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Abstract. This study compares the effects of two types of metering (peri-
odic resetting and periodic increments) on one variable in a dynamical system,

relative to the behavior of the corresponding system with an equivalent level
of constant recruitment (influx). While the level of the target population in
the constant-influx system generally remains between the local extrema of the

same population in the metered model, the same is not always true for other

state variables in the system. These effects are illustrated by applications to
models for chemotherapy dosing and for eating disorders in a school setting.

1. Introduction. Many applications involve continuous systems that undergo some
type of resetting or external influence that alters the dynamics [29, 39, 40, 41, 42, 45,
53]. Terms that have been used to describe such phenomena include impact models,
Filippov systems or piecewise smooth systems, metered preemptive models, phase
resetting, pulsed models or periodically pulsed, impulse differential equations, and
metered models. In this paper, we will use the phrase “metered model” as an inclu-
sive term that incorporates the pulsed or periodically pulsed models and impulse
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differential equations. We are specifically referring to equations in which a contin-
uous time process is externally influenced at discrete time intervals or stages [7, 8].
While our concern is with biological and sociological applications, we mention here
applications of some of the other resetting mechanisms.

Impact models were initially used in the description of mechanical systems and
are characterized by phenomena that occur on very different time scales [9]. A
recent example from ecology describes a slowly growing forest that is occasionally
ravaged by fire [32]. Metered preemptive models refer to applications in scheduling
when a partially completed job may still have some worth (e.g., a low resolution
image that may need some areas done at high resolution but not all requests from
users can be satisfied) [13, 16]. Another type of model that is sometimes called
a metered model is a Filippov or piecewise smooth system [17]. An example of
this type of model is in predator-prey systems in which a predator uses an optimal
strategy to go between habitats based on the density of the populations [24, 46].
While these examples are either called metered models or describe a discrete time
influence on a continuous system, we do not consider these types of metered models.

The above systems involved a resetting or altering in one or more of the state
variables of the model. Another type of application is the control of continuous
systems [10, 31, 33, 34, 47], in which the goal is to use metering to control an oth-
erwise unstable behavior. A final type of model that we mention before addressing
the interest of the present study is phase resetting. In this type of system, meter-
ing is done but it is not directed at the state variables. One common biological
application involves circadian rhythms that can be altered by light [11, 20, 49].

In this study we distinguish mathematically between two types of metered mod-
els: those with periodic resetting, in which one or more state variables are reset
to a fixed value at regular intervals, and those with periodic increments, in which
one or more state variables are incremented (or decremented) by a fixed value at
regular intervals. Those models where periodic incrementing is done are also called
pulsed or periodically pulsed models and sometimes impulse differential equations.
Models in which periodic resetting is done could include the previously mentioned
control applications or again the impulse differential equations. There is a wealth of
literature on the theory of these types of models [2, 35, 36, 5, 6, 26, 27, 43] as well as
numerous biological applications involving them [14, 21, 22, 25, 28, 19, 50, 51, 52].

Our interest in metered models arises from a modeling perspective. Specifically,
we would like to know how the solutions of the metered model differ from those
models in which a drug or population or other state variable is assumed to enter
the system through a constant influx over the given period. To our knowledge,
no such comparison of the two modeling approaches has been performed. In the
specific case of chemotherapy and periodic incrementing, it is mathematically more
tractable to assume a continuous dose of chemotherapy when modeling but clearly
unrealistic. Some metered models have considered this application [26, 37, 38]
but not in comparison to the continous administration model. In a similar way,
if we consider a system in which the state variables are reset to a certain level
(an example of periodic resetting), many examples abound but none of the results
compare the metered model resetting with the often-used assumption of constant
influx [1, 4, 12, 30, 44].

We begin with an analytical comparison of the two approaches in the context of a
single equation and then consider the effects of metering in one state variable, on the
other variables in a larger system, using examples drawn from the research produced
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by Carlos Castillo-Chavez’s Mathematical and Theoretical Biology Institute (MTBI,
http://mtbi.asu.edu).

