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Abstract. Prisoner’s Dilemma is a game theory model used to describe al-

truistic behavior seen in various populations. This theoretical game is impor-
tant in understanding why a seemingly selfish strategy does persist and spread

throughout a population that is mixing homogeneously at random. For a pop-

ulation with structure determined by social interactions, Prisoner’s Dilemma
brings to light certain requirements for the altruistic strategy to become estab-

lished. Monte Carlo simulations of Prisoner’s Dilemma are carried out using

both simulated social networks and a dataset of a real social network. In
both scenarios we confirm the requirements for the persistence of altruism in

a population.

1. Introduction. One well-documented example of altruism is food sharing. Vam-
pire bats (Desmodus rotundus) have nocturnal schedules; they leave their roost for
several hours during the night in search of prey they can feed from. On subsequent
nights, it is customary for them to locate the prey they had previously fed on and
continue their extraction of warm blood. A handful of these bats may be unsuc-
cessful in their food supply search, however, they will not starve as some of their
peers will regurgitate a portion of the blood they acquired on that night, and share
it with them. Wilkinson [45] discovered that sharing food by regurgitation, among
wild vampire bats, is a function of reciprocation and it is independent of the degree
of relatedness. In other words, as explained by Nowak [32], if a bat has previously
fed another one, it is more likely this beneficiary re-pays the favor in the future.
Food sharing is often cited as an example of direct reciprocity [45, 32], which is
another way of referring to cooperation, the main topic of this study. Here we focus
on mathematical modeling and simulation of cooperation.
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The time evolution of cooperation is a subject of fascination for evolutionary
biologists, that finds its roots in the foundations of game theory [42, 26, 3, 31]. Pris-
oner’s Dilemma is perhaps one of the best-studied theoretical games that describes
altruistic behavior in organisms. Typically, Prisoner’s Dilemma is formulated as a
two-strategy and two-player game, where the payoffs are determined by years served
in a jail sentence. Indeed, the name of this game is coined from a scenario where
two partners in crime are being held for interrogation in separate rooms at police
quarters, and they weigh in their options while the questioning takes place.

According to classical game theory, for populations of players that mixed homo-
geneously at random, cooperation is doomed to become extinct [14, 31]. On the
other hand, more recent developments suggest that when Prisoner’s Dilemma is con-
sidered not just as a time-evolving process, but rather as a spatio-temporal evolving
process, there are certain conditions that prevent the extinction of cooperation [33].
In this study we address space in the context of a social landscape for players of
Prisoner’s Dilemma. We consider social networks with both simulated datasets and
a dataset sampled from a collegiate social networking site. Specifically, our main
contribution is to successfully validate a necessary condition for the establishment
of cooperation (see [33] and references therein) against an empirical dataset of a
social network (friendship in a social networking site [40]).

This paper is organized as follows. Versions of Prisoner’s Dilemma in well-mixed
populations and those with network structure are introduced in Sections 2 and 3,
respectively. Models for social networks with small-world properties are discussed in
Section 4. In Section 5 a dataset of a real social network is introduced. A discussion
of the results is offered in the last section.

2. Prisoner’s Dilemma in Well-mixed populations. In a well-mixed game,
everyone is assumed to interact with one another, homogeneously at random. Under
this assumption, cooperators may receive a benefit b > 0 from other cooperating
players, but cooperators also pay a cost c > 0 for giving out benefits. Thus, the
average payoff for cooperators is b−c. On the other hand, defectors, whom may only
receive a benefit b from cooperators, and whom neither pay a cost nor distribute
any benefit, end up having a payoff equal to b. These payoffs are summarized into

the strategy payoff matrix A =

[
b− c −c
b 0

]
.

At time t we have that x1(t)+x2(t) = 1, where x1(t) denotes the density (fraction
or proportion) of cooperators in the well-mixed population, while x2(t) = 1− x1(t)
denotes the density of defectors. The fitness vector f stores the expected fitness
for each strategy (cooperation and defection), and results from the matrix-vector
multiplication

f = Ax =

[
b− c −c
b 0

] [
x1

x2

]
=

[
(b− c)x1 − cx2

bx1

]
. (1)

In other words, the fitness of the strategy cooperation is f1 = (b − c)x1 − cx2,
while that of defection is f2 = bx1. By defining the average fitness as follows
φ = x1f1 + x2f2 we can write the replicator equations for Prisoner’s Dilemma [31]:

dx1

dt
= x1 (f1 − φ) = −cx1x2 (2)

dx2

dt
= x2 (f2 − φ) = cx1x2 (3)
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This system supports a stable equilibrium, such that (x1, x2) → (0, 1). To see
why it is stable we reduce the system to one equation with a simple substitution,
u = 1− x1. The reduced replicator equation becomes du/dt = −cu(1− u) = F (u).
Clearly, u = 0 is a stable equilibrium because F ′(0) = −c < 0 (by construction
we assume a positive value for the cost, i.e., c > 0). This implies defection is
the dominant strategy (in fact, evolutionary stable strategy, see [14, 31]), in the
sense that cooperators go extinct, while defectors become established, taking over
the entire well-mixed population. In other words, natural selection favors defectors
over cooperators [31].
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Figure 1. Numerical solutions to the replicator equations for the
Prisoner’s Dilemma. Densities of cooperators x1(t) (solid curve)
and defectors x2(t) (dashed curve) are displayed versus time t. Ini-
tial conditions and parameter values: x1(0) = 0.95, x2(0) = 0.05,
b = 1.8 and c = 0.3.

