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Abstract. In this article we show how dichotomic classes, binary variables

naturally derived from a new mathematical model of the genetic code, can
be used in order to characterize different parts of the genome. In particular,

we analyze and compare different parts of whole chromosome 1 of Arabidopsis

thaliana: genes, exons, introns, coding sequences (CDS), intergenes, untrans-
lated regions (UTR) and regulatory sequences. In order to accomplish the

task we encode each sequence in the 3 possible reading frames according to

the definitions of the dichotomic classes (parity, Rumer and hidden). Then,
we perform a statistical analysis on the binary sequences. Interestingly, the

results show that coding and non-coding sequences have different patterns and

proportions of dichotomic classes. This suggests that the frame is important
only for coding sequences and that dichotomic classes can be useful to recog-

nize them. Moreover, such patterns seem to be more enhanced in CDS than in
exons. Also, we derive an independence test in order to assess whether the per-
centages observed could be considered as an expression of independent random

processes. The results confirm that only genes, exons and CDS seem to possess

a dependence structure that distinguishes them from i.i.d sequences. Such in-
formational content is independent from the global proportion of nucleotides of

a sequence. The present work confirms that the recent mathematical model of
the genetic code is a new paradigm for understanding the management and the

organization of genetic information and is an innovative tool for investigating

informational aspects of error detection/correction mechanisms acting at the
level of DNA replication.
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1. Introduction. A modern working definition of a gene is a locatable region of
genomic sequence, corresponding to a unit of inheritance, which is associated with
regulatory regions, transcribed regions, and/or other functional sequence regions[16,
17]. Usually we refer to a gene as a region of DNA that encodes for a polypeptide
or for an RNA chain that has a function in the organism.

Information transfer processing from a gene to a protein requires two different
steps: first, the DNA information is transcribed into messenger RNA (mRNA);
then mRNA is translated into a protein on the basis of the genetic code, a universal
translation table that links the world of nucleic acids to the world of proteins. The
discovery of the genetic code led scientists to focus on sequencing the entire genomes
of different organisms. The Human Genome Project succeeded in sequencing the
whole human genome in 2001 [13, 24] and triggered a strong hype on the possibility
of diagnosing and treating many serious diseases. However, after ten years, it looks
like the expectations have not been met. The recent article by S.S. Hall published
on Scientific American: “Revolution Postponed: Why the Human Genome Project
Has Been Disappointing” is emblematic: In fact its subtitle states: “The Human
Genome Project has failed so far to produce the medical miracles that scientists
promised. Biologists are now divided over what, if anything, went wrong - and what
needs to happen next”.

Genomes are composed also by noncoding DNA, those sequences that do not
encode for any protein. For instance, more than 98% of the human genome is
composed by noncoding DNA [2, 15]. The majority of noncoding DNA sequences
have no known biological function and are sometimes referred to as junk DNA.
However, some types of noncoding DNA sequences have biological functions such
as the regulation of gene expression (i.e. promoters and enhancers). Some other
noncoding sequences are transcribed but not translated (introns). Other noncoding
sequences are highly conserved: between them we can distinguish regulatory regions,
transposable elements and pseudogenes (vestiges of once-functional genes disabled
by sequence deletions, insertions or mutations) [14].

The whole genetic information is passed from a parent cell to two or more daugh-
ter cells through the process of cell division. The main concern of cell division is
the maintenance of the genome of the original cell. Before division can occur, the
genomic information must be replicated and the duplicated genome is separated
cleanly between cells. During DNA replication several errors may occur. Some of
these errors have no effect on the life of the cell, while others can result in growth
defects, cell death or cancer.

Cancer is a genetic disease although it is not usually an inherited disease. Cancer
development in the body is due to a combination of events. Mutations occasionally
occur within cells as they divide and can affect the behavior of cells, sometimes
causing them to grow and divide more frequently. Several biological mechanisms
can stop this process: biochemical signals can cause inappropriately dividing cells
to die. Sometimes additional mutations make cells ignore these messages. Most
dangerously, a mutation may give a cell a selective advantage, allowing it to divide
more vigorously than its neighbours and to become a founder of a growing mutant
clone. Eventually, mutations can accumulate within cells to promote their own
growth, creating a tumour. Since mutations may occur because of errors during
DNA replication, the study of error detection/correction mechanism in such process
could be of key importance for understanding the onset of cancer.
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The genetic code it is a surjective mapping between the set of 64 possible three-
base codons and the set of 20 amino acids (plus the stop signal). Many slight
variants of the standard genetic code have been discovered, including various al-
ternative mitochondrial codes. Moreover in certain proteins, non-standard amino
acids can substitute standard stop codons. For example, UGA can code for Seleno-
cysteine, and UAG can code for Pyrrolysine. Selenocysteine is then seen as the 21st

biologically functional amino acid, and Pyrrolysine is seen as the 22nd [3].
In biology, a reading frame is a way of breaking a sequence of nucleotides in DNA

or RNA into three letter codons which can be translated in amino acids. There are
3 possible reading frames in an mRNA strand: each reading frame corresponds
to starting at a different alignment. Usually, there is only one correct reading
frame. Moreover, error detection and correction mechanisms are strictly involved
with frame recognition. Coding sequences possess a local informational structure
that can be related to frame synchronization processes [11]. But is frame important
for non-coding sequences too? Are regulatory sequences, introns and intergenic
sequences related to the frame and or to the existence of codons?

