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Institute of Applied Mathematics and Mechanics
Faculty of Mathematics, Informatics and Mechanics

University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

Abstract. In the paper we consider the model of tumour angiogenesis process proposed
by Bodnar&Foryś (2009). The model combines ideas of Hahnfeldt et al. (1999) and Agur
et al. (2004) describing the dynamics of tumour, angiogenic proteins and effective vessels
density. Presented analysis is focused on the dependance of the model dynamics on delays
introduced to the system. These delays reflect time lags in the proliferation/death term and
the vessel formation/regression response to stimuli. It occurs that the dynamics strongly
depends on the model parameters and the behaviour independent of the delays magnitude
as well as multiple stability switches with increasing delay can be obtained.

1. Introduction. Angiogenesis is a process of new vessels formation from the pre-existing
ones. It is a normal and vital process in growth and development of animal organisms. It
is required during the repair mechanism of damaged tissues like wound healing processes.
However, it is also an essential step in the solid tumours transition from the avascular forms
to cancers that are able to metastase and cause lethal outcome of the disease. Clearly,
when tumour approaches a size of 1-2 mm3 the necrotic core formation in the centre of tu-
mour and saturation of the growth process are observed. Next, cancer cells start to secrete
number of angiogenic factors e.g. FGF, VEGF, VEGFR, Ang1 and Ang2, which promote
proliferation and differentiation of endothelial cells, smooth muscle cells, fibroblasts ini-
tiating the process of new blood vessels formation. New vessels provide the nutrients for
growing cancer mass and help to remove the methabolism waste products. Hence, angio-
genesis promotes the cancer mass growth. On the other hand, one should keep in mind
that angiogenesis might also give a possibility to improve the cancer treatment since good
functioning blood vessels allow anti-cancer drugs better penetrate the tumour structure, and
hence reduce the tumour mass.

One of the most well known models describing the influence of new blood vessels de-
velopment on the tumour dynamics was proposed by Hahnfeldt et al. [15] and later studied
in detail by d’Onofrio&Gandolfi [6]. The results of [6] were extended in [7] where the
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effect of a class of antiangiogenic drugs that act by altering periodically the proliferation
related parameters of the vascular cells was analysed. Moreover, recently the notation
of generalised angiogenesis model taking into account anti-angiogenic therapy was intro-
duced by d’Onofrio&Gandolfi in [8]. In [24] Piotrowska&Foryś considered the Hahnfeldt
et al. model with two discrete delays in more general case, compare also [8]. Namely, the
dynamics of the family of delayed models based on the Gompertz type description ([25])
of the tumour growth was studied. Additionally, within last years, different treatment pro-
tocols were introduced to the Hahnfeldt et al. model and the optimal control theory was
applied, see e.g. [9], [22], [23] or [27].

Hence, among the models of angiogenesis, the Hahnfletd et al. model [15] can be con-
sidered as a classic one. However, global stability of a positive steady state is a weak point
of it, since newly formed vessels usually have highly unstable structure. Moreover, feed-
back loops present in the system can lead to oscillatory dynamics, cf. e.g. [14]. To reflect
the complex nature of the vessels formation process, Arakelyan et al. [3] proposed a very
complex computer model, which was compared with implanted human ovarian carcinoma
in [2]. Then, in the works by Agur et al. [1] and Fory et al. [12], that complex model was
simplified to the system of three equations with two time delays. The main advantage of
the simplified model comparing to the previous ones was introducing of the so-called ef-
fective vessel density, that is the amount of vessels supplying one unit volume tumour. The
delays included into the model stand for the length of feedback loops described in details
in the original computer model in [3]. In [1] the authors claimed that although the pro-
posed model is simple, it can reflect complex dynamics of the vessels formation because of
possible oscillations that appear due to a Hopf bifurcation. More precisely, in this paper it
was checked that the assumptions of the Hopf bifurcation theorem (in the sense presented
in [16]) with the delay as a bifurcation parameter are fulfilled. However, more detailed
analysis of the model presented in [12] showed that independently of the magnitude of
delays the positive steady state is always unstable and the model cannot reflect a stable
behaviour of newly formed vessels that is observed for some less aggressive tumours (see
eg. [18]). In [4], combining the ideas presented by Hahnfeldt et al. [15] and Agur et al. [1]
we proposed a model of three differential equations with delays that can describe the pro-
cess of formation of new vessels in tumour and reflect both stable and unstable structure of
vessels observed in reality.