Figure 1 illustrates the time evolution of cooperator and defector densities, that
is, numerical solutions to equations (2) and (3). The solid curve depicts the fraction
of cooperators x1(t), while the dashed curve represents the density of defectors x2(t).
For this particular numerical solution, we set b = 1.8 and c = 0.3. Also, we started
this simulation with 95 % of cooperators and only 5 % defectors. As can be seen, the
density of cooperators approaches zero as time progresses (i.e., (x1(t), x2(t))→ (0, 1)
as t→ 30). Even though the ratio of defectors to cooperators was initially one-to-
nineteen, meaning that for every 1 defector there were 19 cooperators, which gave
cooperators an extremely biased favor initially, we still see the defectors taking over
the population and driving cooperators to extinction.

3. Prisoner’s Dilemma in social networks. In this section we consider a pop-
ulation of individuals who may engage in a decision-making scheme equivalent to
Prisoner’s Dilemma. In fact, social connections by means of acquaintanceship,
friendship, or levels of influence that can factor in decision-making are modeled
with an undirected graph (network) 1, where each vertex (node) represents an in-
dividual and an edge (link) denotes potential social ties [17].

1The words graph and network, vertex and node, and edge and link will be used interchangeably.
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A social network provides a landscape where each node plays one of two strate-
gies, cooperation or defection, and at each time step nodes decide whether to switch
to a new strategy or keep playing the same. The key for these decisions is the payoff
per-node, which is now a space and time dependent quantity. All nodes connected
to a node say i, form its neighborhood, say Ωi. To compute the payoff of a node
one needs to account for all pair interactions (cooperator-cooperator, cooperator-
defector, defector-cooperator and defector-defector) happening in the node’s neigh-
borhood. The strategy played by node i is denoted with a binary vector vi defined
as

vi =



[
1
0

]
if node i is cooperator

[
0
1

]
if node i is defector.

The payoff of node i at time t is given by

P (i, t) =
∑
j∈Ωi

vi
TAvj , (4)

where A =

[
b− c −c
b 0

]
denotes the strategy payoff matrix. The fitness of a node is

the payoff re-scaled by an intensity of selection parameter w, where this parameter
satisfies 0 < w < 1. When w → 0 there is weak selection, while w → 1 denotes
strong selection [33]. Thus, we say the fitness of node i at time t is defined as
follows:

F (i, t) = 1− w + wP (i, t),

where the functional form of F is known as linear fitness (see [20, 33]). Ohtsuki, et
al. [33] explain that with linear fitness the significance of strong selection translates
in payoff that outweighs the baseline fitness (1−w), while weak selection implies the
payoff is basically negligible relative to the baseline fitness. Moreover, when weak
selection takes place, it is understood the theoretical game is one of many factors
supplying the overall fitness of an individual [33].

The time evolution of Prisoner’s Dilemma in a social network of players is sub-
ject to an updating rule. In this study we considered the so-called “death-birth”
updating [33]: at each time step a node is chosen uniformly at random (unbiased)
to die and its neighbors compete proportional to their fitness. Once this dying node
is determined it becomes temporarily empty. This action may also be seen not
necessarily as an actual death of that member of the social network, but rather as
if that node becomes a free-agent and is open to be persuaded into playing other
strategies. The neighbors of this empty node compete for it, meaning that the
persuasion is proportional to their fitness. Fitness is computed for each node in
the neighborhood of the empty node (the empty node has to be excluded from the
neighborhoods of each of node linked to it because temporarily it has no strategy),
then the aggregate fitness for each strategy is calculated. Aggregate fitness is de-
fined as the total fitness of nodes playing cooperation and that of those playing
defection. The empty node decides which strategy to play in the next time step in
proportion to the aggregate fitness of cooperation and defection. (See appendix for
additional details in pseudo code form.)

The ratio of benefit to cost serves as a threshold quantity that determines per-
sistence of cooperation. When this ratio is compared to the average degree of the
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network, average number of edges per node, denoted by 〈k〉, one obtains that

b

c
> 〈k〉 (5)

is a necessary condition for selection to favor cooperation. This threshold result
is derived from combining pair approximations and diffusion approximations [33],
where the fixation probability of a strategy is calculated. This latter quantity
represents the probability that a single player of a strategy (either cooperation or
defection) which starts in a uniformly at random position in the network (unbiased),
then gives rise to a lineage of players of the same strategy, thus invading the whole
population (see supplemental materials of [33]).

