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Abstract. Bladder cancer is the seventh most common cancer worldwide.

Epidemiological studies and experiments implicated chemical penetration into

urothelium (epithelial tissue surrounding bladder) in the etiology of bladder
cancer. In this work we model invasive bladder cancer. This type of can-

cer starts in the urothelium and progresses towards surrounding muscles and
tissues, causing metastatic disease. Our mathematical model of invasive BC

consists of two coupled sub-models: (i) living cycle of the urothelial cells (nor-

mal and mutated) simulated using discrete technique of Cellular Automata and
(ii) mechanism of tumor invasion described by the system of reaction-diffusion

equations. Numerical simulations presented here are in good qualitative agree-

ment with the experimental results and reproduce in vitro observations de-
scribed in medical literature.

1. Introduction. Bladder cancer (BC) is a worldwide problem. It is estimated
that 386 300 new cases and 150 200 deaths from BC occur each year, with the
highest incidence in industrialized and developed countries [16]. Tobacco smoking is
the most important BC risk factor. Another significant risk factors are occupational
exposure to carcinogens such as aromatic amines in chemicals and contaminants in
drinking water [22].

The BC is known to be a multistage disease as the number of events are required
for tumor development. The process also known as carcinogenesis starts when
the chemicals known as carcinogens penetrating from the bladder lumen affect top
(umbrella) cells of the urothelium as shown in Fig. 1.

Subsequently they reach the deeper layers of the tissue (intermediate and basal
cells). That may last several years until the carcinogenic substance accumulates in
the urothelium above the threshold level sufficient to trigger the sequence of the
DNA mutations leading to the tumor growth [17, 38]. The stages (and types) of
BC are shown in Fig. 2.

The most complicated and dangerous form of BC – invasive BC affects about
25% of patients. Treatment of invasive BC often requires removal of the bladder
(cystectomy) to prevent the tumor from spreading to the lungs, liver, and bone
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Figure 1. The structure of the urhotelium

Figure 2. BC stages according to [3]

[26]. The goal of our studies is to understand quantitatively the mechanism of
tumor invasion and examine pathways leading to this form of BC.

Invasion occurs at the tumor-host interface, where the tumor and the stromal
cells exchange enzymes and cytokines that modulate the local extracellular matrix
(ECM) and stimulate cell migration. The most important group of ECM degrading
enzymes is known as the matrix metalloproteinases (MMP) [5, 7, 20]. The action
of MMP leads to the breakdown of connective tissue barriers [32].

The nearby healthy tissue responds to MMP secretion by producing tissue in-
hibitors of metalloproteinases (TIMP), which neutralize the degrading enzymes [33].
The progress of invasive BC depends on the MMP-TIMP interaction. Shifting the
balance towards MMP secretion leads to advance of malignant cells towards the
nearby tissue and subsequent metastasis. Presence of the MMP has been experi-
mentally observed on the various stages of the high-grade (stages T2–T4 in the Fig.
2) BC [27, 36].

Mathematical modeling of cancer invasion is discussed in the number of publica-
tions ([1, 8, 11, 21, 28, 30, 35] and review in [29]). The models of enzyme-inhibitor
interaction as a driving force behind the tumor invasion were, in particular, pro-
posed in [8, 28, 30, 35]. Our work is the first one that takes into account the specifics
of BC and includes the major factors leading to its invasive form.

There are three basic approaches to modeling cancer invasion:
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• The most widely used models are involving Cellular Automata (CA) for sim-
ulation of cell living cycle and they are often combined with the sub-models,
which could include oxygen and nutrients delivery [11] and/or PDE-based
sub-models for interaction of the peripheral cancer cells with the ECM to
model tumor invasion on the local level [1]. The theoretical studies of such
models are very complicated due to their hybrid nature. However, following
the number of assumptions and simplifications in [30], the authors have found
the analytical solution to model equations using Fourier analysis.