2. Simple models. A simple example of a system with periodic resetting is a
setting such as a school group where new individuals are admitted up to a maximum
capacity once per season, but individuals may leave the group at any time. A
mathematical model for this system incorporates the rate of departure, say µ, which
is the reciprocal of the average stay in the system; the resetting period T ; and
the size to which the population is reset, which without loss of generality we can
assume is the same as the initial population size x0. Then dx/dt = −µx except
when time t is a multiple of the period T , at which moments the population is
reset to x0. The initial value problem consisting of the given differential equation
and initial condition has solution x(t) = x0e

−µt, so that the population size just
before resetting is x(T−) = x0e

−µT . Thus the amount by which the population is
incremented (to make x(T+) = x0) is x0

(
1− e−µT

)
. (Thereafter x(t+ kT ) = x(t)

for all whole numbers k.)
A non-metered model which spreads this resetting continuously over the interval

(0, T ] would have instead the form dx/dt = Λ − µx, where Λ = x0
(
1− e−µT

)
/T .

The solution of this differential equation (regardless of initial condition) is asymp-
totically constant to x∗ = Λ/µ = x0

(
1− e−µT

)
/(µT ). We can then compare the

solution to the metered model with that to the non-metered model.
It is straightforward to prove that the behavior of the metered model oscillates

about the asymptotically constant solution of the non-metered model, i.e., x(T−) <
x∗ < x(T+), as illustrated in Figure 1. If we denote the dimensionless decay quantity
µT > 0 by z, the first part of this inequality can be (re)written e−z < (1− e−z)/z,
which is equivalent to g1(z) = (z + 1)e−z < 1. This follows from the fact that
g1 is decreasing in z for z > 0, with a maximum at g(0) = 1. Likewise, the
second half of the inequality can be written (1− e−z)/z < 1, which is equivalent to
g2(z) = z + e−z > 1. This follows from the fact that g2 is increasing in z for z > 0,
with a minimum at g(0) = 1.

A simple example of a system with periodic increments is the administration of
a drug with constant dosage. In practice, most drugs are administered at discrete,
regular intervals (say, once each day), rather than continuously throughout the day
(as intravenous fluids are). Meanwhile, the body works on a continuous basis to
clear the chemical from the body. This clearance rate corresponds to the departure
rate in the previous model and can also be denoted µ. Again the dynamics between
administrations can be described by a simple decay equation, dx/dt = −µx, but in
this case the metering is described by a constant increment ΛT = x(T+)− x(T−).
Under the simplifying assumption that drug administration begins at time 0, with
x(0−) = 0 and x(0+) = x0 > 0, this increment can be written simply as x0. Then
the solution to the metered model can be written as follows:

x(t) =


x0e

−µt, 0 < t < T ;
x0
(
1 + e−µT

)
e−µ(t−T ), T < t < 2T ;

x0
(
1 + e−µT + e−2µT

)
e−µ(t−2T ), 2T < t < 3T ;

...

x0e
−µ(t−nT )

∑n
k=0

(
e−µT

)k
, nT < t < (n+ 1)T.

As time progresses (n→∞), the sum of exponential terms approaches the geometric
series with constant ratio e−µT , which converges to 1/(1 − e−µT ); thus x(t) is
asymptotically periodic to the quantity x0e

−µ(t mod T )/(1− e−µT ).

http://mtbi.asu.edu
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Figure
1. Comparison of
the solutions to the
simple metered model
with periodic reset-
ting (solid curve) and
the corresponding
non-metered model
with constant influx
(dashed line)
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Figure
2. Comparison of
the solutions to the
simple metered model
with periodic incre-
ments (solid curve)
and the corresponding
non-metered model
with constant influx
(dashed line)

Another way to examine the solution to this metered model is via the values
just before and after each increment is applied: if we define x−n = x(nT−) and
x+n = x(nT+), then we have

x−0 = 0, x+0 = x0;

x−1 = x0e
−µT , x+1 = x0

(
1 + e−µT

)
;

x−2 = x0
(
e−µT + e−2µT

)
, x+2 = x0

(
1 + e−µT + e−2µT

)
;

x−3 = x0
(
e−µT + e−2µT + e−3µT

)
, x+3 = x0

(
1 + e−µT + e−2µT + e−3µT

)
;

...

x−n = x0

n∑
k=1

(
e−µT

)k
, x+n = x0

n∑
k=0

(
e−µT

)k
;

so that as n→∞ x−n → x∗− = x0e
−µT /

(
1− e−µT

)
, and x+n → x∗+ = x0/

(
1− e−µT

)
.