In contrast to the well-mixed case, where for any values b, c > 0 one obtains
that the density of defectors always approaches one, x2(t) → 1 as t gets large, for
populations with structure, such as those with social network ties, it is seen that
cooperation is not doomed to be outcompeted. Clusters of cooperators can persist,
provided some conditions are satisfied (with death-birth update using aggregate
fitness per strategy and when b/c > 〈k〉). In this study we intend to illustrate
this feature using both synthetic data and a dataset of a real social network. The
former are generated using Watts-Strogatz algorithm for small-world networks, to
be discussed in the next section.

4. Models of social networks: Small-world phenomenon and Watts-Stro-
gatz network model. Imagine we consider the following conditions for an experi-
ment on a social network. Randomly selected seed individuals are asked to forward
a letter with the ultimate goal of reaching a target recipient who resides in Sharon,
Massachusetts. Even though seed individuals are given the name, address, and
occupation of the target person, they are required to only pass the letter along to
someone in their circle of acquaintances that they know by their first-name. S.
Milgram [27] was the designer of this experiment which resulted in measuring the
average number of intermediaries in these forwarding-letter chains: on average it
took six individuals from seed to target for the letter to arrive in Sharon, MA (see
[27] and chapter 20 of [14]).

This became known as the “small-world phenomenon” and it speaks to structural
properties of networks, where distance between nodes is measured in terms of edges.
More precisely, paths are the concatenation of edges that connect a seed node to a
target node, the discovery of Milgram’s experiment would translate in saying that
on average the forwarding-letter paths consisted of six edges, indeed a short path
[27, 43, 44].

Watts and Strogatz [43] proposed a model to construct families of networks with
short paths, while also keeping track of an additional feature called clustering. The
latter refers to the existence of close triads or triangles, which denotes the ability of
neighbors of neighbors to also be connected to each other by means of homophily
(nodes connecting to other nodes who resemble themselves). Watts-Strogatz net-
work model transitions between two regimes: regular graphs, known to have high
levels of clustering; and random graphs, known to have small characteristic path
lengths. Gradual increments in the level of disorder are parametrized by a tun-
ing quantity: the probability of rewiring existing edges in a network with a fixed
number of nodes, denoted by p, where 0 < p < 1. Commonly, Watts-Strogatz net-
works are referred to as small-world networks (additional details can be found in
[13, 14, 29, 43, 44] and references therein).
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Figure 2. Prisoner’s Dilemma on small-world networks obtained
with rewiring probability values set to p = 0.0, p = 0.1, and p =
1.0. Panel (a) displays the density of cooperators versus time, for
10 realizations with stopping time equal to 7.00 × 104. Panel (b)
portrays boxplots, while Panel (c) displays frequency histograms,
of the density of cooperators with stopping time of 1.00× 106, for
100 realizations. Network and game parameter values: n = 1000,
〈k〉 = 4, b = 1.8, c = 0.3 and w = 0.5.
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Our interest in the small-world networks relies in using them as a theoretical con-
trol group in the context of Prisoner’s Dilemma. More concretely, we are going to
simulate Prisoner’s Dilemma using networks generated with the Watts-Strogatz al-
gorithm. In this way, we simulate social influence by means of small-world networks
while the theoretical game evolves in time.

Parameter values. Networks of size n = 1000 and average degree 〈k〉 = 4 were
employed. The Prisoner’s Dilemma parameter values were chosen equal to those
used in well-mixed populations for illustrations purposes (see Figure 1): b = 1.8,
c = 0.3. We decided to set the intensity of selection to a medium level (w = 0.5)
between strong (w = 1) and weak (w = 0) selection. Rewiring probabilities were
set at three different values: p = 0.0 (regular graph), p = 0.1 (graphs with large
clustering coefficients and small characteristic path length), and p = 1.0 (random
graphs).

Initial conditions. Simple Random Sampling (SRS) was used to determine
initial conditions in the following sense. Nodes were initially set to be cooperators
or defectors without preference (by means of SRS) due to degree, clustering, path
length, or any other network attribute. On the other hand, the number of nodes
playing each strategy was chosen uniformly at random, with the only constraint
that total population remains constant at n = 1000.

Stopping time and realizations. A stopping time of T = 1 × 106 was em-
ployed. A total of 100 stochastic realizations of Prisoner’s Dilemma were carried
out for a fixed value of rewiring probability p. A network was drawn from Watts-
Strogatz algorithm, with each fixed value of p, which was kept static during time
steps t = 1 through t = T (i.e., over the course of one stochastic realization of the
theoretical game).