• The second approach is pure continuous and it is based on the hypothesis of
competition for space between the tumor cells and the nearby healthy tissue.
The process is modeled using traveling waves approach [21, 28] with addition
of diffusion to stabilize the numerical solution. We adopt this approach as a
way to explain the number of qualitative factors leading to the BC invasion.
The models of this type presented in the literature are usually one-dimensional
and their theoretical analysis is done on the basis of the asymptotic expansions
in the vicinity of the tumor-tissue interface.

• The third approach to modeling tumor invasion comes from the statistical
mechanics and it involves multiple Monte-Carlo runs to compute the average
speed and depth of tumor propagation [35]. The basis of these discrete models
is Potts model and its extensions [14].

In our approach we use CA to model cell living cycle. CA allows us to model intu-
itively the tissue regulatory mechanisms: cell proliferation, apoptosis, and dynamics
of both regular and mutated cells [10].

We include specific to BC carcinogen penetration sub-model as a major factor
leading to the adoption of cancer phenotype by the regular cells (see [18] for its de-
scription). We expand to two dimensions the protease-inhibitor interaction model
suggested by Byrne et al. for simulation of trophoblast invasion [6]. The combina-
tion of CA and MMP-TIMP interaction models is done by using the ECM degra-
dation criteria proposed in [35] following in vitro experimental results discussed in
[24].

In this work, we are trying to look on the tumor invasion from the experimental
biologist perspective. We make series of observations and measurements using our
computational model instead of the microscope. In such a framework, both the
tumor cells and the tissue cells are modeled as discrete objects reacting on the
continuous processes (carcinogen penetration and MMP-TIMP interaction). The
cell status is amended on the daily basis and reflected in the model output. The
models communicate using continuous (MMP, TIMP and carcinogen concentration)
and discrete (tumor and tissue cell densities) parameters.

The manuscript is organized as follows. In the next section we give a description
of the discrete CA model adapted to the modeling of living cycle of the urothelial
cells. We also give a brief overview of the carcinogen penetration model suggested
in [18]. The section three is dedicated to the continuous model of the MMP-TIMP
interaction including its theoretical basis and the references to the experimental
results, where it is possible. The section four discusses the combination of the
models. The section five includes results of the numerical simulations and analysis
of the qualitative data using quantitative approach. The paper is wrapped up by
the conclusions and directions for future research.
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Figure 3. Modeled slice of normal urothelium (left) and actual
image of the urothelium obtained from the cystoscopy [34] (right).
The colors on the left plot represent: dark blue – the bladder cavity
and the empty space following the cell death inside the urothelium;
light blue – regular urothelium cells (intermediate and umbrellas
cells); green – the basal cells; red – bordering urothelium lamina
propia, the part of the bladder system, which includes the blood
vessels; yellow – muscle and fat layers

2. Computational model of cell dynamics. CA model is used to simulate car-
cinogenesis in urothelium and tumor invasion. The basic structure of the model is
a two-dimensional grid, which represents a slice of the bladder tissue under consid-
eration as shown in Fig. 3.

The model consists of a 2D array of automaton elements, which will be eventu-
ally identified with the real urothelial cells. The state vector, whose components
correspond to the features of interest, defines the state of each element. In the
model implemented in this work, the state vector has six components:

1. cell location: lumen (polyp level), umbrella and transitional level, basal mem-
brane, fat and muscle levels;

2. occupancy type, i.e. whether the element is occupied by the regular cell, the
mutated cell, by the “empty space” or by the vessel or tissue;

3. cell status, i.e. whether the cell is in a proliferative or in a quiescent state;
4. the level of carcinogen concentration;
5. mutation counter (zero for normal cells);
6. the ECM degradation level.

The state vector evolves according to the prescribed local rules, used to update any
given element from its own state and that of its neighbors on the previous time
step.

The structure called “urothelium state” is assigned every cell and it is updated
during the numerical simulation. A time-scale is assigned to each iteration of the
algorithm and the duration of the cell cycle is considered to be the same for both
regular and mutated cells.