1.1. Model presentation. The three-variable model proposed by Agur et al. in [1] has the
following form

Ṅ = f1(E(t − τ1))N(t),

Ṗ = f2(E(t))N(t) − δP(t),

Ė = ( f3(P(t − τ2)) − f1(E(t − τ1))) E(t),

(1.1)

where N(t), P(t), E(t) =
V(t)
N(t) and V(t) describe the tumour size, the amount of regulat-

ing proteins, the effective vessel density and the total blood vessels volume, respectively.
Moreover, τ1, τ2 ≥ 0 denote the time delays in the proliferation/death and the vessel forma-
tion/regression response to stimuli, respectively. Per capita growth rates of tumour and ves-
sels are described using switching functions f1, f3, respectively. We have fi(0) = −ai < 0,
fi(x) are increasing and fi(x) → bi > 0 as x → +∞, for i = 1, 3, with x = E for i = 1,
x = P for i = 3. The protein production function f2 is decreasing to 0 and parameter δ > 0
describes the degradation of the angiogenic substance.

In [4] the constructive criticism of model (1.1) was pretended. As a result Bodnar&Foryś
proposed the modified model of angiogenesis. This model has the following form
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Ṅ = αN(t)
(
1 −

N(t)
1 + f1(E(t − τ1))

)
,

Ṗ = f2(E(t))N(t) − δP(t),

Ė =

(
f3(P(t − τ2)) − α

(
1 −

N(t)
1 + f1(E(t − τ1))

))
E(t),

(1.2)

where α is the proliferation rate and the variables and constants have the same meaning as
for system (1.1). It is assumed that functions fi, i = 1, 2, 3, are at least continuous and there
exist positive constants a2, a3, b1, b3 and m3 such that
(C1) f1 is increasing, f1(0) = 0 and limE→+∞ f1(E) = b1 > 0;
(C2) f2 is decreasing and convex, f2(0) = a2 > 0 and limE→+∞ f2(E) = 0;
(C3) f3 is increasing, f3(0) = −a3 < 0, f3(m3) = 0 and limP→+∞ f3(P) = b3.

To close the system we define an initial condition of the following form

N(t) = N0(t) ≥ 0, P(t) = P0(t) ≥ 0, E(t) = E0(t) ≥ 0, for t ∈ [−τM , 0], (1.3)

where τM = max{τ1, τ2}, and N0, P0, E0 ∈ C([−τM , 0];�≥0).

2. Basic properties of the model.

Theorem 2.1. Assume that N0, P0 and E0 are non-negative and the functions fi, i = 1, 2,
3, are continuous and fulfil conditions (C1)–(C3). Then solutions to problem (1.2)–(1.3)
exist globally, are unique and non-negative. Moreover, the following inequalities

Nmin ≤ N(t) ≤ Nmax ,

0 ≤ P(t) ≤ max
{a2

δ
Nmax , P0(0)

}
,

0 ≤ E(t) ≤ E0(0) exp
(

(b3 + α(Nmax − 1)) t
)

hold for all t ≥ 0, where

Nmin = min{1,N0(0)}, Nmax = max{N0(0), 1 + b1} > 1 .

Proof. First notice that the non-negativity of existing solutions is obvious. Clearly, the first
equation of system (1.2) can be rewritten as

N(t) = N(0) exp
(
α

∫ t

0

(
1 −

N(s)
1 + f1(E(s − τ1))

)
ds

)
,

and the same procedure can be applied to the third equation. This yields N(t) ≥ 0 and
E(t) ≥ 0. Thus, the second equation can be estimated as Ṗ(t) ≥ −δP(t) and non-negativity
of P(t) follows.