Meanwhile, a model which assumed continuous administration at the same rate
would have dx/dt = Λ − µx, as with the previous example, but where Λ = x0/T .
The solution to this equation is asymptotically constant to x∗ = Λ/µ = x0/µT .

We can again compare the behaviors of the solutions to the metered and non-
metered models, using the simplifying notation z = µT > 0. And again the solution
to the metered model oscillates about the solution to the non-metered model, with
x∗− < x∗ < x∗+, which can be proven as before. The compound inequality can be
rewritten

e−z

1− e−z
<

1

z
<

1

1− e−z
.
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The two halves of this inequality are equivalent once more to g1(z) < 1 and g2(z) >
1, which were shown true in the previous example. The oscillation is illustrated in
Figure 2.

The consequences of substituting the solution to the simpler non-metered model
for that of the metered model can be serious even in these simple examples: if, for
instance, the maximum drug concentration a patient’s body can tolerate is between
x∗ and x∗+, then the non-metered model predicts that a dosage of x0 units every T
units of time is safe, while the metered model predicts (correctly) that a discrete
administration of this dosage will be harmful to the patient for a nontrivial period
of time following each dose.

These very simple examples illustrate the general principle that metered models
capture fluctuations (often asymptotically periodic in nature) ignored by the aver-
aging of comparable non-metered models. These principles also manifest in more
complicated systems for some cases, although in such cases they are generally more
difficult to identify analytically. In the following sections we consider examples of
such complex systems taken from research projects which originated at MTBI (a
within-host treatment model and a school setting model). Numerical investigations
show that the qualitative behavior of the continuous and metered models with re-
setting in one state variable is the same only for the class where the resetting takes
place. For the other classes simulations reveal that the behavior is more complex.

3. Within-host treatment. For an application with periodic increments, we con-
sider a 1999 MTBI breast cancer treatment study [3] that modeled the effects of
chemotherapy (where a fixed dosage is administered periodically) on the size of a
tumor and the health of a patient.1 This study tracked the tumor size g (measured
in units of 1010 cells), the health h of the patient (as a unitless proportion from 0 to
1), and the amount c (in grams) of chemotherapy drug in the body over time. The
system denoted Model B in the study (equations (6)–(8)), depicting the amount of
drug in the body as exponentially decaying via a constant clearance rate λ, is given
by

dg

dt
=

[
γ

(
1− g(1− h)

K

)
− d1c

]
g

dh

dt
=

[
r
(
1− h(1 + (δg)2)

)
− d2c

]
h (1)

dc

dt
= −λc,

where γ and d1 give the natural tumor cell proliferation and drug-induced death
rates, respectively, K represents a minimal (limited by patient illness 1−h) carrying
capacity for tumor size, r describes the patient’s natural health recovery rate while
d2 describes the drug’s deleterious effects on patient health, and δ is the coefficient
measuring the tumor’s deleterious effects on patient health. The logistic growth
rates in the first two equations are structured to account for the interaction between
tumor size and patient health: tumor growth slows when a patient is dying, and
the presence of the tumor impedes the patient from reaching full health [3]. From
[3], the parameter estimates are given as γ = log(2)/200, r = 0.1, λ = 0.33 (all in

1While chemotherapy is typically prescribed with other medications such as steroids, we con-

sider the chemotherapy-only model considered by the MTBI 1999 group in order to illustrate the
effects of metering. It is left as future work to obtain a more realistic treatment model from which
to analyze periodic increments.
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units of 1/day); d1 = 0.08, d2 = 0.3 (both in units of 1/grams); K = 12×1010 cells;
δ = 0.25 1/(1010 cells).

Metered drug administration is modeled via periodic increments of a fixed value
c0, causing discontinuities in c(t) for t = kT , k = 0, 1, 2, .... The corresponding
continuous-dosage model changes the equation for drug amount to

dc

dt
= Λ− λc,

where Λ, analogously to the simple model in the previous section, provides an
equivalent dose over each period, Λ = c0/T .