In vitro experiments show that invasive cells are less adhesive, more highly mo-
bile, more metabolically active, and more highly mitotic than normal cells [35], so
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does our model. In particular, our model represents very important differences in
the behavior of regular (normal) and mutated (cancer) cells:

• Normal cells. Regular urothelial cells have very slow proliferation rate (their
natural turnover time is approximately one year and entrance to the prolif-
erative state occurs approximately six month after the cell birth). The basal
(stem) cells of the urothelium proliferate and replace the dead or injured cells
in all the layers while accepting the corresponding to each layer phenotype.
In average, the normal cell proliferates three times during its living cycle.

• Cancer cells. The cancer cell behavior differs from the normal cell rules.
Cancer cells are much more resistant to hypoxia and have one more “sleep-
ing” phase in their living cycle. Proliferation rate of cancer cell is higher
compared to the regular cell. Cancer cells have usually the apoptosis gene
suppressed and, in principle, they can proliferate infinite number of times.
The cancer cells are usually more mobile than the regular cells. They could
switch the layer occupation during their living cycle, while in the regular cells
this possibility is reserved to a very small class of the stem cells, known as
“stromal fibroblasts”.

The following CA operations (also defined as CA rules are applied to each cell as
the algorithm progresses from the time-step N to the time-step N+1 (one iteration
per day):

1. Each new cell enters the quiescent state after its birth. Only on the 6× 30th-
iteration, the cell passes to the proliferative state. If there are two empty
neighboring sites, the cell is ready to proliferate in the next iteration;

2. If the cell is in the proliferative state, it will divide to form two daughter
cells, which will move into two neighboring “empty” sites; the daughter cells
will be placed on two randomly selected sites of the eight nearest neighboring
sites within the same layer inside the urothelium, in accordance with Fig. 3;
biologically based assumption [12, 31] is that the cell can proliferate between
6 × 30th, and 8 × 30th iteration of its living cycle. Proliferation rate of the
cancer cell is higher than the normal cell – in our model the cancer cell can
proliferate starting from the (4× 30)th iteration of its living cycle.

3. The daughter cells inherit the mutation counter from the mother cells, but
not its carcinogen concentration level; mutations that lead to secretion of
MMP are marked with a unique MMP-flag in the state vector. If MMP-flag
is presented in cancer cells then the promotion of cancer will be develop to
direction of blood vessels and hence character of cancer will be invasive. This
means that cells with this flag affect the surrounding cell death occurring on
their way to the blood vessels.

4. The proliferation stage is followed by the degradative state of the cell that
continues 3× 30th iterations. On the 12× 30th iteration the cell dies, and as
a result there is an empty site in the lattice.

3. Model of MMP-TIMP interaction.

3.1. Background. Tumor invasion is a complex process involving multiple mech-
anisms. In the model presented in this section we focus our attention on key pa-
rameters involved in early tumor invasion, namely, cancer cells, proteinases (MMP),
inhibitors (TIMP) and invaded tissue.
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Urothelial cells both normal and mutated live in a complex micro-environment
that includes the extracellular matrix (ECM). Out of 13 known types of MMP two
(MMP-2 and MMP-9) are characterized by ECM-degrading activity. In particular,
MMP-9 is associated with destroying basement membrane and speeding-up tumor
metastasis in BC [27, 36].

The main trigger of the invasive BC is a cell mutation, which leads to the MMP
secretion by the affected cells. In fact, the process is more complicated (see also
[25]) and the assumptions we made here are discussed in the Section 5.1. The
cell mutations are random and our approach to the choosing of mutation type is
probabilistic.

Following [6] we denote the tumor density as n, the MMP concentration as u,
TIMP concentration by v, and invaded tissue density as r. In the simulations
presented in Section 5, we consider two-dimensional geometry, however the model
could run in three dimensions as well. The equations describe the evolution of n,
u, v, and r in space and in time and derived using the mass conservation principle.