In this work we try to answer to the above questions by investigating the entire
genome of chromosome 1 of Arabidopsis thaliana, one of the most popular model
plant. A.thaliana has many advantages for genome analysis: a small size, a short
generation time and relatively small nuclear genome. These advantages promoted
the growth of a scientific community that has investigated the biological processes
of A. thaliana and has characterized many genes [21]. Also, several studies have
identified in A. thaliana genes homologous to human oncogenes or tumor suppressor
genes [19, 23].We study the role of frame in coding and non coding sequences in the
genome of A. thaliana by using a recently developed mathematical model for the
genetic code [4, 5, 6]. In particular we use the information of dichotomic classes, bi-
nary variables naturally derived from the above mentioned model, in order to assess
different behaviours between coding and non coding sequences. So far, the mathe-
matical model of the genetic code has been used to investigate only some proteins
of different origin [7, 8, 9, 10, 11]. Now we apply it to a whole chromosome of a
single (and well known) organism. The finding of some local (or global) information
structure related to dichotomic classes could be useful in order to develop alterna-
tive methods to understand error detection and correction mechanisms involved in
the translation process.

The paper is organized as follows: in section 2 we describe the salient features
of the mathematical model. In section 3 we describe the organism of A. thaliana
and the steps followed to obtain the data set analyzed. In Section 4 we perform a
descriptive statistical analysis on the data set; moreover, we implement and apply
a test for independence based on dichotomic classes. In the last section we discuss
the results.

2. Mathematical model. The genetic code is the dictionary used by the cell to
translate a sequence of codons (triplets or bases) of RNA in a sequence of amino
acids during the translation process. Almost all living organisms use the same
genetic code, called the standard genetic code, but many slight variants have been
discovered. All known naturally-occurring codes are very similar and the coding
mechanism is the same for all the organisms: it implies three-base codons, tRNA,
ribosomes, reading the code in the same direction and translating the code three
letters at a time into sequences of amino acids.
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Table 1. Euplotid version of the genetic code

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Cys
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

The DNA is made of four bases: Adenine (A), Guanine (G), Cytosine (C) and
Thymine (T) (in RNA thymine is replaced by uracil (U)). Hence, there are 43 = 64
possible codons; 61 of them encode amino acids, while the remaining three (TAA,
TAG, TGA) encode stop signals that indicate the point where the assembly of the
polypeptide chain should be stopped. Since the amino acids that contribute to the
formation of proteins are only 20, some amino acids are necessarily encoded by more
than one codon. This fact determines the properties of redundancy and degeneracy
typical of the genetic code. Indeed, from a mathematical point of view, we can say
that genetic code is a surjective (all amino acids are encoded by at least one codon)
and non-injective (some amino acids are degenerate) function between two sets of
different cardinality (amino-acids and codons). The euplotid version of genetic code
is shown in table 1. The main difference with the standard version concerns the
TGA codon: here it encodes the amino acid Cysteine while in the standard version
of the code it is one of the stop signals. In table 1 codons are displayed into quartets:
groups of four codons sharing the first two bases.

2.1. Degeneracy and redundancy. [4, 6] proposed a model that explains the
degeneracy of the genetic code based on a non-power number representation system.
This approach describes the structure of the genetic code from a mathematical point
of view and allows the analysis of degeneracy and redundancy properties.

Degeneracy and redundancy are still described by the numerical quantities that
define the respective sub-sets: Tyrosine is a degeneracy-2 amino acid because it is
encoded by a set of two redundant codons (TAT, TAC). Table 2 shows the degen-
eracy distribution inside quartets of the euplotid genetic code.

The degeneracy distribution inside quartets is obtained by taking into account
that the 3 degeneracy-6 amino acids (Arginine, Leucine and Serine) are divided into
two subsets of degeneracy-2 and 4.
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Table 2. Degeneracy distribution inside quartets of euplotid nu-
clear version of genetic code

number of amino
acids sharing the
same degeneracy

Degeneracy

2 1
12 (9+3) 2
2 3
8 (5+3) 4

2.2. Non-power binary representation of the genetic code. By using a bi-
nary string of length n we can represent 2n different objects. For example, the 4
nucleotides (A, C, G, T) can be represented by a binary string of length 2. Con-
sequently codons (groups of 3 nucleotides) can be represented by binary strings of
length 6, in fact 26 = 64. However, it is possible to show that fixed representa-
tion systems of this kind are not able to describe the degeneracies of the genetic
code. Now, in [4, 6] it has been shown that a particular type of number positional
representation, called non-power representation, can fully describe the degeneracy
distribution of the genetic code. Usual number representation systems are posi-
tional power representation systems. In these systems numbers are represented by
a combination of digits, from 0 to n − 1, where n is the system base, that are
weighted with values that grow following the power expansion of the base n. For
example, if we want to represent number 476 in base 10 we have to use the digits
as follows:

476 = 4× 102 + 7× 101 + 6× 100

while number 13 is obviously represented by

13 = 1× 101 + 3× 100

If we turn to the binary system, the power positional representation of number
13 is 1101:

13 = 1× 23 + 1× 22 + 0× 21 + 1× 20

In non-power representation systems the positional values grows more slowly
than the powers of the system base. This implies that it is possible to represent
redundantly all the numbers from 0 to the sum of all the positional weights. In
other words, a given number can be represented by more than one string. Hence,
non-power representation systems can be used to describe degeneracy distributions.
Remarkably, there is a non-power binary representation that describes perfectly the
degeneracy of the genetic code. This system is based on a specific sequence of po-
sitional weights: (8, 7, 4, 2, 1, 1) and this solution is unique up to trivial equivalence
classes [12, 4]. The solution is specific for the degeneracy inside quartets for the
euplotid version of the code presented in table 2.

Table 3 shows the non-power representation of the first 23 integers by length-6
binary strings and positional weights (8, 7, 4, 2, 1, 1). Notice the same degeneracy
distribution of euplotid genetic code (see table 4).

We can state that each codon can be associated to a length-6 binary string
representing a whole number. Thus, the genetic code and this specific non-power
binary representation are linked by a structural isomorphism: they share the same
structure. However this result does not represent a model of the genetic code per se.
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Table 3. Non power representation of whole numbers from 0 to
23 by length-6 binary strings

Number Positional weights: [8,7,4,2,1,1]
0 000000
1 000001 000010
2 000011 000100
3 000101 000110
4 000111 001000
5 001001 001010
6 001011 001100
7 010000 001101 001110
8 100000 010001 010010 001111
9 100001 100010 010100 010011
10 100011 100100 010101 010110
11 100101 100110 011000 010111
12 101000 100111 011001 011010
13 101001 101010 011100 010111
14 101100 101011 011100 011011
15 110000 101101 101110 011111
16 110001 110010 101111
17 110100 110011
18 110101 110110
19 111000 110111
20 111001 111010
21 111100 111011
22 111101 111110
23 111111

In order to build a model we need to establish links between aminoacids (defined
by codons) and numbers from 0 to 23 (defined by 6-bit strings). The task can be
accomplished by studying symmetry properties of both these mappings.

2.3. A hierarchy of symmetries.

2.3.1. Pyrimidine ending codons. If we analyze the genetic code and the mathemat-
ical model we can notice many symmetry properties. First, if we make a Pyrimidine
(T vs C) exchange in the last base of each codon, the meaning of the codon remains
the same. This implies the definition of 16 groups of two codons each that encode
the same amino acid. So far we know 26 variants of the genetic code (10 nuclear
and 16 mitochondrial) and all of these respect this symmetry. Remarkably, the
non-power representation system shows an analogous symmetry. In fact, the 6-digit
binary strings xxxx01 and xxxx10 always encode the same number and define 16
groups of two strings each. This is a property of this specific representation system
because of the positional weights chosen. This means that we can associate binary
strings ending in 01 or 10 with Pyrimidine ending codons. Notice that there is no
biochemical reason for this degeneracy as codons ending in C or T can be recognized
by different tRNAs [25].
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Table 4. Palindromic representation of the degeneracy of the eu-
plotid version of the genetic code and non-power representation of
whole numbers

Degeneracy Amino acid Coded whole number
1 T Trp 0
2 F Phe 1
2 Stop 2
2 Y Tyr 3
2 L Leu(2) 4
2 H His 5
2 Q Glu 6
3 C Cys 7
4 S Ser(4) 8
4 P Pro 9
4 V Val 10
4 L Leu(4) 11
4 R Arg(4) 12
4 G Gly 13
4 A Ala 14
4 T Thr 15
3 I Ile 16
2 E Glu 17
2 D Asp 18
2 R Arg(2) 19
2 N Asn 20
2 K Lys 21
2 S Ser(2) 22
1 M Met 23

2.3.2. Purine ending codons. The former aspect determines an immediate conse-
quence since the remaining 32 codons have to be associated with the remaining
32 strings representing whole numbers. Thus strings ending in 00 or 11 are neces-
sarily associated to Purine ending codons. Since the only two degeneracy-1 strings
(000000 and 111111) have to be associated with the only degeneracy-1 codons (ATG
and TGG) a new concept raises naturally: the parity of a string, that is, the sum
of its digits. So, we can assume that, in case of Purine ending codons, strings with
even parity are associated to G-ending codons, while, by exclusion, strings with odd
parity are associated to A-ending codons. All these aspects are summarized in table
5

2.3.3. Degeneracy-3 elements. We can notice that there are only two degeneracy-3
whole numbers (7 and 16) and amino acids (Cysteine and Isoleucine). Obviously
these elements must be associated. So the group (ATT, ATC, ATA) and (TGT,
TGC, TGA) are linked with binary strings representing numbers 7 and 16. These
two groups of codons are linked by a degeneracy-preserving transformation: T ↔
A in the first base and T ↔ G in the second one. It is remarkable to notice that
this transformation corresponds to a symmetry property from the model point of
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Table 5. Equivalence between strings and Purine/Pyrimidine
ending codons

Strings Parity Codons
x x x x 0 1 Even N N C/T
x x x x 0 1 Odd N N C/T
x x x x 1 0 Even N N C/T
x x x x 1 0 Odd N N C/T
x x x x 1 1 Even N N G
x x x x 1 1 Odd N N A
x x x x 0 0 Even N N G
x x x x 0 0 Odd N N A

view: the palindromic symmetry. In fact the first group strings can be obtained
by the 0 ↔ 1 exchange of the digits of the second group strings. This palindromy
is observed also for the degeneracy-1 string (000000 and 111111) coding for amino
acids Methionine (ATG) and Tryptophan (TGG). Notice that the numbers encoded
by a palindromic couple sum up to 23.