Update rule. A death-birth updating rule was implemented (see Section 3),
such that b/c exceeds the average degree: b/c = 1.8/0.3 = 6 and 〈k〉 = 4. This
necessary condition for the establishment of cooperation is precisely what we intend
to validate with the present study.

Figure 2(a) displays a snapshot of the density of cooperators versus time, i.e.,
x1(t) versus t. For the sake of resolution only 10 realizations are displayed with
time between t = 1 and t = 70000, where each discrete time step t represents a
round of the game being played. Left-side, middle, and right-side figures in Figure
2(a) depict time series corresponding to p = 0.0, p = 0.1, and p = 1.0, respectively.

Table 1. Mean and five-number summary of density of coopera-
tors at stopping time, for 100 realizations of Prisoner’s Dilemma
on small-world networks (see caption of Figure 2).

Rewiring Min. 1st Quartile Median Mean 3rd Quartile Max.

p = 0.0000 0.7040 0.7725 0.7935 0.7969 0.8200 0.8730
p = 0.1000 0.5920 0.6498 0.6805 0.6785 0.7010 0.7630
p = 1.0000 0.5850 0.6368 0.6595 0.6580 0.6800 0.7360

Figures 2(b)–(c) summarize results of 100 realizations where the stopping time
is T = 1× 106. In Figure 2(b) we find boxplots of x1(T ), while Figure 2(c) displays
histograms of x1(T ) for the three values of rewiring under consideration. Across
these three types of rewiring we observe a consistent unimodal shape of the distri-
butions of 100 samples, where no particular skewness is observed. In fact, consistent
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with the lack of skewness the variability in the samples does not seem to fluctuate
drastically and no outliers are included either.

The mean together with the five-number summary of x1(T ) are specified in Table
1. For each value of p, the mean and median are fairly close to one another, such
that they match when rounded off to one decimal digit. In a community with
regular graph structure, p = 0.0, the median fraction of cooperators at stopping
time is 0.7935 with interquartile range (IQR) of 0.0475. Simulated communities
with high levels of clustering and small average distance between nodes, p = 0.1,
exhibit a median of x1(T ) equal to 0.6805 with IQR equal to 0.0513. On the other
hand, in communities with simulated random graph structure, the median and IQR
of x1(T ) are equal to 0.6595 and 0.0433, respectively. The values of IQR in these
three cases confirm what is observed in Figure 2(b)–(c), i.e., no strong fluctuations
in variability of x1(T ) samples are noticed.

We now use the median to comment on average behavior of Prisoner’s Dilemma
time evolution, among simulated social networks. It is well-known that Watts-
Strogatz algorithm provides families of networks at p = 0.1 that have favorable
local and global features. At this value of rewiring, networks have small average
characteristic path lengths (global property) and large clustering coefficients (local
property) [43]. The median of x1(T ) drops substantially from p = 0.0 to p = 0.1
(see Figure 2(b) and Table 1): a drop of basically 1.0 × 10−1. On the other hand,
while the median of x1(T ) decreases again from p = 0.1 to p = 1.0, it is not as
drastically as in the previous case.

The comparison of Prisoner’s Dilemma across two extremes of small-world net-
works, top versus bottom bloxplot in Figure 2(b), suggests the coverage of coop-
erators in the simulated communities drops from 80% to 66%. In other words,
structure plays a role in the final number of cooperators at stopping time. In a
more general sense, these boxplots in Figure 2(b) confirm that clusters of cooper-
ators persist in these simulated social networks over time. The choice of stopping
time at T = 1× 106 guarantees a burn-in phase. Longitudinal trends of x1(t) with
t exceeding 5× 105 (not displayed here) assure a steady-state-like behavior.

A closer examination of the solid curve displayed in Figure 1, along with the
realizations of Figure 2(a), leads to comparison of Prisoner’s Dilemma on well-mixed
communities versus small-world networks. As it was discussed in Section 3, for
social networks with b/c > 〈k〉 cooperators are not condemned to extinction, unlike
in well-mixed populations. The same parameter values were used in the numerical
solutions of Figure 1 and the simulations of Figure 2(a): b = 1.8 and c = 0.3. We
see in Figure 1 that after 25 rounds of the game, cooperators basically disappear
in a well-mixed community, while Figure 2 illustrates a sustained persistence of
cooperators over time.

5. Dataset of a social network and simulated Prisoner’s Dilemma. The
first decade of the twenty-first century has seen the rise and establishment of readily
accessible technology to communicate with others simply by hitting a key stroke on
a mobile device, whether it is a laptop, a smartphone, or a tablet. The World Wide
Web continues to host the so-called “social networking sites” (SNS). These are the
up-to-date versions of forums that facilitate exchanges which are remarkably casual
and informal, occurring remotely in real-time.

According to Boyd and Ellison [5] SNS are web-based tools that accomplish
three main objectives: (1) easy development of a profile with the option of making
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it public; (2) intuitive interface for constructing lists of users to connect with; (3)
access to lists of users sharing a connection.

