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Abstract. In this paper we present new results for differentiability of delay
systems with respect to initial conditions and delays. After motivating our
results with a wide range of delay examples arising in biology applications, we
further note the need for sensitivity functions (both traditional and general-
ized sensitivity functions), especially in control and estimation problems. We
summarize general existence and uniqueness results before turning to our main
results on differentiation with respect to delays, etc. Finally we discuss use of
our results in the context of estimation problems.

1. Introduction. There are a wide number of applications where delay equations
arise naturally. Moreover, in these applications parameter estimation or inverse
problems are ubiquitous. In such problems sensitivity analysis is important in the
context of inverse problems, not only in design of experiments, but also in statistical
analysis for uncertainty quantification (standard errors, confidence intervals) for
parameter estimates. However the theory for sensitivity is not complete and some
fundamental issues are yet to be resolved. Here new theoretical fundamental results
for sensitivity of delay systems are given; in this context traditional as well as
generalized sensitivity functions are formulated. Finally, a discussion of their use
in inverse problems along with several computational examples are presented to
illustrate their use.

1.1. Delay systems in the biological sciences. For many years delay equations
have been used in biological applications [1, 5, 10, 22, 23, 29, 30, 31, 32, 35, 36, 39,
40, 42, 45, 46, 49, 53, 55, 56, 63]. Very early interest focused around the studies of
mechanical systems by Minorsky [58, 59, 60] and slightly later those of Hutchinson
[50, 51] in biology. These authors argued that time delays in dynamical systems
can produce oscillatory phenomena in an otherwise non-oscillatory system.

In 1948 Hutchinson [50] developed a delay differential equation model, now known
as Hutchinson’s equation, which is the delayed logistic equation, to describe the
dynamics of a circular causal system. A causal system is a system in which the
output depends only on the current and/or past input but not future input. A
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circular causal system (sometimes encountered in the context of temporal multi-
scale models) is any causal system where changes to one part of the system affect
another part of the system at a different rate in a manner such that the system does
not go extinct. An example of an ecological circular causal system is a parasite-
host interaction where a parasite completes its life cycle without killing the host or
drastically altering the growth of the host population. The host population can then
continue to exist [50, 55]. The delay in this model can represent various naturally
occurring phenomena such as the gestation period in a growing population, the
life cycle of a parasite, cell cycle delays, etc. Hutchinson’s equation (to be used
in the numerical illustrations below), its variations and other delay systems have
also been used to model physiological control systems as well as numerous other
biological processes.

After the early work of Hutchinson there was much subsequent interest in models
with delays producing unstable equilibria and possible oscillatory (periodic) behav-
ior. Growth models in which delays played a significant role include those discussed
in [32]. Other investigations involved the modeling of gene regulation based on the
work of Goodwin [43, 44]. The so-called “Goodwin models” and their numerous
variations concerned biochemical pathways in cells, in particular synthesis of pro-
teins controlled via negative feedback or repression. Among the many contributions
in this area we mention [22, 23, 56, 57] and the references therein where the focus is
on cyclic gene models and the possible existence (or not) of oscillations due to delays
attributed to transcription and translation (we remark that similar questions arise
more recently in cellular level models of HIV infection pathways [10, 11]). Hadeler
[46] in his discussion of several such examples focuses mostly on the destabilization
of an equilibrium point and existence of oscillatory solutions in these examples.
He discusses the Hutchinson equation and its ability to produce oscillations but
also presents the Nicholson blowfly example as an example leading to conclusions
quite different from the Hutchinson equation. (The delay here is introduced by the
time needed for an egg to become an adult fly, seemingly similar reasoning as that
with the Hutchinson equation.) The blowfly equation is formulated with population
density as exponential growth and death, with delay in the density dependent birth
rate and no delay in the density dependent death rate. In this model, destabiliza-
tion occurs if the birth term at the equilibrium population density N̄ is sufficiently
steep or the increase of the death term is sufficiently flat. This is in contrast to the
Hutchinson model in which destabilization occurs for sufficiently large delays for
any choice of the other parameters. Hadeler also cites a nonlinear delayed restoring
force harmonic oscillator model of the sunflower [33, 65] and its geotropic nutations,
pointing out that this and many other plants perform complicated movements, and
“any deviation from the vertical position leads to compensatory unequal growth of
the sides of the stem. The compensatory growth does not stop when the vertical
position is achieved, and rather regular oscillations may occur.” In a relatively
recent book [55], Kuang discusses numerous applications in biology involving non-
linear models with discrete delays including: the effect of incubation delays in a
model of malaria epidemic dynamics as presented in [64], the modeling of so-called
“dynamic diseases”, introduced by Glass and Mackey in 1979 [42], who consider
acute physiological disease which appear as an alteration in a control system that
is normally periodic, or the onset of an oscillation in an otherwise non-oscillatory
system. Kuang also discusses the more recent work of Schuster and Schuster [63]
who proposed a model (the logistic equation with delays in both the growth and
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death rates) to describe Ehrlich Ascites tumor growth in mice. In this regard we
mention the papers of Forys and Marciniak-Czocha [39, 40] who summarized efforts
in using logistic-type models with delays to describe tumor growth.

Several recent contributions in biological modeling underline the need for sensi-
tivity functions for systems with delays. In [29] Burns, Cliff, and Doughty explain
the use of continuous sensitivity equations for a model of the cellular dynamics
for Chlamydia Trachomatis while Kappel [53] discusses generalized sensitivities in
dynamics of threshold-driven infections. Banks, Banks, and Joyner [9] present a
mathematical and statistical framework involving sensitivity for delay systems aris-
ing in models for the delayed action of sublethal insecticides in a recent ecological
application. None of these presentations give rigorous proofs on the existence of
the various Fréchet derivatives [8] that define the sensitivity equations, but the au-
thors of [9] cite some initial theoretical foundations presented in [18, 19], which rely
on an abstract theoretical framework presented in [24]. Finally, the efforts in [25]
on the dynamics of behavior change in problem drinkers is a modern application in
psychology that motivates the need of sensitivity functions for discrete as well as cu-
mulative delayed effects as represented in longitudinal data for patients undergoing
therapy.

1.2. Sensitivity and delay systems. In both theoretical and qualitative contri-
butions [27, 34, 35, 47], as well as more computational treatments (see for example
[5, 6, 7, 8, 12, 13, 21, 52, 54] as well as a large number references therein), a wide
range of contributions were made to the literature on delay equations beginning in
the 1970s. In some of these early efforts, parameter estimation and control system
questions led to the investigation of traditional sensitivity functions (TSFs) for delay
systems. These TSFs and the recent more general concept of generalized sensitivity
functions (GSFs) are the focus of our investigations here. In an early paper [14], the
authors observed difficulty when estimating the delay and suggested that this could
be due to the fact that solutions of DDEs may not always be differentiable with re-
spect to the delays. This of course makes estimation methods such as least squares
and maximum likelihood challenging in the case that derivative-based optimization
routines are to be used. These authors also suggested the need for a formal theory
regarding the existence of sensitivity functions with respect to the delay and among
the earliest rigorous results were those of Gibson and Clark [41] and Brewer [28] in
their treatment of linear DDEs. By employing semigroups these authors were able
to use general representation results to establish the existence of Fréchet derivatives
with respect to the parameters for general delay equation initial value problems. As
a result of the existence of these Fréchet derivatives, they are able to carefully and
rigorously define sensitivity equations with respect to the parameters including the
delay for general linear systems.

In a more recent report [2], Baker and Rihan formally derive sensitivity equations
for delay differential equation models, as well as the equations for the sensitivity of
parameter estimates with respect to observations (these latter sensitivities are what
we shall discuss below as Generalized Sensitivity Functions (GSFs)). Baker and
Rihan also offer an outline on how to numerically compute both TSFs and GSFs
for retarded delay differential equations. While their focus is on computational
methods, they also list issues that arise when carrying out parameter estimation
in DDEs. These include difficulty in establishing existence of the derivatives of
the solution with respect to the parameters and the delays, as well as difficulty
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in establishing well-posedness for the derived sensitivity equations. Some of these
issues are dealt with in a rigorous manner below.

Banks and Bortz [10] were among the first to consider sensitivity with respect
to distributional delays. They used sensitivity analysis to show how changes in
distributed parameters will affect the solutions of their nonlinear delay differential
equation model for HIV progression at the cellular level where intracellular process-
ing delays are distributed across cell populations. The models are validated with
what is called aggregate data [8].

