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Abstract. Alcohol abuse is a major problem, especially among students on
and around college campuses. We use the mathematical framework of [16] and

study the role of environmental factors on the long term dynamics of an alcohol

drinking population. Sensitivity and uncertainty analyses are carried out on
the relevant functions (for example, on the drinking reproduction number and

the extinction time of moderate and heavy drinking because of interventions)

to understand the impact of environmental interventions on the distributions
of drinkers. The reproduction number helps determine whether or not the

high-risk alcohol drinking behavior will spread and become persistent in the

population, whereas extinction time of high-risk drinking measures the effec-
tiveness of control programs. We found that the reproduction number is most

sensitive to social interactions, while the time to extinction of high-risk drinkers
is significantly sensitive to the intervention programs that reduce initiation, and

the college drop-out rate. The results also suggest that in a population, higher

rates of intervention programs in low-risk environments (more than interven-
tion rates in high-risk environments) are needed to reduce heavy drinking in
the population.

1. Introduction. Alcohol abuse has been on the rise, especially among college
students. Alcohol-related injuries and deaths per 100,000 college students increased
by 6% from 1998 to 2001 [7]. The proportion of students from ages 18-24 who
were reported driving under the influence of alcohol also increased from 26.5% to
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31.4% during the same period [7]. In 1998, a special task force was created by
the National Advisory Council of the National Institute on Alcohol Abuse and Al-
coholism (NIAAA) especially for the research and review of college drinking [8].
Customs that promote college drinking are embedded in various levels of students’
environments, for example, advertisements of alcohol industry sponsors during col-
lege sports events and promotion of alcohol by establishments near campus that
sell alcohol. College students come into contact with college drinking whether they
drink or not. Social interactions can be defined as the acts, actions, or practices
of two or more people mutually oriented toward each other. Social behavior affects
and takes into account others’ subjective experiences [22].

Both diseases and habits in human populations follow dynamics determined by
social interactions [12, 13, 14]. It has been observed that social contexts and activi-
ties are the components and proxy for influences in drinking–both at the individual
and social levels. Environmental and peer influences combine to create a culture
of drinking. There have been studies that have evaluated alcohol drinking environ-
mental programs [25] although their impact and effect were captured over short time
scales, using specific (and small) populations, or without considering the impact of
social interactions. Still, these studies suggest that the use of multiple, environmen-
tal strategies are promising for reducing high risk alcohol use and alcohol-related
problems among college students. However, their implementation depends on the
risk-levels of the various college environments.

There have been only a handful of modeling studies in the literature that capture
the impact of social interactions on the dynamics of alcohol drinking. [6] conducted
a study using inner-city adolescents; the study examined the role of family drinking
norms to predict adolescent drinking decisions. Their results suggest the incor-
poration of the social influence into the alcohol prevention programs. [21] used a
meta-analytic review to compare thirteen studies that used different variables asso-
ciated with the modeling of alcohol consumption. Analyses identified variables that
moderate the effect of modeling on alcohol consumption, including the drinking
history of the participant, the drinking task used and the nature of the interac-
tion between model and participants. A simple small-world network based model
capturing alcohol-dependence in the population is studied in [3]. This study uses
a combination of network and epidemiological theory to link individuals in a pop-
ulation. All the individuals in this network included a characteristic defined as
resistivity to alcohol drinking behavior as well as their linking structure. The indi-
vidual’s drinking behavior is therefore affected by resistivity and social interactions
causing them to be alcohol dependence or free from it. A treatment is defined that
reduces individual’s intensity for alcohol dependence. This study concludes that the
application of the treatment after a critical level can be useful in reducing alcohol
dependence in a population, and this can be improved by increasing connections
of the individuals within their network, that also causes a reduction in alcohol de-
pendence at the community level with fewer levels of treatments. The study in
[23] uses a dynamic mathematical model to adequately predict the actual drinking
patterns of students in college campuses. The authors used data from a variety
of campuses surveyed in the Social Norms Marketing Research Project study and
predicted the impact on drinking patterns of several interventions to address heavy
episodic drinking on different types of campuses. [24] conducted a modeling based
drinking ecological study that included 74 larger cities in Los Angeles County to as-
sess the geographic association between city-specific rates of assaultive violence and
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alcohol-outlet density. The results suggested that sociodemographic factors alone
accounted for 70% of the variance in the rate of assaultive violence in a multiple
regression model.

In the literature, the mathematical models that study the dynamics of substance
abuse in the population mostly follow a deterministic approach, but in reality the
system under contemplation is influenced by intrinsic stochastic factors. Social
and environmental systems naturally contain uncertainties. Methods are devel-
oped to incorporate such uncertainties so that they can be quantified. Stochastic-
ity naturally arises from social, environmental and demographical factors, which
can be incorporated into the population models. [18] studied extensively the role
of stochasticity in epidemic models where he used the approximations of quasi-
stationary distribution (stationary distribution conditional on non-extinction), and
times of extinction derived from simple SIR-type stochastic epidemiological models.
He underscored the fact that it is extremely complicated to show explicit results for
stochastic factors involving large populations. However, approximation of a quasi-
stationary distribution leads to a legitimate approximation of the expected time to
extinction, starting from this distribution.

This paper builds on those prior studies and poses the question of which social
factors most influence alcohol drinking patterns and what strategies will reduce the
social interaction of serious drinkers so that the population of heavy drinkers can
become negligible. We use the expressions of “time to extinction” and “critical
community size” [11] and extend this work by performing uncertainty and sensi-
tivity analysis on them as well as deriving other important quantities to identify
factors that may be crucial in designing control policy in colleges. The goal is to
compare the impact of different environmental alcohol intervention programs on
alcohol drinking distributions.