Today, one of the well established SNS is Facebook2, where users easily share per-
sonal information by means of photos, videos, and email. Facebook also facilitates
surveying opinions on topics of specific interest and it is even known to promote
organization of events. In the early days, Facebook membership was restricted to
university affiliation. In other words, it served as a collegiate social networking site
requiring users to have a valid email with an edu-suffix. It first launched at Harvard
University in early 2004 and it gradually expanded to other universities. The email
requirement made Facebook users feel exclusive because they had membership to a
private community [5]. By September 2005, Facebook moved forward to integrate
professionals working within corporate networks and high school students. How-
ever, Facebook did not allow its users to make their profiles public to all users right
away. This was a substantial difference relative to other SNS [5], and it meant that
it preserved a strong sense of local community.

Figure 3. Network visualization of the largest connected compo-
nent in a social network dataset sampled at the California Institute
of Technology [40].

A Facebook friendship between two users means there is a link connecting their
profiles. Moreover, for these links to be established Facebook requires confirmation
of a “friendship request”. In this sense, Facebook friendships determine a network
of users, in so many words: a graph of undirected edges, where each node represents
a Facebook user. For examples of social network analyses using this type of datasets
see [22, 25, 41].

The dataset employed here is a subset of those used by Traud, et al. [40],
it consists of a complete set of users and all the links between them occurring
on September 2005 at the California Institute of Technology. Figure 3 displays a
network visualization of the Caltech dataset, where nodes and links denote Facebook
members and friendships, respectively.

In their comprehensive analysis, Traud, et al. [40], quantify some of the basic
network characteristics of the Caltech dataset. For example, the network size is n =
1099 with only 762 nodes belonging to the largest connected component. Moreover,
there are 16651 edges within the largest connected component. The average degree
is 〈k〉 = 43.70, while the mean clustering coefficient is 0.41. Traud, et al. [40],
point out that when comparing clustering, by two different measures, against the
datasets of another four universities, the Caltech dataset has the largest clustering.
In their study, Traud, et al. [40], one of their main goals is to detect significant

2http://www.facebook.com/

http://www.facebook.com/
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Figure 4. Diagnostic tests of Prisoner’s Dilemma simulations
on a dataset of a real social network [40]. Panel (a) dis-
plays mean density of cooperators at stopping time versus
a multiplier β, where it is assumed b/c = β〈k〉 for β ∈
{1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0, 3.0, 4.0, 5.0, 10.0}. Dashed
curve denotes variability: the mean plus minus one standard error.
These averages were computed out of 10 realizations with stopping
time T = 1× 105. In Panel (b) boxplots of the density of coopera-
tors at stopping time are depicted. The samples in these boxplots
were obtained from 10 realizations with stopping time T = 1× 106

and b/c = 〈k〉. Two types of initial conditions were tested: Fixed
initial conditions (top boxplot), where half of the population were
initialized as cooperator while the other half were set as defectors;
Initial conditions by simple random sampling (bottom boxplot),
where the initial number of cooperators was chosen uniformly at
random between 1 and n.

clusters of nodes (community structure), by using unbiased algorithms. They find
the Caltech dataset has 12 communities. Using the Caltech dataset, we carried out
Monte Carlo simulations of Prisoner’s Dilemma and below we give details of the
implementation.

Parameter values. Because the necessary condition b/c > 〈k〉 is at the central
stage of this study, we decided to explore the ratio b/c as a linear function of the
average degree 〈k〉. In other words, for diagnostic tests we supposed that b/c = β〈k〉
for some β ≥ 1, where β = 1 denotes a borderline case scenario. Values of β were
considered in the interval [1.0, 1.5] along with values in the interval [2, 10]. Setting
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initial conditions to 50% cooperators and defectors at time t = 1, and stopping
time T = 1 × 105, led to results displayed in Figure 4(a) for 10 realizations. It is
seen in Figure 4(a) that the mean of x1(T ) is an increasing function of β, where
β ∈ [1, 10]. For β = 1 it is seen that x1(T ) is above 0.1 (at least 10% of the
network remains playing cooperation), while for β ≥ 2 then x1(T ) is no less than
0.7 (more than 70% of cooperators remain in the network). Based on this diagnostic
we opted to set b/c = 3.41〈k〉 (a value of β between 3 and 4): more specifically, we
set b/c = (3.41)(44.0) ≈ 150, i.e., b = 150, c = 1. The value of intensity of selection
was set at w = 0.5, halfway through weak and strong selection.