Summarizing, we can state that degeneracy-3 and degeneracy-1 amino acids form
two groups of quartets that show a palindromic symmetry. Notice that, differently
from the euplotid code, in the standard genetic code we have TGA codon encoding
a stop signal and not Cysteine. Palindromic symmetry involves all the quartets of
the genetic code. It connects quartets with the same degeneracy distribution and
strings related by the complement to one operation.

2.3.4. Degeneracy-6 elements. By analyzing table 6 we can see that there are two
degeneracy-2 numbers that correspond to A-ending codons (4 and 19); but there
are no amino acids with degeneracy 2 encoded by two A-ending codons. Therefore
these numbers must be associated with the degeneracy-2 part of degeneracy-6 amino
acids encoded by at least two A-ending codons. Looking at the tables it is easy to
recognize these amino acids in leucine (Leu) and arginine (Arg). Both of them are
encoded also by two G-ending codons that necessarily belongs to their degeneracy-4
part. The only degeneracy-4 numbers showing this feature are 11 and 12: both of
them display two even strings ending with 00 or 11. It can be observed once more
that this couples of numbers (4 and 19) and (11 and 12) are palindromic (their sum
equals 23). So we can state that there is a symmetry of the role of Leu and Arg.

2.3.5. Pyrimidine ending codons with odd parity. We succeeded in linking binary
strings with codons whose second letter is T or G. Moreover all the T or C ending
codons so far associated show an odd parity. So we can state that amino acids with
Pyrimidine ending codon and with a G or a T (Keto base) in the second position
are encoded by an odd string We can find only two degeneracy-4 numbers (10 and
13) and only two degeneracy-2 numbers (1 and 22) satisfying this rule and, as a
consequence, we can associate to them the amino acids valine (Val), glycine (Gly),
phenylalanine (Phe) and the degeneracy-2 part of serine (Ser).

2.3.6. The last associations: second base A or C. Now it remains to associate only
codons whose second base is an Amino-base (A or C). It is quite simple because
codons with A in second position share all degeneracy-2, while codons with C in
the second position have degeneracy-4. Following the rules described above, we can
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try to give a place to all codons into the mathematical model. The result is shown
in table 6

Table 6. Non-power model of the euplotid nuclear genetic code

T C A G

T

1 000001 Phe 15 101101 Ser 18 110110 Tyr 16 110010 Cys T

1 000010 Phe 15 101110 Ser 18 110101 Tyr 16 110001 Cys C
4 001000 Leu 15 011111 Ser 2 000100 Stp 16 101111 Cys A
11 011000 Leu 15 110000 Ser 2 000011 Stp 23 111111 Trp G

C

11 100101 Leu 14 011110 Pro 3 000101 Tyr 12 011010 Arg T

11 100110 Leu 14 011101 Pro 3 000110 Tyr 12 011001 Arg C

4 000111 Leu 14 101100 Pro 17 110100 Stp 19 111000 Arg A
11 010111 Leu 14 101011 Pro 17 110011 Stp 19 101000 Arg G

A

7 001101 Ile 8 010010 Thr 5 001001 Asn 22 111110 Ser T

7 001110 Ile 8 010001 Thr 5 001010 Asn 22 111101 Ser C
7 010000 Ile 8 100000 Thr 21 111011 Lys 19 110111 Arg A
0 000000 Met 8 001111 Thr 21 111100 Lys 12 100111 Arg G

G

13 101001 Val 9 100001 Ala 20 111010 Asp 10 010110 Cys T

13 101010 Val 9 100010 Ala 20 111001 Asp 10 010101 Cys C
13 011100 Val 9 010011 Ala 6 001011 Glu 10 100011 Cys A
13 011011 Val 9 010100 Ala 6 001100 Glu 10 100100 Trp G

It is easy to notice how palindromy preserve degeneracy within quartets. From
a mathematical point of view palindromy is represented by the complement to
one operation of all the binary digits of a given string. From a biochemical point
of view palindromy is given by different base transformations depending on the
quartet considered. By looking at table 6 we succeeded in assigning a binary string
to each codon but of course the solution is not unique. For instance, it is possible to
exchange the full set of strings of a quartet with the set assigned to the palindromic
quartet. This assignation is one of the most probable, given all the symmetry
properties presented.