Since the function fi, i = 1, 2, 3, are only assumed to be continuous, not necessarily
Lipschitz continuous, hence we cannot use a general theorem of uniqueness. We use the
step method to prove existence and uniqueness of solutions. Let τm = min{τ1, τ2}. Then
for t ∈ [0, τm] system (1.2) is a non-autonomous system of differential equations. The
first equation of (1.2) depends only on the first variable, because E(t − τ) = E0(t − τ)
is a given continuous function on the considered time interval, and therefore the solution
locally exists. Moreover, non-negativity yields Ṅ ≤ δN, that guarantees global existence on
[0, τm]. Next, after solving the first equation, similar arguments apply to the last equation
of (1.2), and then to the second one. All solutions are unique due to the fact that the
right-hand side of system (1.2) is locally Lipschitz continuous with respect to N, P, E.
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Now, we give more strict estimates of the values of N(t), P(t) and E(t). The first equation
of (1.2) and condition (C1) imply inequalities

αN(t)(1 − N(t)) ≤ Ṅ(t) ≤ αN(t)
(
1 −

N(t)
1 + b1

)
,

and thus

Nmin ≤ N(t) ≤ Nmax .

From the second equation of (1.2) and conditions (C1)–(C2) we have

−δP(t) ≤ Ṗ(t) ≤ a2Nmax − δP(t) =⇒ 0 ≤ P(t) ≤ max
{a2

δ
Nmax , P0(0)

}
.

Due to condition (C3), the last equation of (1.2) can be estimated as follows

Ė(t) ≤ (b3 − α + αNmax ) E(t) =⇒ E(t) ≤ E0(0) exp
(

(b3 + α(Nmax − 1)) t
)
.

Thus, the step method yields global existence of unique solutions fulfilling the above esti-
mates and the proof is completed. �

2.1. Steady states. The analysis of steady states existence is exactly the same as in [4].
However, due to some changes of notation we summarise it briefly.

From the first equation of (1.2) we have either N̄ = 0 or N̄ = 1 + f1(Ē). In the first
case we immediately get P̄ = 0 and Ē = 0 from the second and third equation of (1.2),
respectively. If N̄ = 1 + f1(Ē), then the third equation gives two possibilities. Either Ē = 0
and this implies N̄ = 1 and P̄ = a2/δ or Ē , 0. In the latter case we obtain P̄ = m3,
N̄ = 1 + f1(Ē) and Ē is a solution to f2(Ē)

(
1 + f1(Ē)

)
= δm3. Hence, depending on

the functions f1 and f2 there can exist zero, one or more positive steady states given by
(N̄,m3, Ē).

Concluding, we have at least two non-negative steady states

A = (0, 0, 0) , B = (1, a2/δ, 0) ,

and the positive steady states Di = (N̄i,m3, Ēi) do not necessarily exist.

2.1.1. Existence of positive steady states. As it was discussed in [4] the positive steady
state Di exists if and only if the auxiliary function

g(x) = f2(x)(1 + f1(x)) − δm3 (2.1)

has a positive root. Clearly, g(0) = a2 − δm3 and g(+∞) = −δm3. Thus, for a2 > δm3 there
exists at least one positive root of g(x). Therefore, there exists at least one positive steady
state D1 and in generic case the number of positive steady states is odd.

Let us assume that the functions f1 and f2 are differentiable. Differentiating the function
g defined by (2.1) we obtain

g′(x) = f ′2(x)(1 + f1(x)) + f2(x) f ′1(x) . (2.2)

If the function f1 increases slow enough, then g′(x) < 0 and there exists at most one steady
state D1. On the other hand, if a2 < δm3, then in generic case the number of positive states
Di is even, for details see [4].

Frequently the functions fi, i = 1, 2, 3, used in the literature (e.g. [4, 1]) are Hill
functions. In the following part of this section we show that there can exist at most three
steady states in this case.
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First notice, that the function f3 does not have any influence on the number of steady
states. Now, let us assume that fi ∼ xm/(1 + xn), i = 1, 2. However, since f2 is assumed to
be convex we take m = 0, n = 1 for it. Thus, for the functions f1 and f2 of the form

f1(x) =
b1xn

c1 + xn , f2(x) =
a2c2

c2 + x
, n ∈ �, n ≥ 1, (2.3)

we may prove the following result.