When deriving the sensitivity equations Banks and Bortz obtain a system of
DDEs, which are assumed to be well-posed. In their discussion of well-posedness
for these sensitivity equations they assume the delay distributions are differentiable
and parameterizable by a mean and standard deviation. In [10] they use theoret-
ical steps (i.e., successive approximations, fixed point theory, Lipschitz continuity,
etc.) employed in [7] to prove existence and uniqueness of the resulting sensitivities
and sensitivity equations. Motivated by the efforts in [10], Banks and Nguyen [24]
develop a rigorous theoretical framework for sensitivity functions for general nonlin-
ear dynamical systems in a Banach space X where the parameters µ are themselves
members of another Banach spaceM. In this setting they consider the sensitivity of
solutions x with respect to parameters µ in the following type of abstract nonlinear
ordinary differential equations

ẋ(t) = f(t, x(t), µ), t ≥ t0 (1)

x(t0) = x0,

where f : R+ × X × M → X and M and X are complex Banach spaces. They
establish well-posedness for (1), and existence of Fréchet derivatives of the solution
x(t) with respect to the parameters µ. As a result, there is a unique solution to the
corresponding sensitivity equation

ẏ(t) = fx(t, x(t, t0, x0, µ), µ)y(t) + fµ(t, x(t, t0, x0, µ), µ), t ≥ t0 (2)

y(t0) = 0,

where y(t) =
∂x(t)

∂µ
. In [24] Banks and Nguyen provide rigorous theoretical sensi-

tivity results for the DDE example for HIV dynamics with measure dependent or
distributional parameters given in [10]; however they only present results for the
the sensitivity with respect to absolutely continuous probability distributions for
the delay. In subsequent efforts [18, 19] a rigorous theoretical foundation is devel-
oped for sensitivity theory using directional derivatives where the parameter space
M is taken as the convex metric space of probability measures (including discrete,
continuous or convex combinations thereof) taken with the Prohorov metric topol-
ogy [8]. Below we give new results for sensitivity with respect to discrete delays.
The proofs, while quite tedious, continue with an adaption of the well known ideas
for existence and uniqueness of the Fréchet derivative with respect to the delay in
nonlinear DDE as employed in [10, 18, 19, 24].

After summarizing recent theoretical results on differentiability with respect to
parameters, initial conditions and discrete delays, we discuss both traditional and
generalized sensitivity functions with respect to the same quantities. Finally, to
illustrate computationally the use of these sensitivity functions, we turn to two
classical examples: the Hutchinson delayed growth model and the harmonic oscil-
lator with delays introduced many years ago by Minorsky.
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2. Solutions and approximations. We first summarize existence and uniqueness
for general nonlinear nonautonomous dynamical systems involving delays of the
form

ẋ(t) = G(t, x(t), xt, x(t− τ1), . . . , x(t− τm), θ) +G2(t), 0 ≤ t ≤ T, (3)

x(t) = φ(t) − r ≤ t ≤ 0,

where G = G(t, η, ψ, y1, . . . , ym) : [0, T ] ×X × R
nm × R

p → R
n. Here X = R

n ×
L2(−r, 0;R

n), 0 < τ1 < . . . < τm = r, xt denotes the usual function xt(ξ) = x(t+ξ),
−r ≤ ξ ≤ 0, while x(t) is a point in R

n, and φ ∈ H1(−r, 0). The function G2 is a
time dependent perturbation (e.g., a control input).

We turn to the mathematical aspects of these nonlinear FDE systems and present
an outline of the necessary mathematical foundations. First we describe the conver-
sion of the nonlinear FDE system to an abstract evolution equation (AEE) as well
as provide existence and uniqueness results for a solution to the FDE. One can use
the ideas of a linear semigroup framework, in which approximation of linear delay
systems has been developed, as a basis for a wide class of nonlinear delay system
approximations. Details in this direction can be found in the early work [6, 7, 52]
which is a direct extension of the results in [12, 13, 21] to nonlinear delay systems.

We shall make use of the following hypotheses throughout our presentation.

(H1) The function G satisfies a global Lipschitz condition:

|G(t, η, ψ, y1, . . . , ym)−G(t, η̃, ψ̃, w1, . . . , wm)|

≤ K

(

|η − η̃|+ |ψ − ψ̃|+
m
∑

i=1

|yi − wi|

)

for some fixed constant K and all (η, ψ, y1, . . . , ym), (η̃, ψ̃, w1, . . . , wm) in
X × R

nm uniformly in t.
(H2) The function G : [0, T ]×X × R

nm → R
n is differentiable.

Remark 1. If we define the function g : [0, T ]×R
n ×C(−r, 0;Rn) ⊂ X → R

n given
by

g(t, x) = G(t, η, ψ) = G(t, η, ψ, ψ(−τ1), . . . , ψ(−τm)), (4)

we observe that even though G satisfies (H1), g will not satisfy a continuity hypoth-
esis on its domain in the X norm.

Letting z(t) = (x(t), xt) ∈ X , where the Hilbert space X has the inner product

〈(η, φ), (ζ, ψ)〉X =< η, ζ >Rn +

∫ 0

−r

φ(ξ)ψ(ξ)dξ, (5)

we define the nonlinear operator A(t) : D(A) ⊂ X → X by

D(A) ≡ {(ψ(0), ψ) | ψ ∈ H1(−r, 0)}

A(t)(ψ(0), ψ) = (g(t, ψ(0), ψ), Dψ)

where here Dψ = ψ′. Then the functional differential equation (FDE) (3) can be
formulated as

ż(t) = A(t)z(t) +G2(t)
z(0) = z0,

(6)

where z0 = (φ(0), φ) is the initial condition.
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Theorem 2. Assume that (H1) holds and let z(t;φ,G2) = (x(t;φ,G2), xt(φ,G2)),
where x is the solution of (3) corresponding to φ ∈ H1, G2 ∈ L2. Then for
ζ = (φ(0), φ), z(t;φ,G2) is the unique solution on [0, T ] of

z(t) = ζ +

∫ t

0

[A(σ)z(σ) + (G2(σ), 0)]dσ. (7)

Furthermore, G2 → z(t;φ,G2) is weakly sequentially continuous from L2 (with weak
topology) to X (with strong topology).

These results can be established in one of several ways [7] including fixed point
theorem arguments or Picard iteration arguments; either approach can be used to
establish existence, uniqueness and continuous dependence of the solution of (7).
More complete discussions can be found in [8] and the detailed references given
therein. We remark that our condition (H1) is a global version of the hypothesis of
Kappel and Schappacher in [54], so that in the autonomous case their results also
yield immediately the desired existence and uniqueness result for (3). We note that
Theorem 2 can be readily extended to the case z0 = (x0, φ) where x0 6= phi(0),
necessarily.

3. Continuous dependence and differentiability. To establish continuous de-
pendence in parameters and differentiability with respect to model parameters,
initial conditions, and a time delay (the latter not previously done elsewhere to
the authors’ knowledge), we focus for ease of arguments on a simple case with a
nonlinear autonomous system with only one discrete delay (the multiple delay case
is handled in a completely similar manner) of the form

dx(t)

dt
= G(x(t), x(t − τ), θ), t ∈ [0, T ], (8)

x(ξ) =

{

φ(ξ), −τ ≤ ξ < 0,
x0, ξ = 0,

(9)

where z = (x0, φ) ∈ Z ≡ R
n × L2(−τ, 0;Rn), x(t) = x(t; z, τ, θ) ∈ R

n, τ > 0 and
θ ∈ R

p. While we consider here the case of finite dimensional model parameters,
similar sensitivity results also hold in a more general case when parameters and
delays are distributed, and hence infinite dimensional. Some of these results for
infinite dimensional systems are presented in [18, 19]. Once established, these results
allow us to study traditional and generalized sensitivity functions, where sensitivity
is considered with respect to these three quantities (delays, initial conditions, and
parameters). In practice these quantities are often unknown and may need to
be estimated from observed or experimental data in inverse problem formulations,
e.g., see [8]. The use of sensitivity functions can aid in such endeavors. We begin
by considering continuous dependence of solutions x(t) on model parameters θ.
We remark that some older delay equation results on continuous dependence and
differentiability (with respect to parameters) can be found in [47, 48] although
the specific conditions and results with respect to differentiability with respect to
discrete delays and the corresponding rigorous development of sensitivity equations
are in fact (to our knowledge) new.

Lemma 3. Let G : Rn×R
n×R

p → R
n and for θ = θ0, let x(t; z, τ, θ0) be a solution

of (8) - (9) for t ∈ [0, T ]. Assume that

lim
θ→θ0

G(x, x̃, θ) = G(x, x̃, θ0), (10)



SENSITIVITY FUNCTIONS FOR DELAY DIFFERENTIAL EQUATIONS 1307

uniformly in x and x̃. For (x1, x̃1, θ), (x2, x̃2, θ) ∈ R
n × R

n × R
p assume that

|G(x1, x̃1, θ)−G(x2, x̃2, θ)| ≤ C1|x1 − x2|+ C2|x̃1 − x̃2| (11)

where Cj > 0 are constants for j = 1, 2. Then the initial value problem (IVP) (8)
- (9) has a unique solution x(t; z, τ, θ) that satisfies

lim
θ→θ0

x(t; z, τ, θ) = x(t; z, τ, θ0), uniformly in t ∈ [0, T ].

A proof of this standard lemma can be found in [26] and is therefore omitted.
One can use similar arguments to prove similar results for continuity of solutions

with respect to initial conditions z and delays τ . We shall not do so, but turn next
to the main theoretical results of this paper, the differentiability of solutions with
respect to model parameters, initial conditions, and the time delay τ . The proofs of
these subsequent theorems will involve the use of a mean value theorem, a version
of which we include here stated as a simple lemma.