3.2. Cancer cells. We assume in accordance with [6] that the cancer cells exhibit
a small degree of random motion Dn and respond chemotactially to the spatial gra-
dients of the inhibitor with chemotactic coefficient χ. Our approach to the modeling
invasive BC is supposed to be physically meaningful. So we employ nonlinear diffu-
sion to describe random motion. Following [18, 37] we choose Dn ∝ np, (p ≥ 1).
The idea behind the choice of Dn is to keep the speed of the tumor cell propagation
finite and the preserve the compact support of the initial data. Applying classi-
cal linear diffusion theory to modeling tumor growth is physically incorrect as it
predicts infinite speed of propagation [2].

The in vitro observations [13] confirm chemotactic response of ECM degraded
by the MMP. There is no such observations in BC, however, our suggestion that
similar processes happen there and the degraded tissue issues chemicals to which
cancer cells respond chemotactically. From modeling point of view it means that
we expect to see rising localized gradient in chemoatractant as part of the tumor
invasion dynamics.

We assume also in accordance with [6] that tumor proliferation in absence of
tissue (r = 0) satisfies a logistic growth law with rate parameter k1 and carrying
capacity scaled to unity. The presence of tissue leads to the competition for space
between the tumor and tissue it is trying to invade and this could be modeled by
crowding term proportional to the product nr. The equation has a following form:

∂n

∂t
= Dn∇(n2∇n)︸ ︷︷ ︸

random motility

−χ∇(n∇v)︸ ︷︷ ︸
chemotaxis

+ k1n(1− n− r)︸ ︷︷ ︸
proliferation

(1)

3.3. MMP. We assume that diffusion coefficient of proteinases Du is space-
dependent and the MMP secretion rate is given by k2n(1 − n), This term local-
izes MMP secretion with the front of the invading tumor and it consistent with the
experiments [27]. In addition, we assume that the MMP is neutralized by the TIMP
as one-to-one reaction, which occurs at rate k3uv.The MMP equation has a form:

∂u

∂t
= ∇(Du∇u)︸ ︷︷ ︸

diffusion

+ k2n(1− n)︸ ︷︷ ︸
secretion

− k3uv︸︷︷︸
neutralization

(2)
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3.4. TIMP. We consider a single general chemo-attractant to neutralize MMP. We
assume the inhibitor diffuses with the space-dependent diffusion coefficient Dv, and
it is produced by the part of the tissue degraded by the MMP. We also assume that
the inhibitor neutralizes proteinases with one-to-one reaction. Defining the rate of
the inhibitor production as k4ur we obtain

∂v

∂t
= ∇(Dv∇v)︸ ︷︷ ︸

diffusion

+ k4ur︸︷︷︸
production

− k3uv︸︷︷︸
neutralization

(3)

3.5. Invaded tissue. Neglecting the random motion of the underlying tissue we
assume that it is degraded by the MMP and proliferates while competing for space
with the tumor similar to the behavior described in (1). In the other words, in ab-
sence of the tumor cells the tissue undergoes logistic growth. However the presence
of tumor leads to the competition for spaces between the two types of cells, which
we model again by the incorporating the crowding term into logistic growth. Using
a modified logistic growth term with rate constant k5 to describe tissue growth and
adding a tissue degradation term −k6ur we have

∂r

∂t
= k5r(1− n− r)︸ ︷︷ ︸

tissue growth

− k6ur︸︷︷︸
degradation

(4)

3.6. Boundary and initial conditions. We consider a rectangular geometry,
where vertical direction passes through the layers of urothelium. We impose no-flux
boundary conditions for each dependent variable in all directions.

Our initial condition is dependent on the information obtained from the CA
simulation on each time step. The initial condition at time t = i∆t includes values
of u and v from the previous CA time iteration; r computed as multiplication of
latest r by the binary matrix, where zero corresponds to the cells, which ECM
degradation led to their apoptosis; n is a binary matrix, which corresponds to the
living cells with invasive phenotype at the beginning of the CA time step.