Proposition 2.2. Let f1 and f2 be given by (2.3) and denote

x̄0 =
c1

b1 + 1


√

b1

(
c2

c1
(b1 + 1) − 1

)
− 1

 . (2.4)

(i) For n = 1 there can be at most two positive steady states of (1.2). If a2 > δm3, then
there exist exactly one positive steady state of (1.2). If a2 < δm3, then if c1 > b1c2 or
g(x̄0) < 0, then there exists no positive steady state, while if g(x̄0) > 0, then there exist
exactly two positive steady states of (1.2).

(ii) For n > 2 there can be at most three positive steady states of (1.2).

Proof. Calculating the derivative of g one obtains

g′(x) = −a2c2
(b1 + 1)x2n + c1(b1 + 2 − nb1)xn − nb1c1c2xn−1 + c2

1

(c2 + x)2(c1 + xn)2 . (2.5)

Now, we consider the case n = 1 and n ≥ 2 separately.
If n = 1 the numerator of (2.5) is a quadratic polynomial

(b1 + 1)x2 + 2c1x + c1 (c1 − b1c2) . (2.6)

Hence, if b1 < c1/c2, then (2.6) is positive for any x ≥ 0 and this implies that g′(x) < 0
for x ≥ 0, so g is decreasing and the steady state exists if g(0) > 0, that is a2 > m3δ. On
the other hand, if b1 > c1/c2, then (2.6) has exactly one positive root x̄0 given by (2.4).
Thus, the function g is increasing on (0, x̄0) and decreasing for greater x. Thus, if g(0) =

a2 − δm3 < 0 < g(x̄0), then there exist exactly two positive steady states Di, i = 1, 2, and if
g(0) = a2 − δm3 > 0, then there exists exactly one positive steady state D1. This completes
the proof in case n = 1.

If n ≥ 2, we use the Descartes’ rule of signs. Notice that the coefficient of x2n, as well
as the free term, are positive, while the sign of the coefficient of xn−1 is negative. Hence,
independently of the sign of the coefficient of xn, there are always two changes of sign.
Thus, by the Descartes’ rule of signs, g′(x) has two or zero positive roots. Therefore, we
have one of the following possibilities: either g is decreasing (so there exists one positive
steady state if a2 > δm3) or there exist x̄0,1 and x̄0,2 such that g is decreasing on (0, x̄0,1) ∪
(x̄0,2,∞) and increasing on (x̄0,1, x̄0,2). Then, depending on the values δm3, g(x̄0,1) and
g(x̄0,2) there can be up to three positive steady states Di. �

3. Analysis of steady states stability. Under our assumptions the functions fi, i = 1, 2, 3,
are continuous. However, standard local asymptotic stability analysis is easier to perform
for differentiable functions fi, compare the text-books on DDEs [16, 17, 20]. On the other
hand, since one of our goals is to investigate a Hopf bifurcation, an additional smoothness
is required. These assumptions do not limit our results a lot because functions that typically
appear in applications have desired smoothness properties. Moreover, we focus on generic
cases in our analysis, so only strict inequalities on parameters are of our interest.

In the following, to shorten the notation, we use the notion of stability meaning local
asymptotic stability.
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Characteristic function for a general steady state (N̄, P̄, Ē) has the form

W(λ) = − det
(
M(N̄, P̄, Ē)

)
,

where

M(N̄, P̄, Ē) =


α
(
1 − 2N̄

1+ f1(Ē)

)
− λ 0 α N̄2

(1+ f1(Ē))2 f ′1(Ē)e−λτ1

f2(Ē) −δ − λ f ′2(Ē)N̄

α Ē
1+ f1(Ē) f ′3(P̄)Ēe−λτ2 m330 −

α N̄Ē
(1+ f1(Ē))2 f ′1(Ē)e−λτ1 − λ

 (3.1)

with

m330 = f3(P̄) − α
(
1 −

N̄
1 + f1(Ē)

)
.

Proposition 3.1. Let the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (C1)–(C3). Then
the trivial steady state A = (0, 0, 0) of system (1.2) exists and is unstable independently of
the model parameters.