Lemma 4. Let G : Rn×R
n×R

p → R
n and z = (x0, φ) ∈ Z = R

n×L2(−τ, 0;Rn).

(i) If the Fréchet derivatives Gx(x, x̃, θ) and Gx̃(x, x̃, θ) exist and are continuous
for x, x̃ ∈ R

n, then for x1, x2, x̃1, x̃2 ∈ R
n and θ ∈ R

p, t ≥ 0,

G(x1, x̃1, θ)−G(x2, x̃2, θ)

=

∫ 1

0

{Gx(sx1 + (1− s)x2, sx̃1 + (1− s)x̃2, θ)(x1 − x2)

+Gx̃(sx1 + (1− s)x2, sx̃1 + (1− s)x̃2, θ)(x̃1 − x̃2)}ds.

(ii) If the Fréchet derivatives Gθ(x, x̃, θ) exist and are continuous for x, x̃ ∈ R
n,

then for x, x̃ ∈ R
n and θ1, θ2 ∈ R

p, t ≥ 0,

G(x, x̃, θ1)−G(x, x̃, θ2) =

∫ 1

0

Gθ(x, x̃, sθ1 + (1 − s)θ2)(θ1 − θ2)ds.

(iii) Suppose x(t, z, τ, θ) is a solution of (8) - (9), which is continuous in R
n, and

continuous and continuously differentiable for z ∈ Z, such that Dzx(t; ·) ∈
L(Z,Rn). Then for z1, z2 ∈ Z, and fixed τ ∈ R, θ ∈ R

p, for t ∈ [0, T ],

x(t; z1, τ, θ)− x(t; z2, τ, θ) =

∫ 1

0

Dzx(t; sz1 + (1− s)z2)[z1 − z2]ds.

Proof. We consider (i). Let

H1(s) = G(sx1 + (1− s)x2, sx̃1 + (1− s)x̃2, θ), 0 < s ≤ 1.

Using the chain rule with Fréchet derivatives, we have

H
′

1(s) =Gx(sx1 + (1− s)x2, sx̃1 + (1 − s)x̃2, θ)(x1 − x2)

+Gx̃(sx1 + (1− s)x2, sx̃1 + (1− s)x̃2, θ)(x̃1 − x̃2).

If we integrate H ′
1(s) for s ∈ (0, 1], we have H1(1)−H1(0) which is G(x1, x̃1, θ)−

G(x2, x̃2, θ). Thus the statement in (i) is shown. The proof of (ii) and (iii) are
similar to the proof of (i) , and thus are omitted.

Next we turn to differentiability of solutions of the general system (8)–(9) with
respect to model parameters θ in the following theorem. The proof of Theorem 5 is
excluded but can be found in [62]. (Moreover, the proof of Theorem 7 given below
can easily be followed to give that of Theorem 5.) Thus without further discussion,
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we proceed to Theorem 6, in which we establish differentiability of the solutions
with respect to the initial conditions z = (x0, φ).

Theorem 5. Suppose that G(x, x̃, θ) has continuous Fréchet derivatives Gx, Gx̃, Gθ

such that |Gx| ≤M0,|Gx̃| ≤M1, and |Gθ| ≤M2 for constants Mj, j = 0, 1, 2. Then

the Fréchet derivative y1(t) =
∂x(t)

∂θ
∈ R

n×p exists and is the unique solution of

ẏ1(t) = Gx(x(t), x(t − τ), θ)y1(t) +Gx̃(x(t), x(t − τ), θ)y1(t− τ)

+Gθ(x(t), x(t − τ), θ), (12)

y1(ξ) = 0 − τ ≤ ξ ≤ 0.

Theorem 6. Suppose the function G(x, x̃, θ) of (8) has continuous Fréchet deriva-
tives Gx(x, x̃, θ), Gx̃(x, x̃, θ), with respect to x and x̃, with |Gx| ≤M0, |Gx̃| ≤M1,
for some constants Mj > 0 for j = 0, 1. Then the Fréchet derivative

y2(t) =
∂

∂z
x(t; z, θ)

exists with y2(t)[·] ∈ L(Z,Rn) (recall z = (x0, φ) ∈ Z = R
n × L2(−τ, 0;Rn)), and

satisfies the equation for h = (h0, h̃) ∈ Z the linear delay differential equation

ẏ2(t)[h] = Gx(x(t), x(t − τ), θ)y2(t)[h] +Gx̃(x(t), x(t − τ), θ)y2(t− τ)[h], t > 0,

(13)

y2(ξ)[h] =

{

h̃(ξ), −τ ≤ ξ < 0,
h0, ξ = 0.

Proof. For a given solution x of (8)–(9) we recognize that (13) is a nonautonomous
linear delay differential equation with continuous time dependent coefficients for
which an existence and uniqueness theory has been available for many decades
[3, 4, 47]. Let y2(t;h) denote this unique solution of (13). Then by the variation
of parameters representation for linear nonautonomous delay systems given in for
example [4], we readily argue that h→ y2(t;h) is a linear functional in h and hence
we will denote it by y2(t)[h] and observe that y2(t) = y2(t)[ · ] ∈ L(Z,Rn).

For fixed τ ∈ R, θ ∈ R
p, and t ∈ [0, T ], let h ∈ Z, and m1(t, z, h) = x(t; z + h)−

x(t; z), which can be written as

m1(t, z, h) =

∫ t

0

{G(x(s; z + h), x(s− τ ; z + h), θ)−G(x(s; z), x(s− τ ; z), θ)}ds.

With Fréchet differentiability of G with respect to x, x̃ ∈ R
n and for z ∈ Z, we have

m1(t, z, h)

=

∫ t

0

{Gx(x(s; z), x(s− τ ; z), θ)[x(s; z + h)− x(s; z)] + w1(s,m1(s, z, h))

+Gx̃(x(s; z), x(s− τ ; z), θ)[x(s − τ ; z + h)− x(s− τ ; z)]

+w1(s− τ,m1(s− τ, z, h)} ds,

where
|w1(t,m1(t, z, h))|

|m1(t, z, h)|
→ 0 as |m1(t, z, h)| approaches zero. We define b1(t, h) as

|w1(t,m1(t, z, h))|

|m1(t, z, h)|
, so b1(t, h) → 0 uniformly in t as |h| → 0. Then to argue that
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∂

∂z
x(t; z, θ) ∈ L(Z,Rn) exists and is a solution for (13), we only need to show that

|m1(t, z, h)− y2(t)[h]|

|h|
→ 0

as |h| → 0.
By definition

|m1(t, z, h)− y2(t)[h]|

|h|

=
1

|h|

∣

∣

∣

∫ t

0

{Gx(x(s; z), x(s− τ ; z), θ)[x(s; z + h)− x(s; z)]

+Gx̃(x(s; z), x(s− τ ; z), θ)[x(s − τ ; z + h)− x(s− τ ; z)]

+w1(s,m1(s, z, h)) + w1(s− τ,m1(s− τ, z, h))

−(Gx(x(s, z), x(s− τ, z), θ)y2(s)[h]

+Gx̃(x(s; z), x(s− τ ; z), θ)y2(s− τ)[h])}ds
∣

∣

∣
.

We turn to the term w1(s− τ,m1(s− τ, z, h)), and make the change of variables
ξ = s− τ , so that

∫ t

0

|w1(s− τ,m1(s− τ, z, h))|ds

=

∫ 0

−τ

|w1(ξ,m1(ξ, z, h))|dξ +

∫ t−τ

0

|w1(ξ,m1(ξ, z, h))|dξ

≤

∫ 0

−τ

|w1(ξ, h)|dξ +

∫ t

0

|w1(ξ,m1(ξ, z, h))|dξ,

since m1(ξ, z, h) = h for ξ ∈ [−τ, 0]. Using this and the bounds on the Fréchet
derivatives |Gx| and |Gx̃| we have

|m1(t, z, h)− y2(t)[h]|

|h|

≤
1

|h|

[

∫ t

0

{M0|m1(s, z, h)− y2(s)[h]|+M1|m1(s− τ, z, h)− y2(s− τ)[h]|

+2|w1(s,m1(s, z, h))| }ds
]

+

∫ 0

−τ

b0(ξ, h)dξ,

where b0(ξ, h) =
|w1(ξ, h)|

|h|
→ 0 uniformly in ξ ∈ [−τ, 0] as h→ 0.
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Defining the difference ∆(t) = |m1(t, z, h) − y2(t)[h]| and noting that ∆(ξ) = 0
for −τ < ξ < 0, we find

∆(t)

|h|

≤
1

|h|

{
∫ t

0

{(M0 +M1)∆(s))}ds+

∫ t

0

2|w1(s,m1(s, z, h))|ds

}

+

∫ 0

−τ

b0(ξ, h)dξ

=
1

|h|

{
∫ t

0

{(M0 +M1)∆(s))}ds

}

+

∫ 0

−τ

b0(ξ, h)dξ

+
1

|h|

{
∫ t

0

{2
|w1(s,m1(s, z, h))|

|m1(s, z, h)|
∆(s) + 2

|w1(s,m1(s, z, h))|

|m1(s, z, h)|
|y2(s)[h]|}ds

}

.