2.4. Dichotomic classes. By studying the degeneracy properties of the genetic
code we can classify di-nucleotides into three dichotomic classes: parity, Rumer and
hidden. For the definition of these classes it is necessary to introduce the unique
three possible chemical classification of the bases (T, C, A, G):

Purine (R) vs Pyrimidine (Y): {A,G} vs {C,T}
Keto (K) vs Amino (Am): {G,T} vs {A,C}
Strong (S) vs Weak (W): {C,G} vs {A,T}

2.4.1. Parity class. According to the mathematical model described so far, each
codon is associated to a binary string. The parity of a codon corresponds to the
parity of the sum of all the digits of the associated string. We can observe that
the parity of a binary string can be obtained simply by counting the number of
ones: an even number of ones leads to an even string while an odd number of ones
leads to an odd string. It is important to underline that palindromic symmetry
preserves parity; in fact, the complement to one operation does not change the
parity of the string since the string length is even. The parity bit of a string can
be determined also by its biochemical composition: first, any codon ending with
A (G) is represented by an odd (even) string. Instead, if the codon ends with a
Pyrimidine (T or C) then we have to look at the second base of the codon: when it
is an Amino-base then the codon is even, while a Keto-base in the second position
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leads to an odd codon. Also notice that the R-Y transformation changes the parity
of a string. Now, it is possible to build an algorithm in order to define the parity
of a codon from its biochemical composition. This algorithm involves the last two
bases of the codon and it is shown in Figure 1

Figure 1. Algorithmic definition of the parity class.

2.4.2. Rumer’s class. Y.U.B. Rumer was a theoretical physicist who first noticed
a regularity of the degeneracy distribution within quartets in the standard genetic
code. He observed that exactly one half of the quartets showed degeneracy-4 while
the other half showed degeneracy 1, 2 or 3. Thus, each codon can be assigned
to a dichotomic class named Rumer’s class depending on whether it belongs to a
degeneracy-4 or degeneracy 1, 2 or 3 quartet. Moreover, Rumer observed that a
specific transformation, called Rumer’s transformation, links the two halves of the
genetic code: T,C,A,G ↔ G,A,C,T. Rumer’s transformation converts a codon of
class 1 2 or 3 in a codon of class 4 and vice-versa; it breaks the degeneracy of
the code since it reveals an antisymmetric property of the degeneracy distribution.
Rumer’s transformation is global i.e. it acts univocally on the 4 mRNA bases.

By looking at the chemical properties of the bases we can create an algorithm
for determining Rumer’s class (see Figure 2). First, we can take into account the
second base of a codon: if it is an Amino-base we can immediately determine the
class (class 4 if it is C, class 1,2,3 if it is A). If the second base is a Keto-type base
(G or T) we need to consider the Strong/Weak character of the first base of the
codon. If the first base is a Strong type base (C or G) then the codon has class 4.
Otherwise it has class ¬4 (1,2 or 3).

2.4.3. Hidden class. We observed that Y-R transformation changes the parity of a
codon, while the K-Am transformation changes the Rumer’s class. Now, we can
postulate the existence of a third class, called hidden class that is antisymmetric
with respect to the global transformation S-W. This class can be defined by an
algorithm similar to those proposed for Rumer and parity classes as shown in Figure
3. In this case we have to consider the bases of two different codons: the first base
of a codon and the third base of the previous one. If the first base is a Weak base
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Figure 2. Algorithmic definition of the Rumer’s class.

(A or T) then the hidden class is 0 for A and 1 for T. In case of Strong first base (C
or G) we have to consider the last base of the previous codon: if it is a Pyrimidine
base the hidden class is 0 otherwise it is 1.

Figure 3. Algorithmic definition of the hidden class.

The three global transformations described above, together with the identity
transformation, define a Klein V group structure as shown in table 7.

3. The chromosome 1 of A. thaliana.

3.1. A. thaliana as a model organism. Arabidopsis thaliana is a small flowering
plant native to Europe, Asia, and northwestern Africa. A spring annual with a
relatively short life cycle, A. thaliana is popular as a model organism in plant
biology and genetics. A. thaliana has a rather small genome, only 157 megabase
pairs (Mbp) and five chromosomes [22]. Arabidopsis was the first plant genome
to be sequenced, and is a popular tool for understanding the molecular biology of
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Table 7. Product table of the Klein V group as implied by the
three global transformations plus the identity.

I K-Am S-W Y-R
I I K-Am S-W Y-R

K-Am K-Am I Y-R S-W
S-W S-W Y-R I K-Am
Y-R Y-R S-W K-Am I

many plant traits. By the beginning of 1900s, A. thaliana began to be used in
some developmental studies. It plays the role in plant biology that mice and fruit
flies (Drosophila) play in animal biology. Although A. thaliana has little direct
significance for agriculture, it has several traits that make it a useful model for
understanding the genetic, cellular, and molecular biology of flowering plants.

The small size of its genome makes A. thaliana useful for genetic mapping and
sequencing. It was the first plant genome to be sequenced, completed in 2000 by the
Arabidopsis Genome Initiative [21]. The most up-to-date version of the A. thaliana
genome is maintained by the Arabidopsis Information Resource (TAIR). Much work
has been done to assign functions to its 27,000 genes and the 35,000 proteins they
encode [22].

3.2. Dataset. We consider seven groups of sequences (see Fig. 4) from the chro-
mosome 1 of A. thaliana, that is composed by a long DNA sequence of 30.427.671
base pairs as follows:

1. Genes: regions of a genomic sequence corresponding to a unit of inheri-
tance. They are formed by regulatory regions, transcribed regions, and/or
other functional sequence regions.