Proof. For τ j = 0, j = 1, 2, the trivial steady state of system (1.2) is unstable as it was
proved in [4]. Consider system (1.2) for τ j > 0, j = 1, 2. For the trivial steady state the
matrix M reads

M(0, 0, 0) =

α − λ 0 0
a2 −δ − λ 0
0 0 −a3 − α − λ


and it does not depend on the delays present in the model. Hence, delays have no influence
on the stability, and thus A = (0, 0, 0) is unstable. �

Proposition 3.2. Let functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (C1)–(C3). Then the
semi-trivial steady state B = (1, a2/δ, 0) of system (1.2) exists and is stable for a2 < δm3
and unstable for a2 > δm3.

Proof. As showed in [4] the semi-trivial steady state B = (1, a2/δ, 0) exists and is stable or
unstable depending on the sign of expression a2 − δm3. The matrix M defined by (3.1) has
the following form

M(1, a2/δ, 0) =


−α − λ 0 α f ′1(0)e−λτ1

a2 −δ − λ f ′2(0)
0 0 f3

(
a2
δ

)
− λ


for the semi-trivial steady state. Hence, calculating the characteristic quasi-polynomial we
arrive at

W(λ) = −(α + λ)(δ + λ)
(

f3
(a2

δ

)
− λ

)
.

Therefore, again, the delays have no influence on the stability of this state, and B =

(1, a2/δ, 0) is stable for a2 < m3δ and unstable for a2 > m3δ. �

Stability analysis for the positive steady state(s) of system (1.2) for τ j = 0, j = 1,
2, was presented in [4]. It implies that the number of positive steady states and theirs
stability strongly depends on the model parameters and the properties of the function g
given by (2.1). We only present the summarising lemma below.

Lemma 3.3. Assume that the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (C1)–(C3) and
let τ j = 0, j = 1, 2, and m3 be the zero of the function f3 and g be given by (2.1).
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1. If a2 < δm3 and g′(Ei) , 0, then there exists odd number (possibly 0) of steady states
Di = (N̄i,m3, Ēi) and steady states with odd indexes are stable, while those with even
indexes are unstable.

2. If a2 > δm3 and g′(Ei) , 0, then there exists even number of steady states Di =

(N̄i,m3, Ēi) and steady states with even indexes are stable, while those with odd in-
dexes are unstable.

The matrix M defined by (3.1) has the following form

M(N̄i,m3, Ēi) =


−α − λ 0 α f ′1(Ēi)e−λτ1

f2(Ēi) −δ − λ f ′2(Ēi)N̄i
αĒi

1+ f1(Ēi)
f ′3(m3)Ēie−λτ2 −

αĒi
1+ f1(Ēi)

f ′1(Ēi)e−λτ1 − λ


for positive steady state(s) Di = (N̄i,m3, Ēi) (if any exists). The characteristic quasi-
polynomial reads

W(λ) = λ3 + C1λ
2 + C2λ + (λ2 + δλ)C3e−λτ1 + (λ + α)C4e−λτ2 −C3C5e−λ(τ1+τ2), (3.2)

where
C1 = δ + α, C2 = αδ, C3 = αβd1, C4 = a2βd2d3, C5 = δd3m3,

a = 1 + f1(Ē), d1 = f ′1(Ē), d2 = − f ′2(Ē), d3 = f ′3(m3), β =
Ē

1 + f1(Ē)
.

(3.3)

Due to assumptions (C1)–(C3) we have d1, d2, d3, c2, β > 0. Hence, Ci > 0 for i = 1, ..., 5.

Theorem 3.4. Let the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (C1)–(C3) and
Di = (N̄i,m3, Ēi) be a positive steady state of system (1.2). If g′(Ei) > 0, where the function
g is given by (2.1), then the steady state Di is unstable for all (τ1, τ2) ∈ (�+)2 \ {(τ∗1, τ

∗
2) :

∃ω > 0 , W(iω) = 0}, where W is the characteristic function given by (3.2).