4. Model interaction. Initially we consider a normally functioning urothelium,
which is surrounded by the bladder lumen (considered as an empty space), basal
lamina (location of blood vessels supporting urothelial cells with nutrients and oxy-
gen) and muscle and fat layers as described in Fig. 1. These process is governed by
the CA algorithm. A cell state is changing in response to the cell current state and
its local neighborhood. Cells attempt to divide at each time step according to the
corresponding CA rules for normal cells as discussed in Section 2.

However, the carcinogen penetration through the bladder wall could lead to the
sequence of the DNA mutations (as discussed in [18]) and subsequent change of cell
phenotype. The carcinogen concentration at each cell is computed as the solution to
the nonlinear diffusion equation derived in [18] from the Porous Medium Equation
[37] averaged over the cell area.

Continuous in time and in space simulation of carcinogen penetration supplies
the CA model with carcinogen concentration level for each cell and reacts on the
discrete changes in the cell status (e.g., cell apoptosis) by introducing discontinuity
into solution of corresponding equation (smoothed numerically). The carcinogen
accumulates in cells as time goes on. The mutation flag in the CA model is switched
on as soon as the carcinogen concentration passes the threshold level. Various types
of carcinogens (e.g., arsenic absorbed from the drinking water or aromatic acids
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– byproducts of cigarette smoking) have different DNA mutation thresholds [19].
The model could be adapted for each type of the major carcinogen by varying this
parameter.

Following the chain of mutations the cell could obtain “invasive phenotype”
(MMP-flag equal to one) and as result the MMP secretion is started. The probabil-
ity of such event could be extracted based on the epidemiological data for BC [17].
This flag signals beginning of execution of the continuous model of MMP-TIMP
interaction described by Eqs. (1)–(4).

The system (1)–(4) is solved using the initial conditions received from the CA
model as discussed in section 3.6. The results of the MMP-TIMP interaction model
execution are transferred to the CA algorithm in order to update the cell state vector
(level of the ECM degradation by MMP given by k6ur in Eq. (4) and subsequent
direction of tumor progression). The model interaction mechanism is charted in
Fig. 4.

Carcinogen

penetration

model

t=0

t=T

CA update at t=iΔt

CA update at t=(i+1)Δt

Carcinogen 

concentration 

levelState vectors correction

MMP-TIMP
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t=Δt

ECM

degradation

level

Cancer cells

location

Figure 4. Hybrid model of invasive BC

Continuous both in space and in time penetration process goes through all simu-
lation period (from t = 0 to t = T ) as discussed in [18]. It depends on the randomly
changing carcinogen concentration on the bladder wall and porosity properties of
the different layers of urothelium. On the other hand, the simulation of MMP-
TIMP interaction starts when the first cell obtains invasive phenotype only and it
runs between two CA time steps (∆T ). The MMP-TIMP interaction model keeps
accumulating values of MMP and TIMP concentrations (u and v correspondingly)
from the previous time-steps for all computational domain. However, it obtains
new tumor and tissue density maps (n and r correspondingly) as initial conditions
on every new CA time-step. The state vector correction is done with accordance to
the ECM degradation level submitted by the MMP-TIMP model.

5. Numerical simulations.

5.1. Assumptions and simplifications. As any mathematical model of the com-
plex biological process our combined model includes the number of assumptions and
simplifications. Their goal is to make model easy for understanding and setup com-
puter simulations without missing the most important biological features of tumor
development and progression. The list bellow connects the mathematical model dis-
cussed above with biological background and could be reduced in future high-fidelity
models.

• The tissue is well oxygenated. We consider that both tumor and regular cells
receive sufficient oxygen through diffusion that illuminating cell apoptosis due
to hypoxia.
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• The angiogenesis hasn’t started yet or its influence is still negligible during the
simulated period of time. The previous assumption allows as to consider the
effects of angiogenesis as minor. The experimental results [15] also confirm
that effect of angiogenesis becomes visible on the later invasion stages.