(14)
It follows that

∆(t)

|h|
≤

∫ t

0

{(M0+M1+2b1(s, h))
∆(s)

|h|
}ds+

∫ t

0

K b1(s, h)ds+

∫ 0

−τ

b0(ξ, h)dξ. (15)

Using the fact that b0(ξ, h), b1(t, h) → 0 as h → 0 and Gronwall’s inequality, we
have

lim
|h|→0

|m1(t, z, h)− y2(t)[h]|

|h|

≤ lim
|h|→0

[

∫ T

0

K b1(s, h)ds+

∫ 0

−τ

b0(ξ, h)dξ
] (

e(M0+M1)T+
∫

T

0
b1(s,h)ds

)

= 0,

which completes the proof.

Theorem 7. Suppose that G(x, x̃, θ) has continuous Fréchet derivatives Gx, Gx̃

such that |Gx| ≤ M0, and |Gx̃| ≤ M1 and suppose that the solution x of (8)-(9)
satisfies x ∈ H1,∞(−τ, T ;Rn), for 0 < τ < r for fixed r > 0. Then the Fréchet

derivative y3(t) =
∂x(t)

∂τ
∈ R

n exists and is the unique solution for

ẏ3(t) = Gx(x(t), x(t − τ), θ)y3(t) +Gx̃(x(t), x(t − τ), θ)[y3(t− τ)− ẋ(t− τ)] (16)

y3(ξ) = 0, −τ ≤ ξ ≤ 0.

Moreover,
∂x(t)

∂τ
is continuous in θ and, if x ∈ C1(−τ, T ;Rn) it is also continuous

in τ .

Proof. We reformulate (16) as a Cauchy problem on the state space Z = R
n ×

L2(−r, 0;Rn) with the norm |(η, φ)|2 = |η|2+

∫ 0

−r

|φ(s)|2ds. One may then consider

solutions of the system for τ satisfying −r < −τ < 0.
Let y3(t, τ) be the solution to (16) (we suppress notation indicating the de-

pendence of solutions on θ). Again existence and uniqueness follow from classi-
cal results [3, 4, 47] given that x ∈ H1,∞(−τ, T ;Rn). Then for t > 0 we define
y3t(·) ∈ L2(−τ, 0;Rn) by the past history y3t(ξ, τ) = y3(t + ξ, τ), −τ < ξ < 0. If
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z1(t, τ) = (y3(t, τ), y3t(·, τ))
T , then it can be shown [8] that z1(t, τ) is the solution

to the abstract Cauchy problem

dz1(t)

dt
= A(t, τ)z1(t, τ) (17)

z1(0, τ) = (0, 0)T ∈ Z1,

where D(A(t, τ)) = {(η, φ(·))T : η ∈ R
n, φ(·) ∈ H1(−τ, 0;Rn), φ(0) = η}, and

A(t, τ)

[

η

φ(·)

]

=

[

Gx(x(t), x(t − τ), θ)η +Gx̃(x(t), x(t − τ), θ)[φ(−τ) − ẋ(t− τ)]

φ
′

(·)

]

.

Note that A(t, τ) is a vector affine operator on z1(t) = (y3(t), y3t(·))
T . Thus we

proceed to argue that
∂x

∂τ
exists and satisfies (16) (or (17)).

To argue that
∂x

∂τ
exists and satisfies either equivalent system (16) or (17), we

define m2(t, τ, h) = x(t, τ+h)−x(t, τ) = xh(t)−x(t) where xh(t) denotes a solution
to the system

dxh(t)

dt
= G(xh(t), xh(t− (τ + h)), θ) t > 0

x(ξ) =

{

φ(ξ) −(τ + h) ≤ ξ < 0
xh0 ξ = 0

.

Then to argue that
∂x

∂τ
exists and equals y3, we prove

|m2(t, τ, h)− y3(t)h|

|h|
→ 0.

In the remainder of the proof, the dependence of G on the model parameters θ
is suppressed. The difference m2(t, τ, h) is

m2(t, τ, h) =

∫ t

0

[G(xh(s), xh(s− (τ + h)))−G(x(s), x(s − τ))] ds

=

∫ t

0

{G(xh(s), xh(s− (τ + h)))−G(x(s), xh(s− (τ + h)))

+G(x(s), xh(s− (τ + h)))−G(x(s), x(s − τ))}ds

=

∫ t

0

{
∫ 1

0

Gx(rxh(s) + (1 − r)x(s), xh(s− (τ + h)))(xh(s)− x(s))dr

+

∫ 1

0

Gx̃(x(s), rxh(s− (τ + h)) + (1− r)x(s − τ))

(xh(s− (τ + h))− x(s− τ))dr} ds.

Then we have

m2(t, τ, h)

=

∫ t

0

{Gx(x(s), x(s − τ))m2(s, τ, h) +Gx̃(x(s), x(s − τ))m2(s− τ, τ, h)

−Gx̃(x(s), x(s − τ))[x(s − τ) − x(s− (τ + h))] + w2(s,m2(s, τ, h))

+w2(s− τ,m2(s− τ, τ, h)) + w3(s− τ, h)} ds,
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where
|w2(t,m2(t, τ, h))|

|m2(t, τ, h)|
→ 0 as m2(t, τ, h) → 0 and

|w3(t, x, h)|

|h|
→ 0 as [x(t) −

x(t− h)] → 0, i.e., as h→ 0. As in the previous proof we define a ratio

b2(t, h) =
|w2(t,m2(t, τ, h))|

|m2(t, τ, h)|

as well as

b3(t, h) =
|w3(t, h)|

|h|
,

and observe that in fact b2(t, h), b3(t, h) → 0 uniformly in t as h→ 0.
Next we consider the difference ∆(t, τ, h) = |m2(t, τ, h) − y3(t)h| and find from

above that

∆(t, τ, h)

|h|

=
1

|h|

∫ t

0

{Gx(x(s), x(s − τ))m2(s, τ, h) +Gx̃(x(s), x(s − τ))m2(s− τ, τ, h)

−Gx̃(x(s), x(s − τ))[x(s − τ)− x(s− (τ + h))] + w2(s,m2(s, τ, h))

+w2(s− τ,m2(s− τ, τ, h)) + w3(s− τ, h)

−h [Gx(x(s), x(s − τ))y3(s) +Gx̃(x(s), x(s − τ))y3(s− τ)

−Gx̃(x(s), x(s − τ))ẋ(t− τ)]} ds,

≤

∫ t

0

|Gx(x(s), x(s − τ))|∆(s, τ, h)

|h|
ds

+

∫ t

0

|Gx̃(x(s), x(s − τ))|∆(s − τ, τ, h)

|h|
ds

+

∫ t

0

|Gx̃(x(s), x(s − τ))[x(s − τ)− x(s− (τ + h)]− ẋ(s− τ)h|

|h|
ds

+

∫ t

0

{

|w2(s,m2(s, τ, h))|

|h|
+

|w2(s− τ,m2(s− τ, τ, h))|

|h|
+

|w3(s− τ, h)|

|h|

}

ds

≤

∫ t

0

(M0 +M1)
∆(s, τ, h)

|h|
ds+

∫ t

0

M1b4(s, h)ds

+

∫ t

0

{

2
|w2(s,m2(s, τ, h))|

|m2(s, τ, h)|

∆(s, τ, h)

|h|
+ 2

|w2(s,m2(s, τ, h))|

|m2(s, τ, h)|
|y3(s)|

+
|w3(s, h)|

|h|

}

ds

≤

∫ t

0

(M0 +M1 + 2b2(s, h))
∆(s, τ, h)

|h|
ds

+

∫ t

0

{M1b4(s, h) + 2b2(s, h)|y3(s)|+ b3(s, h)}ds,



SENSITIVITY FUNCTIONS FOR DELAY DIFFERENTIAL EQUATIONS 1313

where b4(s, h) =
|ẋ(s− τ)h− [x(s− τ) − x(s− (τ + h))]|

|h|
. Thus we find

∆(t, τ, h)

|h|
≤

∫ t

0

{M0 +M1 + 2b2(s, h)}
∆(s, τ, h)

|h|
ds

+

∫ T

0

{M1b4(s, h) + b3(s, h) + 2K3b2(s, h)}ds.

Using x ∈ H1, we have that lim
h→0

[x(t− τ)− x(t − (τ + h))]

h
= ẋ(t− τ) in L2(0, T ),

so b4(s, h) → 0 as |h| → 0. Thus we have that K(h) → 0 as h→ 0 where

K(h) =

∫ T

0

{M1b4(s, h) + b3(s, h) + 2K3b2(s, h)} ds.

Applying Gronwall’s inequality again, we have

lim
|h|→0

|m2(t, τ, h)− y3(t)h|

|h|
≤ lim

|h|→0
{K(h)}e

∫
T

0
{M0+M1+2b2(s,h)}ds = 0.