Proof. Case τ1 = τ2 = 0 was studied in [4]. Let us briefly repeat the argument. In this case
the characteristic function W(λ) given by (3.2) is a polynomial with all coefficients, except
the free term, positive. The free term reads αC4 − C3C5. Using definitions (3.3) as well as
the identity δm3 = f2(Ēi)(1 + f1(Ēi)) we derive the following equality

αC4 −C3C5 =αβd3

(
a2d2 − δm3d1

)
= − αβd3

(
1 + f1(Ēi)

) ((
1 + f1(Ēi)

)
f ′2(Ēi) + f ′1(Ēi) f2(Ēi)

)
.

Notice that the expression in the last parenthesis is equal to the derivative g′(Ēi) (com-
pare (2.2)):

αC4 −C3C5 = −αβd3

(
1 + f1(Ēi)

)
g′(Ēi) . (3.4)

Thus, the sign of αC4 − C3C5 is reverse to the sign of g′(Ēi). Therefore, it is clear that
if g′(Ēi) > 0, then W(λ) has a real positive root, so the steady state Di is unstable for
τ1 = τ2 = 0.

In order to prove that the steady state Di is unstable for τ1 ≥ 0, τ2 ≥ 0, τ1 + τ2 > 0, we
use the Mikhailov criterion (see [11]). We show that the change of the argument of W(iω)
as ω varies from 0 to +∞ is different than 3π

2 . To this end we need to calculate

Re(W(iω)) = − (C1 + C3 cos(ωτ1))ω2 + ω (δC3 sin(ωτ1) + C4 sin(ωτ2)) +

+ αC4 cosωτ2 −C3C5 cosω(τ1 + τ2) ,

Im(W(iω)) = − ω3 + ω2C3 sin(ωτ1) + ω(C2 + δC3 cos(ωτ1) + C4 cos(ωτ2))−
− αC4 sinωτ2 + C3C5 sinω(τ1 + τ2) .

(3.5)
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Thus,

sin(W(iω)) =
Im(W(iω))√

(Re(W(iω)))2 + (Im(W(iω)))2

ω→+∞
−−−−−→ −1,

cos(W(iω)) =
Re(W(iω))√

(Re(W(iω)))2 + (Im(W(iω)))2

ω→+∞
−−−−−→ 0,

and hence lim
ω→∞

W(iω) = 3π/2 + 2kπ for some k ∈ �.
On the other hand, W(0) = αC4 − C3C5 and due to the assumption of Theorem as well

as (3.4) we have W(0) < 0. Thus, the change of the argument of W(iω) as ω varies from 0
to +∞ is equal to π/2 + 2kπ for some k ∈ � and it is different from 3π

2 . Hence, (3.2) has
roots in the right hand-side of complex plane.

Clearly, there can exist values (τ∗1, τ
∗
2) for which there is ω0 such that W(iω0) = 0.

In such case we cannot use neither the Mikhailov criterion nor the linearisation theorem.
However, the set {(τ∗1, τ

∗
2) : ∃ω > 0 , W(iω) = 0} has zero measure in the space (�+)2, and

hence it is not a generic case. �

In the case of non-negative delays the analysis of stability of steady states Di that are
stable for τ1 = τ2 = 0 is more complicated. Here, we restrict our analysis to two cases
presented below.

3.1. Case τ1 = 0 and τ2 > 0. For τ1 = 0, characteristic quasi-polynomial (3.2) has the
following form

W1(λ) = λ3 + (C1 + C3)λ2 + (C2 + δC3)λ + (C4λ + αC4 −C3C5)e−λτ2 . (3.6)

Theorem 3.5. Let the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (C1)–(C3), τ1 = 0 and
Di = (N̄i,m3, Ēi) be a positive steady state of system (1.2) such that g′(Ēi) < 0, where g′ is
given by (2.2). Then there exists τ2,0 such that

(i) the steady state Di is stable for τ2 < τ2,0;
(ii) the steady state Di is unstable for τ2 > τ2,0.

Moreover, if fi ∈ C2, i = 1, 2, 3, then Hopf bifurcation occurs at τ2 = τ2,0, that implies
periodic solutions occurrence.