• In fact, see also [25] for experimental results, the mutated cells are sending
signals to the adjusted to tumor stromal cells (the stem cells which aren’t level
bound). These cells are secreting MMP. The effect is, in particular accounted
for by using an assumption that only borderline tumor cells are secreting
enzymes.

• The carcinogen penetration is stopped (or significantly slowed down) by the
tissue membrane. Penetration of carcinogen to the muscle and fat layers could
probably lead to mutations and development of the secondary tumors, however
this process has no confirmation in the literature and is not modeled in this
work.

• The natural turnover time of urothelial cells is approximately one year. It is
much shorter than the lifespan of the muscle and fat cells, which is experimen-
tally confirmed to be “infinite” or almost infinite compared to the urothelial
cells [12]. On the other hand, the cells forming blood vessels are turning over
in much faster pace (by few orders of magnitude) than the urothelial cells.
Within our time-scale we assume that the ECM degradation following the
MMP secretion is the only pathway for the apoptosis of the basal lamina,
muscle and fat cells.

• Geometry of the cell is neglected (all cells are considered as identical squares.
• We refer to [18] for discussion related to the biological assumptions related to

the penetration of the carcinogens through urothelium.

5.2. Computations. We simulate invasive BC on the one-cell-thick layer of the
urothelium, which is, in fact, a two-dimensional lattice. We present three possible
scenarios of tumor behavior. The major difference between the scenarios is the rela-
tion between the model parameters. All parameters have the same or similar order
of magnitude as other mathematical models of invasive processes involving chemo-
taxis [8, 30]. We choose 8 years as the lifespan for all simulations. We consider this
time to be sufficient for development of the invasive form of BC. It corresponds to
the number of DNA mutations (4–5) necessary to develop a corresponding to the
BC cancerous phenotype. The most important parameters defining the properties
of invasion are the rate coefficients k1...k6. They correspond to the cancer cell prolif-
eration rate (k1), secretion and neutralization of MMP (k2 and k3 correspondingly),
production of TIMP (k4) and growth and degradation of invaded tissue (k5 and k6
correspondingly). In the computational tests presented in this work, we regulate
k2 and k4 as their balance could give us insight into the speed and depth of the tu-
mor progression. These coefficients are also indirectly targeted in both pre-clinical
development and trials of cancer therapies as discussed in Section 6.

The most common scenario of invasive BC is when the tumor progression is
limited by the muscle and fat and doesn’t go beyond the layers surrounding the
urothelium (stage T2 in Fig.2) [17]. This scenario is shown in Fig. 5. The plot
shows progression of the major tumor suppressed (or significantly slowed down)
by the TIMP. The tumor is surrounded by the thin envelope of the degraded cells
and its expected development is in the horizontal rather than in the vertical direc-
tion. Such tumors are removed surgically and they usually don’t require subsequent
chemotherapy treatment.
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Figure 5. Scenario 1. Simulation parameters: Dn = 10−5,
Du = 5 × 10−3, Dv = 10−3, κ = 2.5 × 10−3, k1 = k2 = k3 =
10 = k5 = 10, k4 = 150, k6 = 100.
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Figure 6. Scenario 2. Simulation parameters: Dn = 10−5,
Du = 5 × 10−3, Dv = 10−3, κ = 2.5 × 10−3, k1 = ... = k5 = 10,
k6 = 100.

The next scenario shows the spread of the tumor to the the tissues beyond
the urothelium (stages T3 and T4 in Fig. 2). This simulation as it is seen from
Fig. 6 shows the most dangerous type of the tumor, which passed through the
surrounding urothelium tissues and continues its development. The treatment of
BC on this stage almost always involves surgery followed by the chemotherapy
and could require surgical removal of bladder. The angiogenesis starts playing an
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Figure 7. Scenario 3. Simulation parameters: Dn = 10−5,
Du = 5×10−3, Dv = 10−3, κ = 2.5×10−3, k1 = k3 = k4 = k5 = 10,
k2 = 0.1, k6 = 100.

important role on this stage of tumor development and could be a major factor in
direction of its progression as well as in determination of its speed.