As expected, the solution curve showing drug amount assuming continuous ad-
ministration stays bounded within the local extrema of the solution curve corre-
sponding to periodic dosing (i.e., the metered model with periodic increments); see
Figure 3. In addition, we observe that the solution curve of the health of the patient,
h, also remains within the bounds of its metered counterpart. In contrast, however,
the tumor size, g, in the continuous administration system is below that of the peri-
odic incremented system. This is significant because the simpler continuous-influx
model overestimates the tumor shrinkage rate, as the constant presence of the drug
at a medium level apparently has a greater effect during the times when a periodi-
cally administered drug would be largely absent, than the periodically-administered
drug has beyond the average level during the period immediately subsequent to its
administration.

If we vary the parameters of the system, we can arrange for all three solution
curves corresponding to the continuous administration of chemotherapy to lie be-
tween the high and low values of their metered counterparts. While this ignores
the realistic parameter values used to generate Figure 3, it shows that, mathemat-
ically, the relationship between the solution curves for continuous administration
and periodic administration of chemotherapy is somewhat dependent on the choice
of parameter values; see Figure 4.

For this numerical exploration of periodic incrementing in the case of chemother-
apy administration, we observe that whether or not the solution curves of the state
variables with continuous administration of a drug remain bounded by the extrema
of their metered counterparts is completely dependent on the parameters. Only
in the case of the solution curve of the drug can we be sure that it will remain
bounded since the equation describing the change in c is decoupled from the other
two equations.

4. School setting. For an application of periodic resetting, we consider a model
of the eating disorder bulimia nervosa in a college population developed in a 2001
MTBI study [23]. This model considers a small population of college females in
which peer pressure to conform to unrealistic body ideals drives women to develop
bulimia, and the eating disorder is described via two stages: an early stage in which
symptoms are light enough to go undetected, and an advanced stage characterized
by episodes severe enough to require medical care and thus detection by others,
subsequent to which individuals are obliged to enter treatment. Since treatment
typically lasts two years or more, a fully recovered phase was omitted from the
model. The model considered a continuous influx of students throughout in order
to keep the population constant, and assumed that all incoming students were non-
bulimic (and had never been bulimic). Onset of early-stage bulimia (“infection”)
was assumed to occur at a [per capita] rate proportional to the bulimic population
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(who propagate the unhealthy ideals/habits), while progression to advanced-stage
bulimia was considered automatic. Advanced-stage bulimics were assumed to enter
treatment due to both discovery (at a constant rate) and the influence of classmates
who had entered treatment (at a rate proportional to the number of women in
treatment), while relapse was considered spontaneous. All students were assumed
to spend an average of three years in the population (due to transfer students and
other effects).

We here modify the model of [23] in two ways: first to incorporate periodic reset-
ting, and second to allow the possibility that some proportion of entering students
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Figure 3. Continuous versus periodic dosage administration in
the case of chemotherapy for the parameters given after (1). Note
that the tumor size predicted by the continuous dosage model does
not remain within the extrema of the solution from the metered
model counterpart. This is in contrast to the solution curves of the
h and c under continous administration, which do remain within
the extrema of their metered model counterparts. Only the initial
four dosage administrations are shown.
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Figure 4. Application of periodic incrementing in the case of
chemotherapy administration. The values used are γ = log(2)/10,
d1 = .4, δ = .3, λ = .35, which result in all three solution curves
from continuous administration remaining within the bounds of
their respective metered counterparts.

are bulimic (the size to which the total population is reset each period remains
independent of this proportion). To incorporate the latter assumption, we assume
that a proportion k1 ≥ 0 of entering students are early-stage bulimics and a pro-
portion k2 ≥ 0 are advanced-stage bulimics, with k1 + k2 < 1. Since the number
of students in high school who have already entered treatment for bulimia is very
small we assume this to be negligible and as such there are no new college stu-
dents entering the treatment class. Allowing new students to enter directly into the
treatment class would involve defining a similar proportion k3, but here we take the
proportion entering as susceptibles (non-bulimic) as 1− k1 − k2 > 0.