To argue that the solution to (17) depends continuously on θ, let
∆3(t; τ, θ, θ0) = z1(t, τ, θ)− z1(t, τ, θ0), where now we need to express explicitly the
dependence of solutions on θ. This difference satisfies

|∆3(t; τ, θ, θ0)| =|z1(t, τ, θ) − z1(t, τ, θ0)|,

≤

∫ t

0

|A(s, τ, θ)z1(s, τ, θ)−A(s, τ, θ0)z1(s, τ, θ0)|ds,

≤

∫ t

0

{|A(s, τ, θ)z1(s, τ, θ)−A(s, τ, θ)z1(s, τ, θ0)|

+|A(s, τ, θ)z1(s, τ, θ0)−A(s, τ, θ0)z1(s, τ, θ0)|} ds,

≤

∫ t

0

|A(s, τ, θ)∆3(s; τ, θ, θ0)|ds

+

∫ t

0

|(A(s, τ, θ) −A(s, τ, θ0))z1(s, τ, θ0)|ds,

≤Q

∫ t

0

|∆3(s; τ, θ, θ0)|ds+ r(T ; τ, θ), (18)

where r(T ; τ, θ) =

∫ T

0

|A(s, τ, θ) − A(s, τ, θ0)||z1(s, τ, θ0)|ds. We have A(t; τ, θ) is

continuous due to assumptions on G(x(t), x̃(t), θ), so that as θ → θ0

lim
θ→θ0

|r(T ; τ, θ)| = 0.

Applying Gronwall’s inequality and taking the limit as θ → θ0 in (18), we have

lim
θ→θ0

|∆3(t; τ, θ, θ0)| ≤ lim
θ→θ0

|r(T ; τ, θ)|eQt = 0,

which yields lim
θ→θ0

z1(t, τ, θ) = z1(t, τ, θ0).

Next we argue that the solution to (17), depends continuously on the delay τ

whenever ẋ(t) is continuous. Let ∆4(t; τ, τ
∗, θ) = z1(t, τ, θ) − z1(t, τ

∗, θ) for a fixed
θ ∈ R

p and fixed τ∗ ∈ [−r, 0]. We examine
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|∆4(t; τ, τ
∗, θ)| = |z1(t, τ, θ)− z1(t, τ

∗, θ)|

≤

∫ t

0

|A(s, τ, θ)z1(s, τ, θ)−A(s, τ∗, θ0)z1(s, τ
∗, θ)|ds,

≤

∫ t

0

{|A(s, τ, θ)z1(s, τ, θ)−A(s, τ, θ)z1(s, τ
∗, θ)|

+ |A(s, τ, θ)z1(s, τ
∗, θ)−A(s, τ∗, θ)z1(s, τ

∗, θ)|}ds,

≤

∫ t

0

|A(s, τ, θ)∆4(s; τ, τ
∗, θ)|ds

+

∫ t

0

|(A(s, τ, θ)−A(s, τ∗, θ))z1(s, τ
∗, θ)|ds

≤ Q

∫ t

0

|∆4(s; τ, τ
∗, θ)|ds

+

∫ t

0

|[A(s, τ, θ)−A(s, τ∗, θ)]z1(s, τ
∗, θ)|ds

≤ Q

∫ t

0

|∆4(s; τ, τ
∗, θ)|ds+ rτ (T ; τ, θ), (19)

where

rτ (T ; τ, θ) =

∫ T

0

|A(s, τ, θ)−A(s, τ∗, θ)||z1(s, τ
∗, θ)|ds.

Since Gx, Gx̃ are continuous and x ∈ C1(−τ, T ;RN), then as τ → τ∗, |A(t, τ, θ)−
A(t, τ∗, θ)| → 0. Moreover, A(t, τ, θ) is bounded in t, τ . As a result, when τ → τ∗,
the limit of |rτ (T ; τ, θ)| is 0. Applying Gronwall’s inequality in (19) and taking the
limit as τ → τ∗, we find

lim
τ→τ∗

|∆4(t; τ, τ
∗, θ)| ≤ lim

τ→τ∗

|rτ (T ; τ, θ)|eQt = 0,

and thus lim
τ→τ∗

z1(t, τ, θ) = z1(t, τ
∗, θ).

4. Traditional and generalized sensitivity functions. Having established the
differentiability given above with respect to the quantities θ, z0 = (x0, φ) and τ ,
we are now able to use powerful sensitivity techniques in analyzing delay systems.
For further simplification in the remainder of our discussions we restrict our con-
siderations to constant function initial conditions so in z0 = (x0, φ) we assume
φ(ξ) = x0, −τ ≤ ξ ≤ 0. Traditional sensitivity analysis is the quantification of
the effect changes in parameters have on model solutions. Traditional sensitivity

functions (TSFs), which are given by yk1 (t) =
∂x

∂θk
, k = 1, ..., p, ym2 (t) =

∂x

∂xl0
, l =

1, ..., n, and y3(t) =
∂x

∂τ
, are local in nature. That is, they are defined by locally

evaluated partial derivatives, i.e.,
∂x

∂θ
(t, θ̄, x̄0, τ̄ ), which gives information over spec-

ified time intervals, and at values of parameters, initial conditions and delays. In
spite of this locality in nature, these functions have been used to improve sampling
in an experimental setting. In particular they can be used to guide the time at
which measurements should be taken to best inform the estimation of unknown
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parameters [16, 17]. Thus sampling might be advisable in time intervals where, for

example, yk1 (t) is large, since this indicates that the model solution x(t) is sensitive
to changes in the parameter θk. Similarly, insensitivity to a certain parameter (or
unknown quantity), as indicated by a small or near zero value of the TSF, implies
that observations can not be profitably taken in that region if the goal is estimation
of the parameter.

TSFs may be approximated by forward differences, but more typically are found
by solving the system of sensitivity equations

d

dt

∂x(t)

∂θ
=
∂G

∂x

∂x

∂θ
(t) +

∂G

∂x̃

∂x

∂θ
(t− τ) +

∂G

∂θ
(t) (20)

along with the corresponding system

dx(t)

dt
= G(x(t), x(t − τ), θ), t > 0

x(ξ) = x0, −τ ≤ ξ ≤ 0. (21)

Here the
∂

∂θ
and

d

dt
operators have been interchanged, which is permissible due

to the continuity assumptions made on G and x. We note that sensitivity analysis
is most efficiently carried out in two steps. Once a solution x(t) corresponding to
(θ̄, x̄0, τ̄) of the above (original delay) equation (21) is obtained, one uses this so-
lution to evaluate the coefficients in system (20). This decoupling of the original
equation and the sensitivity equation has implications when considering the sensi-
tivity with respect to the time delay τ (which if solved in a coupled manner would
result in a neutral delay system, resulting in additional questions to be resolved).

Generalized sensitivity functions were first introduced by Thomaseth and Cobelli
[66]. They were further studied in a series of papers by Banks, et al., [16, 17,
20], and provide a measure of how informative measurements of the output or
observation variables (f(t, q) defined below, which are not necessarily simply the
state variables), are for the identification of unknown quantities. Here the functions
G and h are assumed to be sufficiently differentiable to construct the TSFs as well
as the generalized sensitivity functions (GSFs). Before defining the GSFs we briefly
outline an inverse problem framework, not only to put our discussion in context,
but also to define quantities in the definition of the GSFs.

Given a model solution x(t), the (traditional) sensitivity of the solution with

respect to an estimated quantity qk (where q = (θ, x0, τ)
T ) is tsk(t, q) =

∂f

∂qk
(t, q) ∈

R
m, where f(t, q) = h(t, x(t), x(t− τ), θ) are the model quantities corresponding to

the observed data. For comparison among parameters, (i.e., the solution is more
sensitive to parameter qi as compared to qj for i 6= j), the relative sensitivity

functions, given by rsk(t) =
qk

f(t, q)

∂f

∂qk
(t, q), are sometimes computed.

Observations are typically available at discrete times, which we denote by
t1, ..., tnd

. The model representation of the data is then f(tj , q) = h(tj , x(tj), x(tj −
τ), θ), j = 1, . . . , nd. In general, the data are not exactly f(tj , q), due to uncer-
tainty in the measurement process, and also due to small fluctuations not explicitly
included in the model. Therefore we represent the observation process Yj at time
tj by the statistical model

Yj = f(tj , q
0) + Ej , j = 1, . . . , nd, (22)
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where f(tj, q) = h(tj , x(tj), x(tj − τ), θ), q = (θ, x0, τ), for q ∈ Q = R
p × R

n × R
1.

Here q0 = (θ0, x00, τ
0)T represents the ‘true values’ of the parameters that generate

the observations {Yj}
nd

j=1. The existence of q0 is commonly assumed [15], implying

that (8) is sufficient to describe the biological, sociological, or physical process
precisely.

The observation errors Ej are assumed to be random variables with unknown
but assumed independent and identical probability distributions of mean zero and
constant variance σ2. Each data set {yj}

nd

j=1 is one realization of the random variable

{Yj}
nd

j=1, and the corresponding errors εj are also realizations of the Ej . Assuming

the statistical model (22) and estimating unknown quantities via the minimization
between the model and data gives rise to the commonly used ordinary least squares
(OLS) estimator defined by

qOLS = argmin
q∈Q

nd
∑

j=1

|Yj − f(tj , q)|
2
. (23)

Here the objective functional is minimized over an admissible parameter space Q.
Another common formulation assumes relative error in a weighted least squares
procedure. In this case the error is assumed to be proportional to the model quantity
f(tj; q).