The third scenario, which snapshot is presented in Fig. 7 deals with the situation
when the invasion is stopped by the TIMP and small clones of the cancerous cells
are confined to the lower levels of urothelium. This type of low grade tumors usually
remains undiagnosed. However, the multiple clones of mutated cells visible on this
plot could eventually start carcinoma in situ or superficial BC (stages Ta and T1
in Fig. 2) [18]. In addition, any traumatic event (e.g., bladder injury) could lead to
the speed up in cell proliferation and as result to the development of invasive tumor
as shown in Scenarios 1 and 2

Our results show that by changing the rate coefficients we could simulate vari-
ous situations, which in turn could lead to different outcome and the as result to
require different surgical involvement and/or anti-cancer therapy. The simulations
presented above use k2 and k4 as the parameters involved into MMP and TIMP
producing. Additional rate coefficients combinations would lead to the more com-
plex scenarios and worth study in the framework of the therapy modeling. The
ECM degradation coefficient leading to the apoptosis is set to be equal to 0.75 in
all simulations (see [19] for the corresponding discussion). One interesting model
observation, which corresponds to in vivo results, is an existence of the multiple
cancerous cells spread through the urothelium, which lead to one (as in the Figs.
5 and 6) or two primary tumors only. In fact, most cancerous cells cannot develop
into tumor, as they eventually die due to hypoxia and lack of the nutrients.

6. Conclusions. The goal of this work is to build a computational tool for model-
ing invasive BC. The quantitative simulations show agreement with the qualitative
observations and could be employed for analysis of the BC growth in parallel with
in vitro experiments. Tumor-bladder interaction is very complicated and its full
mathematical description seems to be impossible. However, there is a well known
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need from the medical community in computer simulation of major mechanisms
behind BC progression and tissue response.

The hybrid discrete-continuous framework chosen in this work has shown itself
as a very intuitive and convenient way to describe complex biological processes on
both cellular and tissue levels. The model presented in this work is very adaptive,
as both state vector and CA rules could be updated to describe various phenomena
in cellular behavior. In particular, they could arise as a response of urothelial cells
to the hypoxia and the angiogenesis (driven by corresponding continuous models)
or as a reaction of tumor on the different therapy strategies

Discussed in this work MMP secretion has long been heralded as a promising tar-
get for cancer therapy on the basis of its massive up-regulation in malignant tissues
and its unique ability to degrade all components of the ECM. Preclinical studies
testing the efficacy of MMP suppression in tumor models were so compelling that
synthetic metalloproteinase inhibitors (MPI) were rapidly developed and routed
into human clinical trials. However no one of them was approved by the FDA as
the results of clinical trials where considered unconvincing (see [9] for discussion).
Despite this fact, this direction is still regarded very promising and our model could
be used for the MMP suppression therapy simulation.

Another highlight of the continuous part of our model belongs to the TIMP
production by the invaded tissue. Endogenous TIMP are multifunctional proteins
that possess different MP-inhibitory activities and divergent other functions. Their
attributes may be exploited in the search for novel therapies like increasing the
local concentration of TIMP. So far technical difficulties prevented development of
TIMP stimulators into useful drugs for cancer and other diseases. However, detailed
analysis of the clinical trials [4] shows that following recent progress in clinical
research their results should be re-considered and new set of clinical trials should
be started. Our computational approach could become a part of the theoretical
studies of this type of therapy.

Adding of angiogenesis component to the model, for instance using approach
discussed in [23] would be an important step in modeling anti-angiogenic therapy –
another promising direction in BC treatment.

Finally, we want to point out that the BC development and growth has its own
features as discussed in this work, however, it also has common characteristics with
the number of cancers developing in the transitional tissue (epithelium). This means
that our hybrid model could be converted and exploited for modeling other types
of cancer and eventually various cancer therapies.
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