2. Exons: portions of a gene that are transcribed into mRNA and then trans-
lated into a protein. Each gene can contain one or more exons.

3. CDS: portions of a gene that encode for a given protein. It is formed by
joining exons (one or more) within a gene.

4. Introns: portions of a gene that are transcribed but not translated.
5. Intergenes: sequences between a gene and the following one.
6. (UTR): portions of mRNA that precede the codon that begins translation

(AUG) (5’UTR) and follow the termination codon (3’ UTR)
7. Regulatory regions: portions of a gene, with regulatory function, that

precede (upstream) and follow (downstream) the fragment transcripted into
mRNA

Figure 4. Definition of type of sequences within a fragment of DNA
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First of all we have extracted the complete sequence of A. thaliana chromosome
1 from Genbank. This dataset allows to extract four kind of sequence data in
fasta format: the complete sequence of the entire chromosome, a list of the genes
sequences, a list of CDS, a list of mRNA sequences. We imported and processed
the data by the means of R [20]. Then we created specific routines that, using the
information of annotation, allowed us to extract the remaining group of sequences
of interest: exons, introns, intergenes, 5’ and 3’ untranslated regions (UTR), and
upstream and downstream regulatory regions. The annotation file, in fact, contains
useful information for this purpose such as the nucleotide position of the beginning
and the end of each gene, CDS and mRNA. The procedure led to the creation of
seven datasets, one for each sequence group.

Once the data have been imported, we removed from the datasets those sequences
that display undefined bases (different from A, C, G, T) or that are shorter than 6
bases. The seven different dataset together with the number of records are shown
in table 8.

Table 8. Number of records and percentages of bases for each
type of sequence analyzed from A. thaliana chromosome 1

Type Records A C G T
Genes 8428 28.47 18.77 21.33 31.43
Exons 37549 29.00 19.94 23.73 27.33

CDS 9262 28.61 20.48 23.87 27.04
Introns 30663 26.93 15.72 16.68 40.68

Intergenes 8350 34.01 15.92 16.04 34.03
UTR 14427 30.42 17.76 16.78 35.10
Reg 2037 31.08 18.34 16.38 34.19

4. Statistical analysis. In this section we perform a statistical analysis on the
dichotomic classes computed on the seven groups of sequences of the chromosome
1 of A. thaliana described in the previous section. As mentioned above, the aim is
to study whether the information conveyed by dichotomic classes can characterize
different portions of the genome. In order to accomplish the task, we code all
the sequences into the three dichotomic classes and study the distributions of such
binary sequences. In particular, we focus on their mean value, that is, the percentage
of ones. Thus, for each sequence, we obtain 22 variables as reported in table 9:

The first results are reported in tables 10 and 11 where we show the means over
the set of records defined in table 8 computed respectively on sense and antisense
strands. The median values (not shown here) are very similar to the means and
lead to the same conclusions.

From the two tables we can notice that coding and non-coding sequences show
a different behaviour. In fact, in noncoding sequences (except for Exons and CDS)
the mean values do not vary with frame (for example p0 ' p1 ' p2 ' 60%). Such
similarity is very high for UTR and regulatory sequences. On the contrary, Exons
and CDS (the only sequence that undergo the transcription and translation pro-
cesses) show different mean values in different frames. For example, if we consider
parity, we can see that p0 is similar to p1 (∼ 50% − 52%) but both of them are
lower than p2 (56.26% for exons and 58.67% for CDS, respectively). This kind of
analysis suggests that the frame plays a role only for coding sequences; moreover,
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Table 9. Variables included in each dataset

Name Description

p0, r0, h0 mean value for parity, Rumer, hidden classes, in frame
p1, r1, h1 mean value for parity, Rumer, hidden classes, out of frame

1
p2, r2, h2 mean value for parity, Rumer, hidden classes, out of frame

2
p0a, r0a, h0a mean value for parity, Rumer, hidden classes, antisense

strand in frame
p1a, r1a, h1a mean value for parity, Rumer, hidden classes, antisense

strand out of frame 1
p2a, r2a, h2a mean value for parity, Rumer, hidden classes, antisense

strand out of frame 2

Table 10. Mean values of the percentages of dichotomic classes
computed in sense strand

p0 p1 p2 r0 r1 r2 h0 h1 h2
Genes 55.19 55.86 56.84 38.87 38.66 38.56 48.00 48.18 47.17
Exons 52.13 52.71 56.26 42.17 39.93 39.47 50.58 51.44 47.41

CDS 50.13 51.63 58.67 44.09 41.74 38.81 51.88 54.78 45.90
Introns 61.21 60.40 59.29 34.85 33.06 32.82 38.74 38.33 37.83

UTR 60.22 60.01 60.15 35.27 35.24 35.25 44.55 44.23 44.31
Regulatory 59.67 59.72 60.19 35.86 35.84 36.53 44.08 43.56 43.45
Intergenes 60.62 60.53 60.42 31.48 31.43 31.49 49.19 49.07 49.13