The paper is structured as follows: In Section 1.1 a review of the dynamical
systems model from [16] is presented. Section 2 describes the methods used to
calculate the relevant mathematical quantities such as reproduction number, time
to extinction, and critical community size. Section 3 explains the uncertainty and
sensitivity analyses on the quantities of interest. The relevant quantities include
drinking reproduction number, quasi-stationary distribution (QSD), time to ex-
tinction of moderate and heavy drinkers (starting from QSD) from the population
in the presence of environment-dependent interventions, and critical community size
(defined as population size above which stochastic fadeout of a high-risk drinking
outbreak over a given period of time). Numerical results from the analysis are in
Section 4. The results and their implications are discussed in Section 5.

1.1. Mathematical framework. We use the mathematical framework of [16],
which models a population of typical college alcohol drinkers. The population in
the model is stratified into S light drinkers, that consume at least once a month
but not more than three drinks in one sitting, M moderate drinkers, that drink
at least once a month and can consume three to five drinks per sitting, and H
heavy drinkers, that drink three to four drinks at least in a week and can consume
five or more drinks in one sitting at least once in a month. Figure 1 illustrate the
model. The model captures two drinking environments defined as low-risk E1 and
high-risk E2. M drinkers are divided into subpopulations M1 and M2 based on the
two distinct drinking environments. M1 drinkers tend to encounter S drinkers in
low-risk environments E1. M2 drinkers tend to encounter H drinkers in high-risk
environments E2, M2 also encounters S in a non-drinking environment. High-risk
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Figure 1. Model flowchart where light drinkers (S), moderate in
low-risk (M1), moderate in high-risk (M2) and heavy drinkers (H)
are represented

drinking environment can be venues such as off-campus parties, fraternity parties,
pubs, bars while low drinking environments are restaurants, residence halls, and
outdoors. We assume that individuals in the S and H drinking classes tend to
hang out primarily in low-risk and high-risk drinking environments, respectively.
However, M drinkers may move into both drinking environments. S move to M1

under the social influences of moderate drinkers M (M = M1 +M2), β1 is the rate
of moving to M1 after interacting with M1, and β2 is the rate of moving to M1

after interacting with M2) and M2 move to H under a natural drinking progression
with a rate α. S can move to H only after passing through the moderate drinking
stage. The recruitment into the population is only through S-class and is captured
in the rate (1− ν)Λ. The exit from the modeling population occurs at a per capita
departure rate µ, intervention exit rate for all classes of drinkers from low-risk and
high-risk environment are δ1 and δ2 respectively. The per-capita rate of movement
of moderate drinkers from E1 to E2 is γ1 and from E2 to E1 is γ2. The definitions
of the variables and parameters are in Table 2.

The model is derived using a stochastic process, X(t) = (S(t),M1(t),M2(t),
H(t)), which is governed by a system of stochastic differential equations (SDE)
[16]. The process of entry into the system (or inflow) is a Poisson process with
fixed rate parameter Λ. The inflow may be reduced, as a result of a prevention
program, by the factor of (1 − ν). The parameter ν quantifies the effectiveness
of a prevention program, with ν = 1 implying perfect prevention. Intervention
programs are composed of two Poisson-type processes which are environmentally
dependent with rate parameter δ1 times the class sizes in E1 and δ2 times the class
sizes in E2, at time t. Other transitions are also Poisson-type processes with rate
parameters depending on the components of the stochastic process X(t). In fact,
these transition rates are conditional rates. The conditional transition rates in an
interval, (t, t+ ∆t), of the stochastic process (S(t),M1(t),M2(t), H(t)) are defined
in Table 2. The probability of more than one transition in a time interval ∆t is of
order o((∆t)2) and therefore neglected for small ∆t. In the model, during a time
interval (t, t+ ∆t) change in stochastic process is given by

∆Xt = (∆St, ∆M1t, ∆M2t, ∆Ht).
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Table 1. Transitions and their rates

Index (i) Transitions Conditional rates given Xt = (S,M1,M2, H)
1 S −→ S + 1 (1− ν)Λ + o(∆t).

2 S −→ S − 1 β1
SM1

(S+M1) + (µ+ δ1)S + β2
SM2

(S+M1+M2) + o(∆t).

3 M1 −→M1 + 1 β1
SM1

(S+M1) + γ2M2 + β2
SM2

(S+M1+M2) + o(∆t).

4 M1 −→M1 − 1 γ1M1 + (µ+ δ1)M1 + o(∆t) .

5 M2 −→M2 + 1 γ1M1 + o(∆t).

6 M2 −→M2 − 1 γ2M2 + αM2 + (µ+ δ2)M2 + o(∆t).

7 H −→ H + 1 αM2 + o(∆t).

8 H −→ H − 1 (µ+ δ2)H + o(∆t).

Each component of ∆Xt is the sum of its conditional expected value and a condi-
tional centered random increment, where the conditioning is on X(t). That is,

∆St =E[∆St] + (∆St − E[∆St]) = E[∆St] + (∆Z1 − ∆Z2 − ∆Z3),

∆M1t =E[∆M1t] + (∆M1t − E[∆M1t]) = E[∆M1t] + (∆Z2 − ∆Z4 − ∆Z5),

∆M2t =E[∆M2t] + (∆M2t − E[∆M2t]) = E[∆M2t] + (∆Z4 − ∆Z6 − ∆Z7),

∆Ht =E[∆Ht] + (∆Ht − E[∆Ht]) = E[∆Ht] + (∆Z6 − ∆Z8).

(1)

Here, for example, the conditionally centered random increment ∆St −E[∆St] is a
result of a change in one of its three related transition processes (inflow- , outflow-,
influence-processes). The increment ∆Zi (i=1,2, ...,8) in System (1) represents the
ith conditionally centered locally Poisson increment that is related to the change in
one of the four components of X(t )(described in Table 1). For example, the centered
Poisson increment ∆Z2 corresponds to transitions representing newly generated
moderate drinkers (i.e., transition from S to M1). This same increment appears in
the corresponding representation of ∆Mi with the opposite sign.