The variance σ2 of the observation error is used in the computation of standard
errors, confidence intervals, etc., and also in the generalized sensitivity functions.
For a given set of data, {yj}

nd

j=1 and parameter estimates q̂, the (bias-adjusted)
variance is estimated as

σ̂2 =
1

nd − np

nd
∑

j=1

|yj − f(tj, q̂)|
2

(24)

for np = p + n + 1 estimated parameters, where np = dim(Q). Under reason-
able smoothness and regularity assumptions, one can use arguments from (non-
linear) asymptotic theory to argue that as nd → ∞, qOLS ∼ Nnp

(q0,Σnd

0 ) =

(q0, σ2[χ(q0)Tχ(q0)]−1). The nd × np sensitivity matrix χ(q) is made up of ele-
ments

χjk =
∂f(tj , q)

∂qk
for j = 1, ..., nd, k = 1, ..., np.

Then the standard error for each estimate q̂k is computed as SE(q̂k) =

√

Σ̂kk

where the covariance matrix Σ is estimated as Σ ≈ Σ̂ = σ̂2[χ(q̂)Tχ(q̂)]−1. For a
more complete discussion of the underlying assumptions and related formulations,
the reader may see [15].

The generalized sensitivity functions [17, 20, 66] are defined by

gs(t) =

∫ t

0

[

F (T )−1 1

σ2(s)
∇qf(s, q

0)

]

· ∇qf(s, q
0)dP (s), t ∈ [0, T ], (25)

for variance σ2(t) that may possibly be time-dependent, true parameters q0, some
general measure P that embodies the observations, and the Fisher information
matrix (FIM) F which is defined by

F (T ) =

∫ T

0

1

σ2(t)
∇qf(t, q

0)∇qf(t, q
0)T dP (t). (26)
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We note that the definition of the measure P affects the FIM, and one goal would
be to choose it in such a way as to optimize the information from data concerning
the estimated parameters. The GSFs are cumulative functions, such that at time
tj , only the contributions of measurements up to and including those at time tj are
relevant. By the definition in (25), it is readily seen that the GSFs are one at the
final time gs(tnd

) = 1. As discussed in [17, 66], regions over which the sharpest
change (either increase or decrease) of the GSFs indicate regions of high informa-
tion content. Decreases in the GSF corresponding to a given parameter indicate
correlation between that parameter and at least one other estimated parameter.
In this case, it can be seen [17] that computing the GSF for one of the correlated
parameters and holding the others fixed, will result in a monotonically increasing
GSF. Therefore, regions over which the GSF decreases indicate that the data in that
region indeed contains information concerning that parameter, but it is correlated
with at least one other parameter, and simultaneous identifiability of all parameters
may be difficult.

As observations are typically available at discrete time points and our discussions
are in the context of parameter estimation from observed or measured data, we
have included here also the definitions for the GSFs and FIM for a discrete measure

P =

nd
∑

j=1

∆tj . In the discrete case, the generalized sensitivity functions are

gs(tj) =

j
∑

i=1

1

σ2(tj)

[

F−1 ×∇qf(ti, q
0)
]

· ∇qf(ti, q
0), (27)

for observation times tj where j = 1, ..., nd. In the above definition, the discrete
FIM is given by

F =

nd
∑

j=1

1

σ2(tj)
∇qf(tj , q

0)∇qf(tj , q
0)T , (28)

which measures the information content of the data corresponding to the parame-
ters. In both (25) and (27), the (biased) estimate for the variance of the observation
error is used up to and including the time tj of the observation, given by

σ2(tj) =
1

j

j
∑

i=1

|yi − f(ti, q̂)|
2
. (29)

If the variance is assumed constant (σ2(t) ≡ σ2), one would simply calculate the
estimate as in (24), and use that in (25) or (27).

5. Computational examples. We illustrate the uses of sensitivity analysis in
two prominent examples of delay equations. The first example we consider, the
logistic equation, is a delay version of one of the most commonly studied models of
growth/decay. This delayed logistic equation, commonly referred to as Hutchinson’s
equation, is not only discussed in most introductory modeling courses, but is still
used in research endeavors to represent growth within an environment in which sat-
uration is possible, but the death rate is proportional to previous population levels.
The standard (without delay) logistic example has been effectively used to illustrate
with simulated data the ideas of traditional and sensitivity functions and how these
techniques may improve data sampling for the purpose of parameter estimation
[16, 17]. It is thus quite natural to turn to the delayed logistic equation now that
we are able to study sensitivity functions in systems involving a discrete delay. We
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will numerically generate simulated data with a known delay, and demonstrate that
the estimation can be improved using insights gained from the sensitivity function
solutions.

The second example we use is also a standard model, the delayed harmonic
oscillator of Minorsky discussed in the Introduction. As noted there, this example
arises in many physical applications where oscillatory phenomena are important
and either delayed restoring or delayed damping is relevant.

5.1. Hutchinson equation example. In his by now classical paper [50] (and in
[51]), Hutchinson arrived at a version of the logistic equation that incorporated a
delay in the carrying capacity or death rate term given by

dx(t)

dt
= rx(t)

(

1−
x(t− τ)

K

)

. (30)

The model was suggested as a possible explanation of the growth dynamics seen in
Daphnia. This population seemed to grow exponentially at low population sizes,
but it would oscillate at higher population levels. Hutchinson hypothesized that
this growth was like that of the logistic model, only that the population seemed to
be able to exceed its carrying capacity and perhaps it was around this value that
the population level was oscillating.

The model, given as a footnote in the original paper, can be interpreted as
the population growing essentially exponentially at low population sizes, just as
with the traditional logistic growth model. The delay in the second term results
in the population being able to exceed the carrying capacity upon initial growth,
since as the size of the population increases to the carrying capacity K, it is the
population size at a previous time (t − τ) that is less than the carrying capacity

K, that determines the growth rate. Thus, as x(t) increases to x(t) = K,
dx

dt
> 0

and the population continues to grow. The population size continues to increase
until the population size at t − τ reaches the carrying capacity (x(t − τ) ≥ K),
when the population will decrease. Similarly, due to this delay, as time continues
the population will decrease below the carrying capacity since as x(t) reaches the

carrying capacity K, x(t − τ) ≥ K and thus
dx

dt
< 0. The population size will

continue to oscillate (perhaps with some damping) in this fashion around its carrying
capacity K. The effect of the delay can be seen in Figure 1, in which solutions for
the Hutchinson equation without delay, and for a small and moderate delay are
shown.

Hutchinson, a zoologist, was interested in a topic in ecology which he termed
‘circular causal systems’. These are essentially systems of interacting populations,
or a system composed of a population or populations which affect their environment,
and the changed environment then affects the population. He postulated, without
specifically naming them, that feedback loops are possible: that if a set of properties
in either system changes in such a way that the action of the first system on the
second changes, this may cause changes in properties of the second system, which
alter the mode of action of the second system on the first. He also considered that
observed oscillations may be a result of competition, and therefore better described
by competition models, depending on the nature of the feedback, or interaction
between the two interacting systems.

He viewed carrying capacity as a self-regulating mechanism, and speculated that
it wasn’t exceeded often, because to do so, would disrupt a delicate balance in
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Figure 1. Solutions to the Hutchinson equation without delay
(a), with small delay τ = 1 (b), and with moderate delay τ = 1.5
(b). The initial condition used is x0 = 0.1 and parameter values
are r = 0.7 and K = 17.5. These values will be used in all other
discussed computations unless otherwise noted.

nature, highly destabilizing the population, potentially through the introduction of
new unfavorable conditions, and thereby subjecting it to greater risk of extinction.
Therefore, he surmised that it is highly likely that there may be a general tendency
for the time lag to be minimized by natural selection, and that the environment
would strongly influence the population size to be reduced at or below the carrying
capacity.
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In an alternative formulation the delay could appear in other terms, and does in
the version of the delay logistic studied by E. M. Wright [67]. This version is

y′(t+ 1) = −ry(t) {1 + y(t+ 1)} ,

which can be obtained from equation (30) by a change of variables (e.g., set y(x(t)) =

−1 +
x(t)

K
). As such, the delay logistic is sometimes called the Hutchinson-Wright

Equation. Wright referred to this equation as a difference-differential equation, and
worked toward developing a general theory of these classes of equations in a series
of papers. The delay logistic as in (30) has remained a well-studied example of a
classic model with dramatic qualitative behavior changes due to the inclusion of a
delayed effect.