Proof. As it was proved in [4] condition g′(Ēi) < 0 implies that steady state Di is stable
for τ1 = τ2 = 0. We show that there exists τ2,0 > 0 for which there is a pair of purely
imaginary roots of W1, this is W1(±iω) = 0 for some ω > 0. Re-writing (3.6) we obtain

W1(λ) = P1(λ) + Q1(λ)e−λτ2 = 0,

where

P1(λ) = λ3 + (C1 + C3)λ2 + (C2 + δC3)λ, and Q1(λ) = C4λ + αC4 −C3C5. (3.7)

Characteristic quasi-polynomial (3.2) has a pair of purely imaginary roots ±iω, ω > 0, if
and only if

P1(iω) = −Q1(iω)e−iωτ2,0 .

This condition implies that there exist positive zeros of the auxiliary function G1(ω) =

|P1(iω)|2 − |Q1(iω)|2 = F1(ω2), cf. [5] for detailed description of relations between this
auxiliary function and the eigenvalues. Substituting x = ω2 we obtain

F1(x) = x3 + x2((C1 + C3)2 − 2(C2 + δC3)) + x((C2 + δC3)2 −C2
4) − (αC4 −C3C5)2. (3.8)
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The coefficient of x with the highest power is positive, while the free term is negative. This
implies that (3.8) has at least one positive real root. We show that this root is unique. To
this end we calculate the derivative of F1:

F′1(x) = 3x2 + 2x((C1 + C3)2 − 2(C2 + δC3)) + (C2 + δC3)2 −C2
4.

Notice that the sign of the coefficient of the linear term of F′1 is positive. Indeed,

(C1 + C3)2 − 2(C2 + δC3) = α2(1 + βd1)2 + δ2 > 0 .

Hence, we have two possibilities. If F′1(0) = (C2 + δC3)2 − C2
4 > 0, then F′1(x) > 0 for all

x ≥ 0 and a positive root x0 of F1 is unique. On the other hand, if F′1(0) < 0, then there
exists a unique positive root x̄ of F′1 such that the function F1 is decreasing on (0, x̄) and
increasing for x > x̄. Because F1(0) < 0, the above arguments imply that F1(x̄) < 0 and
there exists a unique positive root x0 again. Moreover, in both cases, we can easily see that
F′1(x0) > 0. Thus, using Proposition 1 from [5] we obtain

sgn
(

dReλ(τ)
dτ

∣∣∣∣∣
τ=τ2,0

)
= sgn

(
d

dω
G1(ω)

∣∣∣∣∣
ω=
√

x0

)
= sgn

(
d
dx

F1(x)
∣∣∣∣∣
x=x0

)
> 0.

Hence, roots of characteristic quasi-polynomial cross the imaginary axis from left to right
with increasing bifurcation parameter τ2 and the proof is completed. �

3.2. Case τ1 > 0 and τ2 = 0. For τ1 > 0 and τ2 = 0 characteristic quasi-polynomial (3.2)
has the following form

W2(λ) = λ3 + C1λ
2 + λ(C2 + C4) + αC4 + (C3λ

2 + δC3λ −C3C5)e−λτ1 . (3.9)

As in the previous subsection, defining the auxiliary function we obtain

F2(x) = x3 + α2x2 + α1x + α0 , (3.10)

where

α2 = C2
1−2(C2 +C4)−C2

3 , α1 = (C2 +C4)2−2αC1C4−C2
3

(
δ2 + 2C5

)
, α0 = α2C2

4−C2
3C2

5.

Theorem 3.6. Let the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (C1)–(C3), τ2 = 0,

x̄1 =
1
3

(√
α2

2 − 3α1 − α2

)
and Di is stable for τ j = 0, j = 1, 2.

(i) If one of the conditions
(a) α1 > 0 and α2 > 0;
(b) α1 > 0 and α2

2 < 3α1;
(c) α1 > 0 and α2 < 0 and α2

2 > 3α1 and F2(x̄1) > 0;
(d) α1 < 0 and F2(x̄1) > 0
holds, then the steady state Di is stable for all τ1 ≥ 0.