Table 11. Mean values of the percentages of dichotomic classes
computed in antisense strand

p0a p1a p2a r0a r1a r2a h0a h1a h2a
Genes 56.29 56.33 56.01 38.60 39.33 39.09 51.04 51.01 50.59
Exons 54.85 55.92 53.29 40.75 45.28 42.76 49.09 49.27 47.06

CDS 54.61 56.33 51.06 39.05 49.32 43.64 48.66 49.39 44.14
Introns 60.45 61.58 61.74 29.38 26.75 28.64 61.01 61.68 61.36

UTR 60.12 59.70 59.71 32.16 32.40 32.19 52.20 52.30 52.65
Regulatory 60.39 59.74 59.18 32.61 33.28 33.15 49.50 48.97 49.13
Intergenes 60.56 60.47 60.54 31.56 31.56 31.53 49.12 49.09 49.14

the information contained in the dichotomic classes can reveal such role. In the
following we summarize the results for the three dichotomic classes. Note that the
values for genes can be considered as the weighted mean of coding and non-coding
sequences.

Parity. The percentages of parity are similar for introns, intergenes, UTR and reg-
ulatory sequences (the range is from 59% to 61%). There are not big differences for
the three frames. Also, the genes show the same behaviour as non coding sequences
but the mean values are different (55%-56%). CDS and Exons show a lower value of
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p0 and p1 (CDS: 50%-51%; Exons: 52%) and an higher value of p2 (CDS: 58.67%;
Exons: 56.26%). We can summarize the last result as follows:

p0 < p1 < p2

Rumer. As concerns Rumer’s class, non-coding sequences (introns, IG, UTR and
regulatory) show almost the same values in and out of frame. UTR and regulatory
sequences show values between 35% and 36%, while introns vary within 32.82% and
34.85%. Intergenes seems to have a specific Rumer value around 31.5%. Genes
show the same behaviour as non coding sequences but the values are around 39%.
We can summarize the result of CDS as follows:

r2 < r1 < r0

Note that the values for CDS are remarkably higher than those of non-coding
sequences.

Hidden. Non-coding sequences (introns, IG, UTR and regulatory) show almost the
same values both in and out of frame but with specific values for each sequence
class: introns (∼ 38%) , IG (∼ 49.1%), UTR and regulatory(∼ 44%). Once again,
coding sequences show different patterns across the frames:

h2 < h0 < h1

For what concerns exons we can see that h0 is very similar to h1 (50.58% and
51.44%) but higher than h2 (47.41%). As for the Rumer’s class, genes show the
same behaviour as non coding sequences (they don’t change with frame).

If we study the dichotomic classes computed on the antisense strand we can
observe that coding and non-coding sequences have a similar behaviour. Genes
and non coding sequences do not vary with frame while exons and CDS do. The
values are different from those of the sense strand except for intergenes. In fact
intergenes, surprisingly, show the same percentages observed on the sense strand.
As concerns the other non-coding sequences (introns, UTR and regulatory) we can
see that parity values are similar to those computed in sense strand, while Rumer
and hidden values differ when passing from sense to antisense strand. Finally, CDS
and exons show again a frame-related behaviour:

p2a < p0a < p1a

r0a < r2a < r1a

h2a < h0a < h1a

The above analysis has been repeated on the set of transformed sequences:

• complementary sequences
• reverted sequences
• sequences undergone to Keto/Amino global transformation
• sequences undergone to Purine/Pyrimidine global transformation

The results obtained show a similar behaviour for all the kind of genome portions
considered. The whole analysis can be found in [18].
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Table 12. Partition of the 16 dinucleotides into parity groups.

1st base 2nd base Dinucleotide group parity
i (b1) (b2) (D)
1 A A

S1 1

2 C A
3 G A
4 T A
5 G T
6 T T
7 G C
8 T C
9 A G

S2 0

10 C G
11 G G
12 T G
13 A T
14 C T
15 A C
16 C C

4.1. Independence test. In this section we test the hypothesis that the dichotomic
classes are expression of an underlying organization of the genetic information. This
would imply the existence of a correlation structure in the nucleotide sequences so
that the percentages observed are not compatible with the hypothesis of an inde-
pendent random process. Hence, under the hypothesis of stochastic independence
of the sequence, the percentages of dichotomic classes would depend only on the
proportions of bases. For instance, if we consider parity, define the random vari-
able X as the parity of a dinucleotide for a given sequence. Then, X follows a
Bernoulli distribution with parameter π = P (X = 1), that is: E(X) = π and
V (X) = π(1− π). Then, we have the following null hypothesis:

H0 : π = π0

H1 : π 6= π0

where π0 = P (X = 1) under the assumption that the DNA sequence is a realization
of a i.i.d. process. Now, we can see that:

π0 = P (X = 1) = P (D) ∈ S1 =

8∑
i=1

P (b1)i ∗ P (b2)i (1)

where P (b1) and P (b2) are the probability of occurrences of the 4 nucleotides
(T,C,A,G) in the first and second base, respectively. The association scheme for the
parity is presented in table 12. Therefore, the possible differences observed between
the original and i.i.d. sequences are not due to the proportion of bases and all the
quantities derived from it (e.g. the GC content and the like).
For example, if we have the following probability distribution for the nucleotides:
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base P
A 0.30
C 0.25
G 0.20
T 0.25

then
π0 = 0.30× 0.30 + 0.25× 0.30 + 0.20× 0.30 + 0.25× 0.30 + 0.20× 0.25+

+ 0.25× 0.25 + 0.20× 0.25 + 0.25× 0.25 = 0.525

Now, if we take the usual sample mean π̂ as the estimator of π we have that under

the null hypothesis, E(π̂) = π0 and V (π̂) = π0(1−π0)
n where n is the length of binary

sequence. Thus, we can use the test statistic Z

Z =
π̂ − π0√
π0(1−π0)

n

.