Concerning Daphnia, Hutchinson cited a paper by Pratt in 1946 [61] and noted
that such a delay could be interpreted as the observed fertility of a parthenogenetic
female (capable of reproduction from unfertilized ovum) impacted by population
density at current time and also at previous times to which the ovum has been
exposed. He also cited the dynamics in Elton (1942) [37] and Errington (1946) [38]
as other possible examples of such dynamics in their studies of rodent populations.
In these populations it was observed that intraspecies fighting increased at large
population densities, especially among younger animals about to embark on their
reproductive life stages. Then, when a population nears its carrying capacity, the
growth rate may be influenced by the population density at a time in the past,
when the size of the population τ units in the past is less than at the present time,
N(t− τ) < N(t), and the population thus increases as the sexually mature/active
animals were those who experienced less intraspecies fighting. Therefore, even at
carrying capacity, the population can grow, exceeding this level until the juveniles
who experienced increased fighting reach reproductive age.

The traditional sensitivity functions with respect to the model parameters r,K,
initial condition x0, and delay τ are given by

∂tsr(t)

∂t
= r

[

1−
x(t− τ)

K

]

tsr(t)−
rx(t)

K
tsr(t− τ) + x(t)

[

1−
x(t− τ)

K

]

(31)

∂tsK(t)

∂t
= r

[

1−
x(t− τ)

K

]

tsK(t)−
rx(t)

K
tsK(t− τ) + rx(t)

[

x(t− τ)

K2

]

(32)

∂tsx0
(t)

∂t
= r

[

1−
x(t− τ)

K

]

tsx0
(t)−

rx(t)

K
tsx0

(t− τ) (33)

∂tsτ (t)

∂t
= r

[

1−
x(t− τ)

K

]

tsτ (t)−
rx(t)

K
[tsτ (t− τ) − ẋ(t− τ)] , (34)

where tsr(t) =
∂x(t)

∂r
, tsK(t) =

∂x(t)

∂K
, tsx0

(t) =
∂x(t)

∂x0
, and tsτ (t) =

∂x(t)

∂τ
. As

noted earlier, we consider only the case of constant initial data, and thus we do not

discuss here the Fréchet derivative y2(t) =
∂

∂z0
x(t, z0, θ) where z0 = (x0, φ), Z =

R
n×L2(τ, 0;Rn); the results of Theorem 6 still ensure the existence and uniqueness

of the solution
∂x(t)

∂x0
to equation (33), for this simpler case. The existence of unique

solutions to equations (31) and (32) are guaranteed by Theorem 5, and a unique
solution for equation (34) by Theorem 7. Note that equation (34) is not a neutral
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equation if one assumes the solution x(t) (and also x(t − τ)) is already computed
when sensitivity analysis is done. Thus we decouple the original equation and
first solve the delay equation before computing sensitivities. Here when computing
sensitivities the x(t) and x(t − τ) are not unknown quantities but rather an input
in the traditional sensitivity functions above.
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Figure 2. The solution for the Hutchinson equation overlayed
with the traditional sensitivity functions with respect to growth
rate r, carrying capacity K, constant initial state x0, and delay τ ,
each evaluated at (r,K, x0, τ) = (0.7, 17.5, 0.1, 1).

The solutions for the Hutchinson equation with small delay τ = 1 overlayed
with the traditional sensitivity functions ts(t) can be found in Figure 2. As one
would expect, the solution is most sensitive to the initial condition for early times,
and slightly lagging the tsx0

(t) trajectory is the sensitivity with respect to the
growth rate r. The solution is sensitive to the carrying capacity when it is near
and after it has reached it. All of these characteristics are consistent with the
logistic equation, which is the Hutchinson equation without delay (τ = 0). The
solution appears sensitive to the delay, that is tsτ (t) is elevated for a short period
corresponding to the same interval (t ∈ [7.5, 14]) over which the solution first exceeds
its carrying capacity and then decreases below it, and finally approaches it around
t ≈ 14. It makes sense that the solution has increased sensitivity to the delay
τ in the same region that we see the difference between including the delay and
no delay. While one would be tempted to conclude, from the magnitudes of the
peaks reached by the traditional sensitivity functions shown in Figure 2, that the
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Figure 3. The relative sensitivity functions for the growth rate r,
carrying capacityK, initial state x0 and delay τ for the Hutchinson
equation corresponding to the traditional sensitivity functions as
in Figure 2.
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Figure 4. The generalized sensitivity functions for the growth
rate r, carrying capacity K, initial state x0 and delay τ for the
Hutchinson equation corresponding to the traditional sensitivity
functions as in Figure 2.

solution is most sensitive to the initial condition x0, the relative sensitivity functions
suggest otherwise. The relative sensitivity functions, which can be used to compare
sensitivity among different parameters, corresponding to the Hutchinson equation
for these values can be found in Figure 3. The generalized sensitivity functions can
be found in Figure 4, and support that the regions of sensitivity are as suggested
by the traditional and relative sensitivity functions. The solutions for gsr(t) and
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gsx0
(t) suggest that these quantities are correlated during the time intervals in which

the solution is sensitive to each, since an increase in one curve occurs along with a
simultaneous decrease in the other. Thus, estimating both the initial condition x0
and the growth rate r from data corresponding to this interval is likely problematic.

To illustrate the information gained from the solutions of the sensitivity functions
with a delay τ = 1, we generated simulated data according to statistical model (22)
with 10% error. We then performed least squares estimation (via equation (23)) to
estimate the delay τ , while holding the other parameters fixed. As seen in [17], any
parameter correlation issues are then irrelevant and estimates should be improved
if data is concentrated in any regions of enhanced information content as suggested
by high or low values of the tsτ (t), and regions of greatest change in gsτ (t).

Estimates of the delay τ are contained in Table 1, from data {yunifj }10j=1 uniformly

sampled over the interval t ∈ [0, 14], and data {ySF
j }10j=1 in which 8 of the 10

points are concentrated in the region t ∈ [7.5, 14] as informed by the sensitivity
functions. The estimations were done with initial values for τ̂ both 20% above and
below the true value of τ = 1. The estimated delays τ̂ from the data concentrated
in the region of sensitivity to the delay is considerably closer than when uniform
data is used. Additionally, the lower standard errors confirm that we should have
more confidence, or rather that the estimate is more reliable, in τ̂ estimated from
{ySF

j }10j=1. The solutions of the Hutchinson equation with the estimated values τ̂
overlayed with the data from which the delays were estimated are shown in Figure
5. The improvement in the agreement between model solution and data is apparent
in comparisons of Figures 5a and 5b.

Table 1. Estimation of delay τ , from data {y} generated with
true value τ = 1.

initial τ̂ τ̂ SE(τ̂ )

{yunifj }10j=1 0.8 0.7862 0.14

{ySF
j }10j=1 0.8 1.0247 0.09

{yunifj }10j=1 1.2 0.8525 0.13

{ySF
j }10j=1 1.2 1.0247 0.09

Further least squares estimation computations were done to establish that esti-
mation of the delay along with other parameters are possible, although results are
not shown. Not surprisingly, estimating any of the quantities r, K, and x0 as long
as sufficient data in each region of sensitivity of the quantity to be estimated is
present, is possible within a reasonable degree of accuracy. We would only expect
difficulty in the simultaneous estimation of the delay with other quantities if cor-
relation appears to be a problem, possibly apparent in the generalized sensitivity
functions. However, while there is a decrease in gsτ (t) over a small time interval, it
is not sufficient to result in difficulty estimating this parameter along with any other
model quantitiy. Also, the increases in gsτ (t) elsewhere do not seem to correspond
to decreases in generalized sensitivity functions for other model quantities. There-
fore, from the sensitivity functions, we have no reason to suspect correlation in the
estimation of the delay with other model quantities to the extent that estimation
efforts would be difficult, and computations (not included here) have confirmed that
expectation.
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Figure 5. The solutions to the delay logistic equation with esti-
mated delay τ̂ from data as shown in each graph. In (a) the solution
is shown with estimated τ̂ from 10 data points spread uniformly
over the time interval [0, 14]. In (b) the solution is shown with
estimated τ̂ from 8 of the total 10 data points concentrated in the
time interval [7.5, 14].

We demonstrate similar findings as the delay is increased to τ = 1.25 and τ = 1.5.
Solutions to the Hutchinson equation with these delays along with corresponding
traditional and generalized sensitivity functions are shown in Figure 6. The solu-
tions (in 6a and 6b) oscillate for increasingly long time periods. The sensitivity
functions show the expected trends for parameters r, K, and x0 (as well as the
inverse relationships between gsr(t) and gsx0

(t)). However, the oscillations for the
sensitivity functions, particularly oscillations in tsτ (t) and increases in gsτ (t) per-
sist when oscillations in the solution x(t) are barely discernible. In this case, the
insight gained from the sensitivity functions indicates when one can expect data to
be informative about model parameters and the delay if taken from time intervals
in which it appears that the system has reached its steady state and no observable
dynamics are apparent.

Estimation results from data concentrated in the region suggested from the sen-
sitivity functions {ySF } and uniformly distributed {yunif} over t ∈ [0, 50], are
contained in Table 2, and examples of solutions from estimated data are shown in
Figure 7. Due to the region of sensitivity for the larger delay τ = 1.5 being relatively
long, fewer points were used to demonstrate the advantage of data concentrated in
the region of sensitivity and uniform data. That is, if more total data points in
each set were used, many of them in the uniform data set were within the region
of sensitivity. The results in the left side of Table 2 are from the estimation of true
delay τ = 1.25, and suggest a marked advantage of using data {ySF} as compared

with {yunif} observations. The estimates τ̂ are closer to the true value and the
comparably smaller standard error when an initial guess 20% below the true value
(initial τ̂ = 1) suggests that it is also more reliable.