Initial conditions. The effect of two types of initial conditions was also vetted.
We consider the borderline case b/c = 〈k〉 and set the stopping time as T = 1×106.
Figure 4(b) depicts results of 10 realizations. The top boxplot of the samples of
x1(T ), corresponds to fixed initial conditions, i.e., where 50% of the nodes were ini-
tially set to be cooperators. On the other hand, the bottom boxplot corresponds to
initial conditions determined by Simple Random Sampling (SRS), where the initial
number of cooperators was chosen uniformly at random between 1 and n = 1099.
The choice of which nodes were initially set to play cooperation was made inde-
pendently of any network attributes. Comparison of the median in these boxplots
displayed in Figure 4(b) suggests cooperators reach very low levels at t = T (but
yet they are not extinct, at least on average), something that is expected in the
borderline case b/c = 〈k〉. Even though fixed initial conditions exhibit an outlier
for x1(T ) samples, and some skewness, the variability remains substantially nar-
rower in fixed versus SRS initial conditions. We opted for setting initial conditions
by SRS to allow more variability in the simulations outcome.

Stopping time, realizations and updating rule. A death-birth updating
rule was employed (Section 3), while the stopping time was set as T = 1× 106 and
100 realizations of Prisoner’s Dilemma were carried out using the Caltech dataset.

Table 2. Mean and five-number summary of density of coopera-
tors at stopping time, obtained from Caltech dataset [40].

Minimum First Quartile Median Mean Third Quartile Maximum

0.2185 0.7055 0.8381 0.7881 0.9038 1.0000

Panel (a) of Figure 5 displays only 10 (out of the 100 realization) curves of
cooperators density, for the sake of enhanced resolution. There is clear evidence of
patterns supporting persistence of cooperation, as it is revealed in this subset of the
100 realizations.

Another observed feature in Figure 5(a) is downward-spike temporal patterns,
for a handful of realizations. In other words, the density of cooperators in these
cases drops remarkably, but it seems to return back to sustained levels. Similar
patterns of drops in cooperation density have been reported before by Egúıluz, et
al. [15] (see Figure 5), and by Kim, et al. [21] (see Figure 3(b)), albeit with different
versions of Prisoner’s Dilemma.

The histogram of samples of cooperators density at stopping time T = 1 × 106

is displayed in Figure 5(b). Considerable skewness is observed, in comparison to
small-world networks (see Figure 2(c)). Moreover, skewness is also confirmed by
the boxplot in Figure 5(c), where a handful of outliers appear. The latter suggest
low levels of sustained cooperation, but no necessarily extinction.



1392 SHARON M. CAMERON AND ARIEL CINTRÓN-ARIAS
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Figure 5. Prisoner’s Dilemma on a real social network, dataset
sampled at California Institute of Technology [40]. Panel (a) dis-
plays 10 realizations of the density of cooperators versus time with
stopping time T = 1× 106. Panel (b) depicts the histrogram while
Panel (c) displays the boxplot of samples of cooperators density at
stopping time, for 100 realizations of Prisoner’s Dilemma. SRS ini-
tial conditions were used. Game parameter values: b = 150, c = 1
and w = 0.5. This dataset has size n = 1099 and average degree
〈k〉 = 44.0. Game parameter values were chosen to ensure b/c > 〈k〉
[33].

The five-number summary and mean of x1(T ) are given in Table 2. As expected,
because of skewness, the mean (0.7881) and median (0.8381) are distant from one
another, relative to the simulations on small-world networks (see Table 1). Also,
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the IQR of the samples is 0.1983, implying IQR of the simulations with the Caltech
dataset is one order of magnitude larger than the IQR’s obtained with small-world
networks.

Since the median of x1(T ) is 0.8381, one concludes that, on average, clusters
of cooperators in the network make up at least 80% of the population over the
long run. This is considered a validation of b/c > 〈k〉, as a necessary condition for
the establishment of cooperation in a social network [33]. Such validation against
empirical data [40] is the main contribution of this study.

6. Discussion. Some of the very first formulations of the theory of games surfaced
during the first half of the twentieth century, when von Neumann and Morgenstern
[42], followed by Nash [28], seeded foundations for a new field of study.

Prisoner’s Dilemma was invented by Merrill Flood and Melvin Dresher at the
RAND corporation in 1950 [32]. The original formulation of Prisoner’s Dilemma
employed well-mixed populations, those where every individual is equally likely to
interact with one another, which is the standard approach in classical game theory.
Consideration of population structure in Prisoner’s Dilemma was first conveyed
with lattices or regular networks. For example, Nowak and May [30] proposed a
purely deterministic version of Prisoner’s Dilemma on a two dimensional lattice.
This led to a system that was extremely sensitive to initial conditions giving rise
to fluctuations in the densities of cooperators and defectors on the lattice. In other
words, their system supports spatial arrays that vary chaotically, having cooperation
and defection shift in their sustained patterns [30].

Regular lattices are often a good first approach while extending a dynamical
model to incorporate space. However, when the structure in the population is deter-
mined by social interactions, such as those maintained by players of an evolutionary
game, these regular graphs are limited descriptions. The role of social structure is
better addressed by employing small-world networks [1, 2, 6, 7, 8, 10, 11, 12, 15, 16,
18, 19, 21, 24, 34, 36, 37, 38, 39, 46, 47, 48, 49], heterogeneous networks [23, 33],
and datasets of real networks [16, 40, 41].