On scaling System (1) by a sufficiently large (but finite) deterministic stationary

total population size (Ñ), we can replace centered Poisson increments byGi∆Wi, for

i = 1, 2, ..., 8, where each Gi
√

∆t is the approximate conditional standard deviation
of the increment of respective transition and each Wi is a standard Wiener process,
that is, ∆Wi ∼ N (0,∆t) [9]. For infinitesimal small increments of time, the system
of SDE describing temporal evolution of the process Xt

Ñ
= xt = (st,m1t,m2t, ht), is

obtained.

2. Methods. We collect here the relevant quantities obtained from the model.
The uncertainty and sensitivity analyses are carried out on the two quantities (or
metrics), namely, the drinking reproduction number and the time to extinction of
the high-risk drinkers in the presence of interventions.

2.1. Drinking reproduction number. The drinking reproduction number of the
model, denoted by Rd, can be derived using the deterministic model. Rd is inter-
preted as the expected number of secondary moderate M1-drinkers produced, in a
population of light drinkers, by the social interaction of a typical mobile (moving
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Table 2. Definitions of Variables and Parameters

Variables & Definition Units

Parameters

E1 Low-risk drinking environments . . .

E2 High-risk drinking environments . . .

S Light or Susceptible drinkers Number of
people

M1 Moderate drinkers in low-risk environment Number of
people

M2 Moderate drinkers in high-risk environment Number of
people

H Heavy drinkers Number of
people

β1 Social interaction parameter influencing S in low-risk environment. This
parameter is a combination of average interaction rate and probability of
successful conversion given a contact between S and M1.

Interactions
per person
per year

β2 Social interaction parameter influencing S in high-risk environment. This
parameter is a combination of average interaction rate and probability of
successful conversion given a contact between S and M2.

Interactions
per person
per year

µ Graduation and drop out rate per person
per year

α Progression rate from M2 to H- drinking state in high-risk environment per person
per year

γ1 Transition rate for M -drinkers from low-risk environment to high-risk en-
vironment

per person
per year

γ2 Transition rate for M -drinkers from high-risk environment to low-risk en-
vironment

per person
per year

δ1 Intervention exit rate for all classes of drinkers in low-risk environment per person
per year

δ2 Intervention exit rate for all classes of drinkers in high-risk environment per person
per year

ν Intervention proportion targeted to reduce initiation of alcohol drinking
(referred sometime in the text as prevention proportion)

Dimensionless

Λ Recruitment rate of drinkers in the population per year

between drinking environments) drinker. The analysis of the corresponding deter-
ministic model suggests that if Rd ≤ 1 then eventually only light drinkers will persist
in the population, and if Rd > 1, all three types of drinkers exist in the population
for all times but the size of number of H- and M -drinkers eventually will depend
on how far the value Rd is above one. Hence, Rd captures whether there will be a
large outbreak of heavy drinkers in the population and if yes, then what will be the
size of it over time. The Rd for the model is:

Rd(δ1, δ2) =
β1(1− γ̃) + β2γ̃

µ1(δ1)(1− γ̃) + (µ2(δ2) + α)γ̃
(2)
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where µ1(δ1) = µ + δ1, µ2(δ2) = µ + δ2, and γ̃ ≡ γ1

µ2+γ1+γ2+α . Nontrivial steady

state (which exists and stable when Rd > 1) is (s∗, m∗1, m
∗
2, h

∗), where

m∗2 = θ2h
∗, m∗1 = ξ̃θ2h

∗, s∗ = Λ̃− η̃h∗, (3)

with θ2 = µ2

α , σ = µ2+α
µ1

, ξ̃ = 1−γ̃
γ̃ , η̃ = θ2(σ + ξ̃), Λ̃ = (1−ν)ζ

µ1
, Ĥ = h∗ θ2

Λ̃
and

ãĤ2 − b̃Ĥ + c̃ = 0, (4)

ã = (σ+ ξ̃)(σ−1)(Rd−1)+ ξ̃(σ−1)+ β2

µ1
, b̃ = (Rd−1)[ (σ−1)+(σ+ ξ̃) ]+ β2

µ1(σ+ξ̃)
+ ξ̃,

c̃ = (Rd − 1), Ñ = (1−ν)Λ
µ , s∗ = S∗

Ñ
, m∗1 =

M∗
1

Ñ
, m∗2 =

M∗
2

Ñ
and h∗ = H∗

Ñ
.

2.2. Quasi-stationary distribution of drinkers. If Rd > 1, all sample paths of
the stochastic model will eventually converge to the “trivial state” (M1 = M2 =
H = 0) even though solutions of the deterministic model converge to a nontrivial
steady state. This fact is because the solution of the stochastic model consists of
set of distributions of the drinking states index by time, where extinction (or zero)
state is possible at all times but with varying probabilities at each time. On the
other hand, the solution of the corresponding deterministic model approximate the
expected value of the solution (set of distributions index by time) of the stochastic
model. The deterministic model predicts that the proportion of moderate and
heavy drinkers will eventually approach a positive fixed level for Rd > 1, while the
stochastic model predicts that eventually moderate and heavy drinkers will become
extinct because of the presence of randomness (though the time to extinct might
be extremely large). [15] defined the quasi-stationary distribution as the eventual
distribution of the system, conditioned on the processes M and H not having gone
extinct [16] and its approximation is as follows.

For sufficiently large Ñ , the distribution of the scaled process√
Ñ

(
st − s∗, m1t −m∗1, m2t −m∗2, ht − h∗

)
can be approximated by the stationary distribution of the stochastic process that
has local drift, J (Jacobian matrix of the deterministic model at the endemic state),
and covariance matrix, C. This stationary distribution is a multivariate normal with
mean 0 and covariance Σ given by the relation.

JΣ + ΣJT = −C, (5)

[1, 18] where Σ = (σij)i,j=1,2,3,4 represents the covariance between ith and jth of
the process X(t) at quasi-stationary,

J =


−(P + µ+ δ1) −Q −T 0

P Q− (µ+ δ1 + γ1) T + γ2 0
0 γ1 −(µ+ δ2 + γ2 + α) 0
0 0 α −(µ+ δ2)

 ,
(6)

and

C =


(1−ν)Λ

Ñ
+

β1s
∗m∗

1

(s∗+m∗
1) +

β2s
∗m∗

2

(s∗+m∗
1+m∗

2) + (µ+ δ1)s∗ ...