The lower standard error for the estimate obtained using uniform data when the
initial guess τ̂ = 1.5 is 20% above the true value can be explained by observing that
the solution with the estimated delay τ̂ = 1.674 (Figure 7a) is very near the data
points, resulting in a small objective functional. This leads to a small ‘estimated’
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0 10 20 30 40 50
−80

−60

−40

−20

0

20

40

60

80

100

 

 
ts

r
(t)

ts
K
(t)

ts
x
0(t)

tsτ(t)

(d) TSF with τ = 1.5

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 
gs

r
(t)

gs
K
(t)

gs
x0

(t)

gsτ(t)

(e) GSF with τ = 1.25
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Figure 6. Solutions to the Hutchinson equation for delay τ = 1.25
(a) and τ = 1.5 (b). The traditional sensitivity functions ts(t) with
respect to r, K, x0 and τ are shown in (c) for delay τ = 1.25 and (d)
for delay τ = 1.5. Corresponding generalized sensitivity functions
gs(t) are shown in (e) and (f) for τ = 1.25 and τ = 1.5, respectively.

σ̂2, computed from equation (29), as one would do in a typical estimation proce-
dure. The sensitivity matrix χ(τ̂ ) is still relatively rank-deficient (a consequence
of using multiple data points with similar sensitivity to the estimated parameters,
as discussed in [16]) as compared with the sensitivity matrix from the observations
{ySF}, and the resulting small standard error is therefore misleading, and is not
obtained when using other initial guesses for τ̂ (not shown). We caution against
being overly confident in estimation results beginning from only one initial estimate
for the estimated parameters.
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Table 2. Estimation of delay τ , from simulated data {y}. For
‘true’ delay τ = 1.25, six data points (nd = 6) were used, with
{yj}

5
j=1 concentrated in the interval t ∈ [8, 16]. For ‘true’ delay τ =

1.5, five data points (nd = 6) were used, with {yj}
5
j=1 concentrated

in the interval t ∈ [8, 22]. For delay τ = 1.25, {yunifj }6j=1 was spread

uniformly over the time interval [0, 50] and τ = 1.5,

‘true’ τ init τ̂ τ̂ SE(τ̂)

{yunifj }5j=1 1.25 1 1.000 0.5

{ySF
j }6j=1 1.25 1 1.31 0.08

{yunifj }5j=1 1.25 1.5 1.674 0.07

{ySF
j }6j=1 1.25 1.5 1.31 0.08

{yunifj }5j=1 1.5 1.2 1.201 1

{ySF
j }6j=1 1.5 1.2 1.523 0.06

{yunifj }5j=1 1.5 1.8 1.582 0.1

{ySF
j }6j=1 1.5 1.8 1.523 0.06

5.2. Harmonic oscillator. We turn finally to illustrating the use of the TSF and
GSF for the Minorsky harmonic oscillators with delays as described in the Intro-
duction. We recall that the equation with delayed damping has the form

d2x(t)

dt2
+K

dx(t− τ)

dt
+ bx(t) = g(t), (35)

while the system with delayed restoring force is given by

d2x(t)

dt2
+K

dx

dt
+ bx(t− τ) = g(t). (36)

We use traditional and generalized sensitivity functions with equations (35) and
(36) and illustrate their application in determining regions of sensitivity for model
parameters K, b and time delay τ . As before, we take the derivative of equation
(35) with respect to each parameter qi, where q = (K, b, τ)T to obtain the TSF
corresponding to that parameter qi. First, letting x = x1(t) and x2(t) = ẋ(t), and
rewriting equation (35) as a first order system we have

dx1(t)

dt
= x2(t),

dx2(t)

dt
= g(t)− bx1(t)−Kx2(t− τ). (37)
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Figure 7. The solutions to the delay logistic equation with esti-
mated delay τ̂ from data as shown in each graph. Panels (a) and (c)
are the resulting estimates from data generated with τ = 1.25 from
{yunif} observations and {ySF} observations, respectively. Panels
(b) and (d) are the resulting estimates from data generated with

τ = 1.5 from {yunif} observations and {ySF } observations, respec-
tively. Further description of those data sets is in the caption of
Table 2.

The traditional sensitivity functions are then solutions of

ds1(t)

dt
= s4(t),

ds2(t)

dt
= s5(t),

ds3(t)

dt
= s6(t),

ds4(t)

dt
= −bs1(t)−Ks4(t− τ)− x2(t− τ),

ds5(t)

dt
= −bs2(t)−Ks5(t− τ)− x1(t),

ds6(t)

dt
= −bs3(t)−Ks6(t− τ) +Kẋ2(t− τ),
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Figure 8. Depicted above are (a) the solution to the harmonic
oscillator with delayed damping K = .5, b = 2, τ = 1, and g(t) =
10, (b) the traditional sensitivity functions and (c) the generalized
sensitivity functions with respect to K, b, τ .

for s1(t) =
∂x1(t)

∂K
, s2(t) =

∂x1(t)

∂b
, s3(t) =

∂x1(t)

∂τ
, s4(t) =

∂x2(t)

∂K
, s5(t) =

∂x2(t)

∂b
,

and s6(t) =
∂x2(t)

∂τ
.
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In Figure 8, the solution for the harmonic oscillator with delayed damping is
shown for parameter values K = 0.5, b = 2, g(t) ≡ 10, and delay τ = 1, along with
the solutions of the traditional and generalized sensitivity functions with respect to
q = (K, b, τ)T . The solutions of the TSFs imply that the solution is sensitive to all
three parameters, with the sensitivities varying out of phase with each other indicat-
ing the region of the oscillations which are most sensitive to each parameter. This
is informative as data taken exactly in phase with the oscillator would be limited in
its information content concerning at least one of the three parameters. Both the
traditional and generalized sensitivity functions suggest that data taken in the be-
ginning time intervals should not be expected to contain as much information about
the parameters as when the oscillations are growing in amplitude. One should not
conclude that small oscillations do not contain information about the parameters,
but rather that large oscillations contain more information in comparison.

Immediately, one should be wary of possible correlation among these three quan-
tities as their regions of sensitivity as shown in Figure 8b are identical. The solutions
to the generalized sensitivity functions, however, clarify this point, and indicate that
it is the parameter b and delay τ that are correlated and the parameter K is un-
correlated with the other two over its regions of sensitivity. The delay has been
increased sufficiently for these parameter values so that it counteracts the damping
effect. As the delay is increased from zero, the frequency and amplitude of the oscil-
lations increase. The amplitude of the oscillations grow, rather than decay, for this
value of the delay. The delay has a similar effect as increasing the restoring coeffi-
cient b, which also increases the frequency of the oscillations. Therefore, if one were
to estimate parameters with this model, one should not expect to estimate both b
and τ simultaneously, but estimating either b or τ does not affect one’s ability to
estimate the parameter K.

The sensitivity functions for the harmonic oscillator with delayed restoring force,
equation (36), are arrived at in the same manner as when the delay appears in the
damping term and are therefore omitted. The solution x(t) and the corresponding
traditional and generalized sensitivity solutions with respect to q = (K, b, τ)T are
shown in Figure 9. The solution, for this parameter range, appears similar to the
Hutchinson equation with τ = 1 in Figure 1b, in that it appears to exceed, and
then drop below its steady state once before reaching it. The sensitivity functions,
however, show much different behavior in that it appears that the sensitivity with
respect to both parameters K and b and delay τ is nontrivial throughout much of
the solution. It appears that the effects of each of these quantities (and the relative
contributions of their terms) counteract each other to result in the observed steady
state. While the sensitivity functions (more easily seen in gs(t) in Figure 9c) after
around t = 30 do suggest that not much more information is to be gained with
respect to K and τ , their regions of sensitivity again are much longer than what
one would expect without the the insight the sensitivity functions provide.

6. Summary and final remarks. As evidenced by more than 50 years of litera-
ture, delay equations continue to play an important role in many areas of modeling,
but especially in biological modeling. These include numerous areas of more classi-
cal as well as modern applications ranging from cellular biology to ecological systems
to modern hereditary phenomenon in psychology and behavior theory. Of special
interest are applications to experimental design and in particular sensitivity analysis
and associated areas of uncertainty quantification in inverse problems.
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Figure 9. Shown above are (a) the solution to the harmonic os-
cillator with delayed restoring force with K = 2, b = 0.75, τ = 3,
and g(t) = 10, (b) the traditional sensitivity functions and (c) the
generalized sensitivity functions with respect to K, b, τ .
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In the treatment above we have presented fundamental results guaranteeing that
derivatives with respect delays, initial conditions and finite dimensional parame-
ters exist, thereby justifying the formulation of traditional as well as generalized
sensitivity functions. We have illustrated with classical examples how these sensi-
tivities can be used to assist in design of inverse problems and, subsequently, control
problems of interest in a wide variety of applications.
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