, and a stable periodic solution of period two
appears as R0 increases. The periodic solution loses its stability when R0 passes
certain value and a stable periodic solution of period four bifurcates. The bifur-
cation process may continue to chaos with the increase of the basic reproductive
number R0.

Figure 5. Model (5) undergoes chaos bifurcation when b < 8

The endemic equilibrium bifurcation of model (5) exhibits interesting and com-
plicated phenomena. When b ≤ 8, model (5) undergoes a forward bifurcation, and
it has only one endemic equilibrium. When b > 8, model (5) can undergo the
forward-backward-forward bifurcation for R0 > 1. Model (5) has only one endemic
equilibrium when 1 < R0 < R1

0, two endemic equilibria when R0 = R1
0, three en-

demic equilibria when R1
0 < R0 < R2

0, two endemic equilibria when R0 = R2
0, and

one endemic equilibrium when R0 > R2
0 (see Figure 6). In the case R0 = R1

0 or
R0 = R2

0, one of the endemic equilibria is not hyperbolic, and saddle-node bifurca-
tion may occurs when R0 increases from R1

0 or decreases from R2
0. Bi-stability is

found when R1
0 < R0 < R2

0.
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Figure 6. The forward-backward-forward bifurcation of model (5)

Global stability of the endemic equilibrium is a challenging problem in dynamical
studies of epidemic model. We have not paid enough attention to the global stability
of the endemic equilibrium of model (5). The global stability is only established for
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the disease free equilibrium. Our conjecture is that the unique endemic equilibrium
is globally asymptotically stable when R0 > 1 and R0 − 1 is small. Unfortunately,
we have not found good way to prove this conjecture. The special case is that
we can obtain the global stability of the endemic equilibrium for certain range of
parameters a and c when b = 0. We will continue to work on the global stability of
the endemic equilibrium. There are a lot of problems should be investigated for this
SIS model, such as the disease persistence, the ultimate boundary estimate, and the
existence of periodic solutions of period 2k. The results on this model will given
examples for the dynamical study of more complicated discrete epidemic models.
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