−
(
β1s

∗m∗
1

(s∗+m∗
1) +

β2s
∗m∗

2

(s∗+m∗
1+m∗

2)

)
...

0 ...
0 ...
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... −
(
β1s

∗m∗
1

(s∗+m∗
1) +

β2s
∗m∗

2

(s∗+m∗
1+m∗

2)

)
...

...
(
β1s

∗m∗
1

(s∗+m∗
1) +

β2s
∗m∗

2

(s∗+m∗
1+m∗

2)

)
+ (γ1m

∗
1 + γ2m

∗
2) + (µ+ δ1)m∗1 ...

... − (γ1m
∗
1 + γ2m

∗
2) ...

... 0 ...

... 0 0

... − (γ1m
∗
1 + γ2m

∗
2) 0

... (γ1m
∗
1 + γ2m

∗
2) + αm∗2 + (µ+ δ2)m∗2 −αm∗2

... −αm∗2 αm∗2 + (µ+ δ2)h∗

 , (7)

with P =
β1(m∗1)2

(s∗ +m∗1)2
+
β2(m∗1 +m∗2)m∗2
(s∗ +m∗1 +m∗2)2

,

Q =
β1(s∗)2

(s∗ +m∗1)2
− β2s

∗m∗2
(s∗ +m∗1 +m∗2)2

,

and T =
β2s
∗(s∗ +m∗2)

(s∗ +m∗1 +m∗2)2
.

Since the covariance matrix Σ is symmetric, equation (5) can be reduced to the
following linear system

2j11 2j12 2j13 0 0 . . .
j21 (j11 + j22) j23 0 j12 . . .
0 j32 (j11 + j33) 0 0 . . .
0 0 j43 (j11 + j44) 0 . . .
0 2j21 0 0 2j22 . . .
0 0 j21 0 j32 . . .
0 0 0 j21 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .

. . . 0 0 0 0 0

. . . j13 0 0 0 0

. . . j12 0 j13 0 0

. . . 0 j12 0 j13 0

. . . 2j23 0 0 0 0

. . . (j22 + j33) 0 j23 0 0

. . . j43 (j22 + j44) 0 j23 0

. . . 2j32 0 2j33 0 0

. . . 0 j32 j43 (j33 + j44) 0

. . . 0 0 0 2j43 2j44

σ11

σ12

σ13

σ14

σ22

σ23

σ24

σ33

σ34

σ44

=

−c11

−c12

0
0
−c22

−c23

0
−c33

−c34

−c44

where J = (jij) and C = (cij). Since J and C are known, we can compute the
matrix Σ. Hence, the approximate mean and covariance of the quasi-stationary
distribution of the process Xt are

Ñ(s∗, m∗1, m
∗
2, h

∗) and Ñ2Σ,
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respectively. The mean, variance and coefficient of variation of light (S), moderate
(M = M1 +M2) and heavy (H) drinking states are

µ̃S = Mean(S) = Ñs∗, σ̃2
S = V ar(S) = Ñ2σ11, and CV (S) =

σ̃S
µ̃S

(8)

µ̃M = Ñ(m∗1 +m∗2), σ̃2
M = Ñ2(σ22 + 2σ23 + σ33), and CV (M) =

σ̃M
µ̃M

(9)

µ̃H = Ñh∗, σ̃2
H = Ñ2σ44, and CV (H) =

σ̃H
µ̃H

. (10)

The coefficient of variation indicates how “far away” from the absorption the epi-
demic process is at equilibrium. Covariance between states can also be computed
and are:

Cov(S,M1) = Ñσ12, Cov(S,M2) = Ñσ13, and Cov(M1,M2) = Ñσ23. (11)

The correlation matrix ρ = (ρik) of quasi-stationary process is

ρ = (V 1/2)−1Σ(V 1/2)−1 (12)

where V 1/2 = (v
1/2
ij ) is the standard deviation matrix such that v

1/2
ii =

√
σii and

v
1/2
ij = 0 for i 6= j. The quasi-stationary distribution is used in modeling long-term

behavior of a stochastic system conditioned on non-extinction.

2.3. Time to extinction of high-risk drinkers. The random variable describing
time to extinction starting with the quasi-stationary distribution is denoted by TQ.
The quasi-stationary state is defined by the state of the process Xt conditioning
on non-extinction of the M and H sub-processes. The behavior of the stochastic
process used here appears to be stationary over a finite time scale but it seems
to terminate eventually in some sense [20]. The absorption state is defined as the
state where the two components M1 and M2 are zero, after reaching this state if
there is any remaining at the component H it will exit the system and become zero.
Thus, by eventual termination (or extinction) of the model’s sample paths we mean
arriving at the state where the components M and H are zero. The first time a
sample path reaches this state is referred as time to extinction of the sample path.

The time it takes to move from the quasi-stationary state to any state where
M1 = M2 = 0 is exponentially distributed. The probability that the process is in
state X at time t, given that it has not yet become absorbed into the absorbing
state (or state of extinction) is given by

q
S,M1,M2,H

(t) = P{St = S,M1t = M1,M2t = M2, Ht = H | M1t = M2t 6= 0}

=
p
S,M1,M2,H

(t)

(1− p∗,0,0,∗(t))
.

(13)

A process that has been running for a long time and has not gone to the absorbing
state is approximately in the quasi-stationary distribution Q = {q

S,M1,M2,H
}, where

q
S,M1,M2,H

= lim
t−→∞

q
S,M1,M2,H

(t).