Z converges in distribution to a standard normal random variable so that the usual
critical values can be used.

We have computed the p-values associated to the test for each sequence and
for each dichotomic class. The results are shown in Figures 5 and 6, where we
present the histograms of the p-values for the sequences analyzed. By looking at
the histograms, we can see that only coding sequences and genes show patterns
which indicate the departure from the i.i.d. hypothesis. Only these classes, in fact,
show an important proportion of p-values lower than 0.05 (see Tab. 13). This
suggests that only genes, exons and CDS show an informational structure that
depends on the frame but is not related to the proportion of bases.

Table 13. Percentages of p-values lower than 0.05

parity Rumer hidden
Genes 17.94 13.24 8.93

CDS 28.28 14.96 5.80
Exons 11.45 5.80 4.00

Introns 4.31 1.50 1.20
Intergenes 9.09 3.13 1.70

UTR 6.27 1.98 1.43
Regulatory 5.65 2.85 1.96

The results for parity seem to be more informative than those for other classes. In
fact, they show a higher rate of low p-values. This trend can be observed also in non-
coding sequences where parity p-values seem to follow an uniform distribution while
Rumer and hidden show fewer low p-values. Finally, if we compare the histograms
of exons and CDS we can see that the latter show an higher rate of low p-values.
This effect could be related to the sample size. In order to investigate the matter in
detail, it might be interesting to join all the sequences of the same kind as to give
more discriminatory power to the test and reduce the probability of false rejections
due to multiple testing. The latter issue might be also studied by resorting to
adjusted p-values and to false discovery rate estimation (see e.g. [1]). The overall
results confirm the findings of [8] regarding the presence of correlations between
dichotomic classes in coding sequences.
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Figure 5. Histograms of the p-values associated to the indepen-
dence test for coding sequences

5. Conclusions. In this work we have shown how a recently developed mathe-
matical model for the genetic code can be used as a tool to characterize different
parts of the genome. In the first part, we have reviewed the main mathematical
features of the model and its symmetry properties. Then, we have analyzed the
whole chromosome 1 of Arabidopsis thaliana by creating specific routines that, by
using genome annotations, extract and build seven groups of sequences: genes, ex-
ons, introns, coding sequences (CDS), intergenes, untranslated regions (UTR) and
regulatory sequences. The sequences have been encoded according to the definitions
of dichotomic classes, binary variables that derive naturally from the mathematical
structure and that are related to the chemical properties of the sequences. We stud-
ied the percentages of the three classes in and out of frame for the whole dataset
and used this information to discriminate between the seven group of sequences.

Since the percentages of dichotomic classes vary with frame only for coding se-
quences, we can conjecture that frame is important only for these kind of sequences
and dichotomic classes can be useful to recognize them. All the dichotomic classes
can distinguish between coding and non-coding sequences; in fact, the mean val-
ues are always different. In particular, we can see that parity could discriminate
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Figure 6. Histograms of the p-values associated to the indepen-
dence test for noncoding sequences

also between sense and antisense coding sequences as the mean percentage is always
around 60% for non-coding sequences (in both strands), while it is remarkably lower
and strand dependent for CDS and exons. Since Rumer and hidden percentages
vary both between non-coding sequences and between sense and antisense strand,
they are useful to discriminate between the different classes of non-coding sequences
(i.e: introns, intergenes, UTR and regulatory).

Finally, as for coding sequences, we have seen that the mean values of CDS differ
with frame more than those of exons. For example, if we consider parity, we can
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see that p0 and p1 are almost the same for exons (p0 = 52.1%, p1 = 52.7%) while
for CDS we have p0 = 50.1%, p1 = 51.6%. Moreover the mean for p2 is higher
for CDS than for exons (58.7% and 56.3% respectively). This kind of difference
can be observed in Rumer and hidden proportions too. The results obtained from
the independence tests show that the framework suggested by dichotomic classes is
able to uncover the existence of significant correlations in those sequences that are
involved in protein synthesis.

Indeed, the existence of a mechanism for error correction/detection linked to
the replication and translation processes imply some kind of dependence inside
DNA sequences. Several studies have highlighted the presence of fractal long-range
correlations in nucleotide sequences. However, error detection and correction should
act at a local level and should discriminate between different portions of a gene.

No doubt, further studies are needed in order to assess how the information
carried by dichotomic classes could discriminate between coding and noncoding se-
quence and, therefore, contribute to unveil the role of the mathematical structure in
error detection and correction mechanisms. Still, we have shown the potential of the
approach presented for the understanding the management of genetic information.
We believe that this approach could help to keep the promises and hopes related to
molecular biology and the Human Genome Project.
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