The continuous-influx model of [23], in which the sizes of the four classes are
rescaled as proportions of the overall population, uses the variables x, y1, y2, and
z, respectively, to track the susceptible, stage 1 and stage 2 bulimic, and treatment
classes. The modified system involving new arrivals entering bulimic classes directly
is given by the following equations:

dx

dt
=(1− k1 − k2)µ− αx(y1 + y2)− µx,
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dy1
dt

=k1µ+ αx(y1 + y2)− (µ+ γ)y1,

dy2
dt

=k2µ+ γy1 − (µ+ ρ)y2 − δy2z + φz

dz

dt
=ρy2 + δy2z − (µ+ φ)z.

(2)

If in addition we wish to incorporate periodic resetting, then we set µ = 0 in the
above equations, and at the end of every period T , the proportions are reset as
weighted averages:

x(kT+) = x(kT−)e−µT + (1− k1 − k2)(1− e−µT ),

y1(kT+) = y1(kT−)e−µT + k1(1− e−µT ),

y2(kT+) = y2(kT−)e−µT + k2(1− e−µT ),

z(kT+) = z(kT−)e−µT .

The parameter estimates given in [23] are µ = 1/3, α = 0.439, γ = 1.5, ρ = 0.13,
δ = 0.13, φ = 0.15 (all rates given in units of 1/yr) together with initial conditions
of x = 0.95, y1 = 0.02, y2 = 0.02, z = 0.01. The continuous influx model in which
no one enters the system bulimic (k1 = k2 = 0) can be shown to have a reproductive
number of

R0 =
1

2

[
α

µ+ γ
+

φρ

(µ+ φ)(µ+ ρ)

+

√(
α

µ+ γ
− φρ

(µ+ φ)(µ+ ρ)

)2

+
4γα

(µ+ ρ)(µ+ γ)

 (3)

(derivable using a next-generation approach [18, 48]). This quantity measures the
phenomenon’s ability to invade a population. (Note that if k1 + k2 > 0, then R0 is
technically undefined since in this case new “infections” appear in the system even
in the complete absence of bulimics). The parameter values given above yield a
point estimate for the reproductive number of R0 ≈ 1.047.

In contrast to the 1-dimensional analogue, we find some very interesting behavior
in our system. The continuous influx model predicts an epidemic when everyone
enters into the susceptible class. In contrast, the periodic resetting metered bulimia
model in which every incoming student enters into the susceptible class (i.e., no
entering students are bulimic, k1 = k2 = 0) does not predict an epidemic and
instead predicts the y1, y2, z populations go extinct with everyone eventually in
the x class; see Figure 5. This result suggests a seemingly odd control strategy
where a school could eliminate a bulimia problem by accepting only non-bulimic
students (we ignore the feasibility of a school being able to request such a screening
and the accuracy these screens). This prediction of being able to “flush out” a
bulimic population even when R0 > 1 has significant consequences. In particular,
it predicts that even in a well-mixed population in which differential equations
are valid, the manner in which the inflow occurs may be significant. The result
is strongly affected by the replacement rate, here µ = 1/(3 yr), which must be
(relatively) high enough to clear bulimic students before they can build a critical
mass. Lowering this replacement rate to µ = 0.193/yr (R0 ≈ 1.32) still leads,
numerically, to no disease while dropping it just a bit further to µ = 0.183/yr
(R0 ≈ 1.34) will allow the disease to persist in the periodic resetting model. There
is clearly a balance between parameters for a given resetting that is required in
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order for the metered model to predict an epidemic. As a caveat, though, even if a
small portion of the incoming students are bulimic (k1 +k2 > 0) the metered model
will predict an epidemic as well, since there is then a regular influx of bulimics.