Using a jump process (with rates mentioned in Table 1), and starting from the
quasi-stationary state, various mathematical quantities can be derived.
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For example, the expected time spent in states (M1,M2) = (0, 1), (M1,M2) =
(1, 0), and M = 1 are derived as

E(V 01) = p (cL1 + l2L2) (1−A) + pg̃ (cL1 + b1L2)A, (14)

E(V 10) = gp̃ (cL1 + b2L2) (1−A) + g (cL1 + l1L2)A, and (15)

E(W ) = (c(p+ gp̃)L1 + (pl2 + gp̃b2)L2) (1−A) (16)

+ (c(g + pg̃)L1 + (gl1 + pg̃b1)L2)A, (17)

respectively, where M = M1 + M2, A =
M∗

1

M∗
1 +M∗

2
, p =

µ+δ2+α+β2
S∗
S∗+1

γ2+µ+δ2+α+β2
S∗
S∗+1

, g =

µ+δ1+β1
S∗
S∗+1

γ1+µ+δ1+β1
S∗
S∗+1

, c1 = 1
γ1

, c2 = 1
γ2

, p̃ = 1 − p, g̃ = 1 − g, h̃ = p̃g̃, c = c1 + c2,

b1 = c1 + l2, b2 = c2 + l1, l1 = 1
µ+δ1+β1

S∗
S∗+1

, l2 = 1
µ+δ2+α+β2

S∗
S∗+1

, L1 = h̃

(1−h̃)2
, and

L2 = 1

(1−h̃)
. The marginal quasi-stationary probability of state M = 1 denoted by

q∗,1̄,∗ , can be expressed as

q
∗,1̄,∗

=
1

σ̃
M

 φ
(

1−µ̃M
σ̃M

)
1− Φ

(
0.5−µ̃M
σ̃M

)
 (18)

where the function φ (.) is the standard normal density, Φ (.) is the cumulative

distribution function, µ̃M = Ñ(m∗1 + m∗2), and σ̃2
M = Ñ2(σ22 + 2σ23 + σ33). The

expected value of TQ is [15]

τ
Q

= E[TQ] =
1

q
∗,1̄,∗

L
(19)

where 1
L = E[W ]

(µ+δ2+α)E[V 01]+(µ+δ1)E[V 10] .

2.4. Critical community size of a population of drinkers. The expected
time to extinction, when the initial distribution is the quasi-stationary distribution
(Equation (19)), is E(TQ). It depends on model parameters. Since the non-trivial

steady state is a function of Ñ , probabilities (p, g, A and q∗,1̄,∗) and times (l1 and

l2) are also functions of Ñ . Hence, E[W ], E[V 01] and E[V 10] are functions of Ñ .
Therefore, if other parameters are fixed then τ

Q
can be written as a function of

Ñ . As defined by [1] in an epidemic context, The Critical Community Size Ñc is
an upper bound on the community size (that is, total modeling population) for
the heavy drinking epidemic to have a fair chance of going extinct before a given
time. More precisely, the critical community size, Ñc(t

∗, p∗)), depends on the time
horizon t∗ and extinction probability p∗, and satisfies P (TQ ≤ t∗) = p∗. Since TQ
is exponentially distributed, we can obtain Ñc by:

1− e−λ(Ñc)t
∗

= p∗, where λ(Ñc) =
1

τQ(Ñc)
.

Hence, if τQ is a bijective function of Ñc, then by the implicit value theorem we get

Ñc = τ−1
Q

(
− t∗

ln(1− p∗)

)
. (20)

One cannot invert τ
Q

explicitly. However, Ñc can be computed numerically. The

computation of Ñc involves the following steps. The critical community size (i.e.,
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Ñc(t, p)), which depends on the time horizon t and extinction probability p, is the

solution Ñ that satisfies P (TQ ≤ t) = p, i.e.,

1− e−λ(Ñ)t = p (21)

q
∗,1̄,∗

(Ñ) L(Ñ) =
1

t
ln

(
1

1− p

)
(22)

where q
∗,1̄,∗

(Ñ) =
Ñ(σ22+σ33+2σ23)

(
1−Φ

(
0.5−Ñ(m∗

1+m∗
2)

Ñ(σ22+σ33+2σ23)

))
φ

(
(1−Ñ(m∗

1+m∗
2))

Ñ(σ22+σ33+2σ23)

) ,

L(Ñ) = (µ+δ2+α)E1(Ñ)+(µ+δ1)E2(Ñ)

E3(Ñ)
, E1 = E(V 01), E2 = E(V 10), and E3 = E(W ).

3. Analysis. We carry out global uncertainty and sensitivity analyses on two
mathematical quantities: drinking reproduction number (Equation (2)) and ex-
pected time to extinction (Equation (19)) with respect to the model parameters. In
these analyses, model parameters are random variables and our aim is to study the
effect of variations in parameters on the changes in model outcomes like Rd and τQ.

We employ the Latin Hypercube Sampling method (LHS), where sampling is
carried out on a high-dimensional parameter space. In this method, the parameter
space is divided into N equal probability intervals. Using data from [12], a proba-
bility distribution is assigned to each of the model parameters. Table 3 and Figure
2 show the distribution of the parameters assumed in our analyses [12]. 10,000 sam-
ple sets from the parameter space (each set is comprised of a sample from each of
the parameters involved in the output variables) were chosen from equal probability
interval areas and used to compute estimates of the output variables (Rd and τQ).

We consider three different scenarios based on the intervention programs in the
two drinking environments: Case 1 (δ1 < δ2), where stronger intervention programs
are implemented in high-risk environments rather than low-risk environments; Case
2 (δ1 = δ2) represents the scenario of intervention programs in both types of drink-
ing environments being equal; and Case 3 (δ1 > δ2) is related to the case where
stronger intervention programs are implemented in the low-risk environment rather
than high-risk environment.

Since the non-trivial steady state exists and is stable if Rd > 1 (as mentioned
in Section 2.1), the uncertainty and sensitivity analysis of time to extinction τQ is
carried out by first computing a distribution of β2 using assigned distributions of
other parameters and the condition

β2 >
µ1(1− γ̃) + (µ2 + α)γ̃ − β1(1− γ̃)

γ̃

ensuring estimates of β2 such that Rd > 1.