There is a continued interest in exploring Prisoner’s Dilemma on social networks
with small-world properties. In their pioneer introduction to small-world networks,
Watts & Strogatz [43] argued that as the fraction of rewired edges is increased,
then it is less likely for cooperation to emerge (with a Tit-for-Tat updating rule).
Moreover, Watts [44] explains that networks with very shy levels of clustering tend
to not enhance cooperation. Because the establishment of cooperation requires a
critical mass of cooperators orchestrating against defectors, so that they optimize
their fitness or payoff by cooperating with each other. According to Watts [44], net-
work shortcuts can enable a few defectors to breakthrough the seed of cooperators,
leading to the eventual halt of the once sustained cluster of cooperation.

On the other hand, small-world networks tend to favor cooperation under a
regime known as strategy dynamics. Strategy dynamics is an approach in which
an initial set of updating rules are assigned in the first round, and for the following
rounds players may choose to switch between, say for example, Generalized Tit-for-
Tat and Copycat [44].

For over a decade, efforts in exploring Prisoner’s Dilemma on small-world net-
works footprints a growing literature. Here we comment on what we consider
key citations, but we invite the reader to consult an extended list of references
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[1, 2, 6, 7, 8, 10, 11, 12, 15, 16, 18, 19, 21, 24, 34, 36, 37, 38, 39, 46, 47, 48, 49] and
references therein.

Even though several variations of Prisoner’s Dilemma (a common approach is
to re-parametrize the payoff matrix, resulting in a matrix with only one parameter
called the temptation to defect) and its updating rule are considered, a distinct
consistent message is prevalent: cooperation can persist in small-world networks.

For example, Abramson and Kuperman [1] argue that in small-world networks
with an average degree of four, compact groups of cooperators are seen to persist.
Moreover, long range edges, by means of moderate values of the rewiring probabil-
ity, favor cooperators as they start to reconnect, thus outcompeting defectors [1].
Tomochi [38] discusses how random connections (rewiring) enable breakthroughs of
cooperation among clusters of defectors, leading to an unexpected scenario, where
niches of defectors form and do not have incentives to switch their strategy, thus im-
posing over cooperators. Hauert and Szabó [19] use the ratio of cost to net benefit of
cooperation as a parameter while exploring phase transitions, between cooperation
and defection, in models with network structure. Furthermore, clusters of coopera-
tors persist with diffusion that relocates these cooperators to other sites in a square
lattice. Hauert and Szabó [19] also note regular small-world networks are even more
favorable to sustained cooperation than square lattices. Perc [34] addresses the ef-
fects of extrinsic stochastic payoff functions, considered as spatio-temporal random
variations in Prisoner’s Dilemma. Additionally, Perc [34] finds an optimal fraction
of rewired edges supports noise-induced cooperation with resonance. Xia, et al.
[48] employ co-evolutionary small-world networks in a Prisoner’s Dilemma game
and they find that social structure collapses with avalanches, by attacking the best
cooperator hubs. They argue that mutation of the wealthiest (as determined by
payoff) cooperators may promote sustained cooperation on a large scale [48].

Prisoner’s Dilemma and social networks have been studied using samples of real
data. Fu, et al. [16], analyze a dataset sampled from a Chinese social networking
site, which is dubbed the Xiaonei dataset. First, they compute the clustering co-
efficient and characteristic path length, and conclude this dataset has small-world
properties. Second, Fu, et al. [16], explain that the evolution of cooperation in a Xi-
aonei dataset, is influenced by several social network attributes, including: average
connectivity, small-world effect, and degree-degree correlations. Their numerical
simulations of Prisoner’s Dilemma on the Xiaonei dataset suggest cooperation can
reach as much as 80% of the network, whenever the temptation-to-defect parameter
remains bounded, between 1.00 and 1.35. Moreover, Fu, et al. [16], argued that de-
gree heterogeneity is fundamental for the establishment of cooperation in friendship
networks.

This study was inspired mainly by the contributions of Ohtsuki, et al. [33], and
Fu, et al. [16]. The former conveys the cooperation probability of fixation. That is,
the probability that a single cooperator, located in a random node of the network,
in fact, converts the entire population from defectors into cooperators. A network of
size n, according to [33], has defectors with a fixation probability below 1/n and it
has cooperators with a fixation probability above 1/n, provided that ratio of benefit
to cost exceeds the average connectivity. In symbols, we write b/c > 〈k〉 and note this
condition is necessary for cooperators to be favored by selection (this inequality is
derived by applying pair and diffusion approximations under the assumption that
n is considerably larger than 〈k〉 and weak selection). Another interpretation of
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the discovery found by Ohtsuki, et al. [33], is that natural selection promotes
cooperation, with higher likelihood, when there are fewer connections.