We now consider the case when k1+k2 > 0, which is not considered in the original
paper but is considered here numerically, together with the metered predictions.
In this case, all evidence suggests that both the metered model and continuous-
influx model predict the persistence of bulimia in the population. Even though the
qualitative prediction of the two models is the same, however, the numerical values
that result are often lower for the metered model than for the continuous-influx
model; see Figure 6. Table 4 shows how changes in the proportions of the incoming
classes can affect the final proportion (before resetting for the sake of definiteness
since the system rarely reaches a single steady state value in a metered model).
More specifically, if the percentage of students entering the first-stage bulimia class
is 0.1% (with k2 = 0), the metered model predicts 0.39% and 1.3% as the final
percentages present in the y1 and y2 classes, respectively, whereas the continuous
influx model predicts corresponding values of 4.6% and 25.3%, more than an order
of magnitude greater. As the proportion k1 of entering first-stage bulimics increases
(keeping k2 = 0), this difference gradually decreases, but remains significant even
for as high as 10% first-stage bulimics among entering students (while the eventual
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Figure 5. Application of periodic resetting for the bulimia model.
All the resetting goes into the susceptible class, i.e., no student
enters the system as bulimic (k1 = k2 = 0). Left figures: only
the initial 4 years are shown. Right figures: Time is shown to 120
years, where the variables in the continuous influx model near their
non-zero steady state values (R0 ≈ 1.047).
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k1 k2 y∗1 y∗2 y−1 y−2
0 0 1.4% 5.1% 0 % 0%

10−3 0 4.6% 25.3% 0.4% 1.3%
10−2 0 4.8% 26.1% 1.8% 5.9%
10−1 0 5.9% 32.0% 5.9% 20.9%
0.05 0.05 5.3% 32.2% 5.1% 21.2%

Table 1. Numerical comparison of an increased inflow (k1 + k2 >
0) into the y1 and/or y2 classes. The steady state values are given
for the continuous influx model as y∗i and for the resetting model
just before resetting as y−i .

y1 proportions agree in this case at around 6%, the continuous-influx model predicts
an eventual proportion of 32% second-stage bulimics compared to only 21% for the
periodic resetting model, a difference of over 11%). This distinction remains if we
distribute the entering bulimics between y1 and y2, as illustrated in the last line of
the table, in which each stage receives 5% of the incoming students. As neither set
of percentages is significantly different from the previous case, this suggests that it
is only necessary to have students incoming into the yi class and not so important
how they are distributed when they arrive.

The prediction of the 1-dimensional model in which the solution of the continuous
model is always bounded above and below by the metered model solution does not
necessarily hold for all the state variables in higher dimensions. For example, if we
have 1% entering y1 and 53% entering y2 (or 0% y1 and 53% or 54% y2), then the
continuous influx solution for y1 and y2 will remain bounded by the extrema of its
metered counterpart; see Figure 7. However, changing these by even a single percent
causes the y2 to go outside of these bounds (y1 appears to be far more robust). In
the case of x, numerical investigation suggests that the solution from the continuous
influx model will always be outside and below its metered counterpart.

5. Conclusions. Metering provides a way to model changes in populations better
described as periodic and near-instantaneous than continuous. Although all models
are gross oversimplifications of reality, confidence in their predictions and explana-
tions derives from the robustness of the results across many different models with
similar characteristics. Simplifying metered models by describing influxes as contin-
uous averages predicts target population curves which typically remain within the
“bounds” provided by the corresponding metered model (an apparent indication of
robustness); however, the examples presented in this study show that other popula-
tions in the system may be affected quite differently, with continuous-influx model
solutions well outside (above or below) the range of the corresponding metered
model solutions. In the models analyzed here, continuous-influx models predicted
faster tumor shrinkage than would occur with periodic dosing, and on the other
hand persistence of bulimic populations under circumstances when periodic admis-
sion of students precludes their survival, or predicts a significantly lower endemic
persistence level.

This latter result is significant for epidemic modeling, in that the effects of meter-
ing appear to interfere with the ability of an infection’s basic reproductive number
to measure the infection’s ability to invade a population. The periodic “dilution”
of infectives by metering seems to reduce the instantaneous infection rate so much
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at once that it prevents the epidemic from recovering to its previous level before
the next reset, even when it can overcome an equivalent time-averaged continuous
removal of infectives. The drug dosing application makes evident the significance
to such a spread within a single host, but this result may have implications at the
metapopulation level for disease control policies involving discrete, recurring activ-
ities. Methods have been developed (e.g., [15]) to generate point estimates of a
time-dependent reproductive number, without incorporating explicitly the discon-
tinuities incurred by metering.

Further study is necessary to determine whether there is any consistent difference
between the effects of periodic increments and periodic resetting.
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