3.1. Uncertainty analysis. In the uncertainty analysis, we investigate and quan-
tify uncertainties in the relevant output variables as a function of uncertainty in
measurement of input variables (or model parameters) [10, 12, 18]. The idea is to
explore the different parameters in a systematic way. A procedure is designed and
performed to determine an effect, or to estimate how the numerical value of an out-
put variable will be affected by errors due to methodology, presence of confounding
effects and measurements. Experimental uncertainty estimates are needed to assess
the confidence in the estimates of output variables.
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Figure 2. Assumed probability distributions of input parameters
(µ, β1, β2, α, γ1, γ2 and ν) in the uncertainty and sensitivity
analyses. Since time to extinction (τQ) is computed for Rd > 1,
the distributions of β1 and β2 are modified to ensure Rd > 1. The
distributions of output variables (Rd and τQ) from the analyses are
also shown.

3.2. Sensitivity analysis. Uncertainty and sensitivity analyses are run in tandem.
Sensitivity analysis identifies factors that contribute mostly to the output variability.
We use a sensitivity procedure to determine how different values of an input variable
will affect a particular output variable under a given set of assumptions and in
the presence of other input variables [12]. We compute partial rank correlation
coefficients (PRCC) of the outputs with respect to each of the parameters involved.
The PRCC is a sensitivity index that lies between −1 and 1 and is used to compare
the effect of input parameters on an output variable. Sensitivity indexes are shown
in bar graphs with black and gray representing negative- and positive-sensitivity,
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respectively. If the absolute value of a sensitivity index is greater than 0.5, then we
consider the parameter to be significantly sensitive. The computed PRCC values
are in Table 5.

Table 3. Distribution and values of parameters used in the anal-
ysis of Rd and τQ. The distributions that are used here include
Normal (N ), Gamma (Γ), and Uniform (U) distribution.

Parameter Parameter distribution/values of
in Rd analysis

Parameter distribution/values in
τQ analysis

µ N[0,∞)(Mean=0.35,Var=0.11) N[0,∞)(Mean=0.37,Var=0.04)
β1 Γ(k = 2.49, θ = 0.28) U(a = 0.001, b = 3.85)
β2 Γ(k = 2.47, θ = 0.89) U(a = 0, b = 17.42)
α N[0,∞)(Mean=0.55,Var=0.09) N[0,∞)(Mean=0.25,Var=0.03)
γ1 U(a = 0.38, b = 0.54) U(a = 0.30, b = 0.62)
γ2 U(a = 0.38, b = 0.54) U(a = 0.38, b = 0.62)
ν . . . U(a = 0.10, b = 8.99)
δ1(when δ1 < δ2) 0.4 0.4
δ2(when δ1 < δ2) 0.8 0.8
δ1(when δ1 = δ2) 0.5 0.5
δ2(when δ1 = δ2) 0.5 0.5
δ1(when δ1 > δ2) 0.8 0.8
δ2(when δ1 > δ2) 0.4 0.4
ζ . . . 3

Table 4. University of California UC Digest 2003: University of
California system schools and intake. We assume that annual in-
take of schools is 1.5 times fall semester intake. College intake Data
is mixed with college drinking Data from [26, 4, 5] data suggested
that 65% of freshman are drinkers.

UC Digest 2003 Using assumptions of [3]
School Total undergrad. Total first year Drinkers admitted of drinkers admitted

admitted in fall in a year per year
UC Berkeley 24,636 3,814 3,718 15
UCLA 25,432 4,246 4,139 16
UC Davis 23,458 4,412 4,301 18
UC SD 21,369 3,981 3,881 18
UCI 21,854 4,048 3,946 18
UC Riverside 14,973 3,270 3,188 21

17.6

4. Results. The uncertainty and sensitivity analyses were carried out by fixing
some known parameters, whereas assuming distribution for parameters for which
exact value with precision were not found. We begin with estimation of fixed pa-
rameters from data, as well as estimation of distribution of unknown parameters.

4.1. Point and distribution estimates of parameters. We considered schools
in the University of California system as our modeling population and estimated
relevant parameters using data from University of California (UC) digest [26, 4, 5].
The parameter Λ is assumed to be equal to ζN , where ζ is a fraction of the total
population (N) of the UC system. The estimate of the parameter ζ is 0.17, which
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Table 5. Sensitivity indices (PRCC values) from the sensitivity analysis.

µ β1 β2 α γ1 γ2 ν
Exit Social Social Progression Transition Transition Intervention
rate interactions interactions rate rate rate proportion to

in E1 in E2 M2 ⇒ H E1 → E2 E2 → E1 reduce initiation
Rd δ1 < δ2 -0.4359 0.6886 0.4859 -0.1275 0.0156 0.0019 . . .

δ1 = δ2 -0.4359 0.6471 0.5255 -0.1614 0.0288 -0.0029 . . .
δ1 > δ2 -0.3862 0.6487 0.5546 -0.1739 0.0438 -0.0071 . . .

τQ δ1 < δ2 -0.9389 0.0304 -0.0100 -0.0684 0.0055 0.0083 -0.6104
δ1 = δ2 -0.9401 0.0173 -0.00005 -0.0527 -0.0028 -0.0059 -0.6159
δ1 > δ2 -0.9395 0.0037 -0.0099 -0.0868 0.0063 -0.0109 -0.6087
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Figure 3. Influence of parameters on Rd

is obtained from Table 4. The parameter Λ is estimated using ζ and the total
population of the schools mentioned in Table 4.
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Figure 4. Influence of parameters on τQ

We also estimate the average intervention rate for Case 2 (δ1 = δ2 = δ). The
total population of the deterministic system is s∗ + m∗1 + m∗1 + h∗ = 1 − δ

γ̄α and

so δ ≤ γ̄α. Efficacy reviews of brief interventions reveal that if applied to the total
population at risk, they would reduce the overall prevalence of high-risk drinking
by 35 to 50 percent, equivalent to a 14 to 18 percent improvement in the rate
of recovery without intervention at all. We assume 70% adherence and potential
intervention coverage of 50% in the population of drinkers and estimated remission
rates to be between 4.9 and 6.4 percent higher than natural history rates. Hence,

we consider 1− δ
γ̄α = (14+18)∗100

2 , that is, δ = 0.1225. The end points of intervals for

parameter-distribution are assumed using values of the parameters from [15]. Note,
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Figure 5. The variability of Rd as a function of δ1 and δ2

the parameter estimates used in the study is merely to provide its relative (to other
parameters) significance as an example and its value needs to be understood from
the perspective of sensitivity analysis results.