In this study we have confirmed that cooperation may persist among social net-
works, provided some conditions are guaranteed. First, to draw a comparison, we
simulate Prisoner’s Dilemma on well-mixed populations and confirm that coopera-
tion goes extinct regardless of any values of benefit b and cost c. Then, to contrast
the well-mixed scenario, we examine the persistence of cooperation with simulated
social networks and with a dataset of a real social network. Prisoner’s Dilemma
was studied in simulated networks, including two extremes of small-world struc-
tures, that is, between regular graphs and random graphs, i.e., with rewiring p = 0
and p = 1, respectively. Cooperation keeps sustained levels in both types of sim-
ulated social structures, with median levels of 80% in regular graphs and 66% in
random graphs.

The distributions of the samples of cooperator density, suggest that despite the
fourteen percent drop in the median levels of sustained cooperation, extinction is
not a common occurrence. We must note that the simulations on well-mixed and
small-world populations were carried out using the same game parameter values:
b = 1.8, c = 0.3 and w = 0.5. The average degree in the simulated networks was
set to 〈k〉 = 4, which means that b/c = 6 > 4 = 〈k〉.

Furthermore, cooperation persists among a real social network. The latter deter-
mined by a snapshot sample of a friendship network, in a collegiate social networking
site, during its early days when there were domain restrictions for members [40].
Simulations evidencing cooperation persistence were carried out with parameter
values that satisfied the condition b/c > 〈k〉. This serves as a validation of the
main result by Ohtsuki, et al. [33], against a dataset of a real social network. In
fact, the median of sustained cooperation reaches 84% of the social network. Albeit
some variability, it is clear that cooperation among the facebook friendship network
explored here draws a substantial contrast with a well-mixed population.

We end with a note on two potential future directions exploring empirical datasets
of social networks and Prisoner’s Dilemma. First, the version of this game consid-

ered here, with death-birth updating rule and A =

[
b− c −c
b 0

]
, does not seem

to support

[
x1(t)
x2(t)

]
→
[
1
0

]
for t sufficiently large. Such state would be considered

absorbing and implies the extinction of defectors. However, it is known that other
versions of Prisoner’s Dilemma do support defectors extinction, e.g., Abramson and

Kuperman [1] use A =

[
1 0
r 0

]
, w = 1 (intensity of selection), and an updating rule

where a node imitates the neighbor with largest payoff, and they find that defector
extinction occurs with probability 1 for sufficiently small values of r. For the version
of Prisoner’s Dilemma discussed in this study, it would be important to investigate

the probability that

[
x1(t)
x2(t)

]
→
[
x̄1

x̄2

]
, where 0 < x̄1, x̄2 < 1 and x̄1 + x̄2 = 1, i.e.,

the probability of co-existence (rather than extinction) and to what extent b/c and
〈k〉 play a role on it.

A second venue of future research consists in the exploration of datasets of real
social networks in light of a game theoretic approach to control epidemics. More
and more the field of mathematical epidemiology is integrating techniques from
evolutionary game theory, in the context of vaccination and behavioral changes
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[4, 9, 35]. For example, those vaccinating on-time can be considered cooperators,
while those who do not vaccinate can obtain the benefit of heard immunity, and
may be considered defectors.

Appendix: Simulation of Prisoner’s Dilemma on a social network. The
initial conditions are the following. Suppose a network with n nodes is used to
simulate the Prisoner’s Dilemma. An integer number m, such that 1 ≤ m ≤ n, is
sampled uniformly at random from (1, n). Thus, m nodes are selected uniformly at
random in the network and are set with strategy D, while all the other ones are set
with strategy C.

1. Choose one dying node uniformly at random, say it is node i.
2. Compute the neighborhood of the dying node, say Ωi.
3. Compute the payoff and fitness of every node j ∈ Ωi.
4. Compute the aggregate fitness in Ωi for each strategy:

(a) aggregate fitness of all C-players in Ωi, say FC .
(b) aggregate fitness of all D-players in Ωi, say FD.

5. Let the empty site (dying node) adopt a strategy proportional to aggregate
fitness. Suppose α = min(FC , FD) and β = max(FC , FD). Consider the
following cases.
(a) Case 1: α, β > 0. Sample y ∼ Uniform(0, α+β). If y ≤ α then the empty

site adopts the strategy associated with α, i.e., it adopts C if α = FC or
D if α = FD. Otherwise the dying node adopts the strategy associated
with β.

(b) Case 2: α, β < 0. Sample y ∼ Uniform(α + β, 0). If β ≤ y < 0 then the
empty site adopts the strategy associated with β. Otherwise it adopts
the strategy associated with α.

(c) Case 3: α < 0 and β > 0. Sample y ∼ Uniform(α, β). If α ≤ y < 0,
then the dying node adopts the strategy associated with α. Otherwise it
adopts the strategy associated with β.
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