Figure 2 shows assumed distributions of the parameters and estimated distri-
butions of the output variables. The distribution of output variables for Rd and
τQ, when the δ1 = δ2, are also in this figure. The expected value and variance for
the distribution of parameters are taken from [15]. The statistical summary of the
distribution is represented in Table 7, and Table 8.

4.2. Uncertainty and sensitivity analysis of Rd. The analysis of the deter-
ministic model confirms that the high-risk drinking can be reduced quickly if Rd is
decreased below 1. Hence, it is natural to study how parameters, especially inter-
ventions programs (captured by parameters δ1 and δ2), reduce Rd. Figure 5 shows
changes in the mean value of Rd when δ1 and δ2 are varied, while other parameters
are fixed. It seems that for small values of δ1, the mean estimates of Rd remain
greater than one under fixed δ2 values Similar trends are observed for small values of
δ2 under fixed δ1. When δ1 or δ2 increases it follows that the mean of Rd decreases,
however the decrease of Rd is faster with an increase in δ1 as compared to δ2. These
results suggest that when intervention programs are applied in both low and high-
risk environments, smaller values of δ2 have more effect on reducing the high-risk
drinkers in the populations, but large values of δ1 are needed to contain the high-risk
drinkers faster and to get lasting effect. Hence, the results conclude targeting of the
high-risk environments by interventions when the funding are limited and focusing
on low-risk environments, too, if funding is available. Table 6 provides summary
statistics of the Rd distribution for the three cases in the sensitivity analysis (Figure
3).

We perform sensitivity analysis to see how the δ′is i = 1, 2 impacted our output
variables when they are equal as well as when they are not equal. We notice, in
all the three cases (δ1 < δ2, δ1 = δ2 and δ1 > δ2), that the reproduction number
Rd is most sensitive to β1 and β2 (Figures 3(a)-3(c)); in fact, β1 and β2 are the
only two significantly sensitive parameters. β1 is positively highly correlated with
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the reproduction number Rd in all the three cases, but when δ1 > δ2, the difference
between the PRCCs of β1 and β2 is smaller. If the intervention rates in the high-risk
environments are large (that is, δ1 < δ2), then sensitivity results suggest increases in
social interactions in low-risk environments will increase the estimates of Rd more as
compared to increases in social interactions in high-risk environments. This could
be because E1 is a provider of drinkers for E2 environments. In Figure 3(c), when
the intervention focus is on low-risk environment (that is, δ1 > δ2), the value of the
PRCC between Rd and β1 decreases compared to case when δ2 > δ1. The stronger
interventions in E1 made the social interaction in E1 unimportant.

As Figure 6 shows, if the intervention rates are less than approximately 0.6, the
expected value of Rd values tend to be greater than 1 and the variability on Rd
estimates is high. Alcohol abuse soars in the population because of low (and hence
ineffective) intervention levels. The parameter δ1 seems to make more impact on Rd
values than δ2, which is because it is more effective to influence moderate drinkers
in a low-risk environment than in a high-risk environment.
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Figure 6. The confidence interval of the mean of Rd , (a) δ2 is
fixed and δ1 vary, (b) δ1 is fixed and δ2 vary.

4.3. Uncertainty and sensitivity analysis of τQ. The time to extinction (τQ)
is the time it takes the population of high-risk drinkers to die out in the presence
of intervention. Evaluating τQ we see in Figures 4(a) - 4(c), the parameters µ and
ν are highly correlated with time to extinction in all three cases (δ1 < δ2, δ1 = δ2
and δ1 > δ2), while social interactions parameters (β1 and β2) becomes influential.
Since ν captures the prevention programs, efforts to educate college students against
alcohol use and abuse can reduce the alcohol user population. The social interaction
parameters are not the greatest influencers in these scenarios. The parameter µ
is the parameter of college students leaving the population of drinkers through
voluntary quitting drinking or exiting (transferring to an other school, dropping
out or graduating) college. Time to extinction τQ is related to the reproduction
number Rd, not explicitly, but indirectly. When Rd increases, time to extinction
(τQ) increases. The parameters β1 and β2 does not affect τQ, as in the cases of Rd.
The variability in τQ estimates are higher when δ2 > δ1 than when δ1 > δ2.

4.4. Changes in critical community size of drinkers, Ñc. Critical community
size is the minimal population size of high-risk drinkers below which the drinkers



INFLUENCE OF ENVIRONMENTAL FACTORS ON DRINKING PATTERNS 1297

0
100

200
300

400
500

0

500

1000
0

0.2

0.4

0.6

0.8

1

Time to extinction (τ
Q

)
Critical community size (N

C
)

P
ro

b
ab

ilt
y 

o
f 

ex
ti

n
ct

io
n

 (
P

)

δ
1
 > δ

2

δ
1
 < δ

2
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population goes to extinction. Figure 7 shows the effect of probability of extinction
of high-risk drinkers on critical community size of drinker’s population for a given
time horizon. The results suggest that for the given probability of extinction, the
critical community size of drinkers increases with increases in time horizon (Figure
7). For fixed time period of extinction, critical community size decreases exponen-
tially with increase in likelihood of extinction in that period. The probability of
extinction are more higher when the δ1 > δ2, as a result the the effectivness of in-
terventions programs in low-risk environment are more than high-risk environment.

5. Discussion. The long term success of intervention programs for reducing heavy
alcohol drinkers in a college population depends on the availability of resources and
is directly related to our ability to identify where and how much to intervene. In
this study, we use model based uncertainty and sensitivity analyses on the derived
metrics that measure the temporal impact of the intervention programs. The use-
fulness of these analyses is immense as these methods not only help in identifying
important environmental factors to consider when implementing intervention pro-
grams but also help in deciding how much to focus on these factors. The measures
that are found to be important through these analyses usually require precise quan-
tification from field data. We primarily identify factors that are most sensitive to
the two metrics, namely, drinking reproduction number and time to extinction of
high-risk drinkers.

Mathematical analysis suggests that heavy drinking can be reduced if the drink-
ing reproduction number (Rd), which depends on social and environmental factors,
can be brought below one. That is, the value of the estimate of Rd for a population
predicts whether the extinction or the persistence of heavy drinkers will happen in
that population. Uncertainty analysis results for Rd using some preliminary data
from colleges in California indicate that the average intervention rate in a popula-
tion should be better than 0.6 per year (i.e., on an average drinkers should avail
interventions within about 1 year and 9 months) to bring Rd below one. Moreover,
a higher rate of intervention in the low-risk environments is much more effective
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than the same rate of intervention in the high-risk environments, when interven-
tions are being implemented in both the environments. The sensitivity analysis of
Rd indicates that social interactions are the most significant factors influencing Rd
estimates irrespective of size of intervention rates in the two drinking environments.

Uncertainty and sensitivity analyses were also carried out on the metric rep-
resenting time to extinction of high-risk drinkers in the presence of intervention
programs. This metric provides an indirect measure of the success of the inter-
vention programs in a college population where heavy drinking is a norm. The
parameter related to intervention programs that reduces initiation of drinkers (ν) is
significantly negatively correlated with the time to extinction of heavy drinkers (τQ).
That means, that time to extinction of high-risk drinkers decreases with increase
in the level of interventions targeted to reduce rate of recruitment of new alcohol
drinkers. In addition, the parameter (µ), representing the graduation and dropout
rate of the drinkers, is found to be the second most sensitive to τQ. That is, im-
proving graduation and dropout rates among college students may also reduce time
to extinction of high-risk drinkers from the population. These sensitivity results
of τQ remain consistent even with contrasting variations in the intervention rates
between the two environments. In fact, τQ is insensitive to all other social inter-
actions and drinking progression parameters. This suggest that high-risk drinking
can be effectively controlled faster by reducing drinking initiation rate or improving
graduation and dropout rates in a college population.

In the context of infectious diseases, [2] introduced the concept of a critical com-
munity size, below which a population cannot sustain the disease for long term
without external inputs of infection. We compute estimates of critical community
sizes of drinkers for various values of time horizon for extinction and likelihood of
extinction within the time horizon. Our results suggest that critical community size
decreases exponentially with increase in the probability of extinction of high-risk
drinkers for a given time horizon of extinction irrespective of rates of interven-
tion programs. However, the probability of extinction is higher when intervention
programs are implemented with higher rates in the low-risk environment than in-
tervention rates in the high-risk environment. In general, we showed that higher
interventions rates in low-risk environments are likely to be more effective than in
others as they are the feeder for high-risk environments and early stage intervention
may reduce social influence of heavy drinkers drastically.

In order to parameterize the model of this study, data that quantify environment-
dependent social interactions, interventions, and dropout rates of different types of
college drinkers, need to be collected. It appears that such data from a single study
are unavailable. The primary goal of this study was to identify the average impact
of environment-dependent intervention programs at a population level using various
metrics. We do not attempt to evaluate any particular data sets. Hence, we did not
focus on estimation of parameters and ignored several factors, for example, individ-
ual variations in alcohol consumption, including psychological and biological factors
which may make the individual more prone to heavy alcohol use. Moreover, in the
model, we assumed constant (averaged) social interaction rates between drinkers,
however, social contacts of a drinker changes continuously and such changes may
influence the results. Certainly implications from incorporating these factors in
the model need to be studied and will be incorporated in our future research. An
example of such a model might be an individual-based model capturing various
psychological and biological factors as well as a changing social network.
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Appendix

Table 6. Statistical summary of the output variables

Mean Minimum First Quartile Median Third Quartile Maximum Std Dev
Rd δ1 < δ2 1.1198 0.0493 0.6932 1.0034 1.4233 4.7000 0.5958

δ1 = δ2 1.1145 0.0520 0.6894 0.9963 1.4137 5.2946 0.5974
δ1 > δ2 0.9072 0.0433 0.5703 0.8152 1.1490 4.2771 0.4732

τQ δ1 < δ2 105.59 1.05 21.68 58.66 140.27 658.79 121.52
δ1 = δ2 89.10 1.01 18.72 48.41 116.93 599.69 105.88
δ1 > δ2 88.74 1.00 17.62 45.96 110.89 597.91 111.13

Table 7. Distribution Statistical Summary for calculating Rd

Parameter Mean Minimum First Quartile Median Third Quartile Maximum
µ 0.3516 0.0012 0.18166 0.3235 0.4853 1.8770
β1 0.6994 0.0048 0.3714 0.6078 0.9426 3.6930
β2 2.2149 0.0017 1.576 1.9189 2.9443 11.4635
α 0.5547 0.0002 0.3237 0.5341 0.7529 1.9024
γ1 0.4600 0.3800 0.4200 0.4600 0.5000 0.5399
γ2 0.4600 0.3800 0.4200 0.4600 0.5000 0.5399

Table 8. Distribution Statistical Summary for calculating τQ

Parameter Mean Minimum First Quartile Median Third Quartile Maximum
µ 0.3448 0.0011 0.1779 0.3171 0.4782 1.7952
β1 1.9255 0.0012 0.9632 1.9254 2.8879 3.8498
β2 16.3140 0 14.0960 17.4270 17.4270 17.4270
α 0.2521 0.0001 0.1269 0.2333 0.3546 1.1136
γ1 0.4600 0.3000 0.3799 0.4600 0.5399 0.6199
γ2 0.4600 0.3800 0.3801 0.4599 0.5401 0.6199
ν 0.5000 0.1000 0.2999 0.4999 0.7000 8.9999
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