(ii) If one of the conditions
(a) α1 < 0 and F2(x̄1) < 0;
(b) α1 > 0, α2 < 0 and α2

2 > 3α1 and F2(x̄1) < 0
holds, then there exists τ1,c such that for τ1 ∈ (0, τ1,c) the state Di is stable. If fi ∈ C2,
i = 1, 2, 3, then Hopf bifurcation occurs at τ1 = τ1,c .

Remark. Notice that the conditions in the part (i) of Theorem 3.6 are equivalent to α2
2 <

3α1 or x̄1 < 0 or F2(x̄1) > 0, while the conditions in the part (ii) of Theorem 3.6 are
equivalent to α2

2 > 3α1 and x̄1 > 0 and F2(x̄1) < 0.
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Proof. Let us recall that stability of Di for τ1 = τ2 = 0 implies α0 > 0 in generic cases.
Hence, α0 > 0 is assumed in this proof. Notice also that if x̄1 is a real number, then F2 has
a local minimum at x̄1.

Part (i). We need to show that there does not exist τ1,0 > 0 for which there is a pair of
purely imaginary roots of W2. Clearly, if the condition (a) or (b) holds, then F′2(x) > 0 for
all x ≥ 0, and therefore F2 is increasing for x ≥ 0. Hence, the inequality α0 > 0 implies
that F2 has no positive root. If the condition (c) or (d) holds, then F2 is first increasing and
then decreasing (if (c) holds) or only decreasing (if (d) holds) on [0, x̄1) reaching its local
minimum at x1. Since F2(0) = α0 > 0 and F2(x̄1) > 0 the function F2(x) is positive for all
x ≥ 0. Hence, no stability switches occur.

Part (ii). We show that there exists τ1,0 > 0 for which there is a pair of purely imaginary
roots of W2, i.e. ω0 > 0 such that W2(±iω0) = 0. Assumptions yield x̄1 > 0 and F2(x̄1) < 0.
Continuity of F2 and the fact that F2(0) = α0 > 0 imply that there exist x0,0 < x̄1 < x0,1
such that F2(x0, j) = 0, j = 1, 2. Moreover, we have F′2(x0,0) < 0 and F′2(x0,1) > 0. Hence,
at least one stability switch is possible for some value of τ1,c and Hopf bifurcation occurs
at this point. �

Proposition 3.7. Let the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (C1)–(C3), τ2 = 0
and Di = (N̄i,m3, Ēi) be a positive steady state of system (1.2) such that g′(Ēi) < 0, where
g′ is given by (2.2). Then if∣∣∣ f ′2(Ei)

∣∣∣ f ′3(m3) <
δ2

2(1 + f1(Ei))Ei
,

f ′1(Ēi) <
1 + f1(Ei)

Ei
·min

1,

√
δ2 − 2(1 + f1(Ēi))Ēi

∣∣∣ f ′2(Ēi)
∣∣∣ f ′3(m3)

δ(2m3 f ′3(m3) + δ)

 ,
(3.11)

then the steady state Di is stable for all τ1 ≥ 0.

Proof. The technique of this proof is very similar to the one of Theorem 3.5. Clearly, the
steady state Di is stable for τ1 = τ2 = 0. We show the change of its stability is impossible.

Assume that there exists a pair of purely imaginary roots of characteristic quasi-
polynomial (3.9), this is there exists ω0 > 0 such that W(±iω0) = 0. We consider the
auxiliary function F2 defined by (3.10).

Notice that since the sign of C3C5 − αC4 is the same as the sign of the derivative g(Ei),
then we have α0 > 0 if the steady state Di is stable for τ1 = 0. We derive conditions under
which α1 and α2 are also positive. Using (3.3) we obtain

α2 = α2
(
1 − β2d2

1

)
+ δ2 − 2a2βd2d3.

It is easy to see that condition (3.11) implies

d1 = f ′1(Ei) <
1 + f1(Ei)

Ei
=

1
β

and d2d3 =
∣∣∣ f ′2(Ei)

∣∣∣ f ′3(m3) <
δ2

2(1 + f1(Ei))Ei
=

δ2

2a2β
.

Hence, α2 > 0. Again, using (3.3) we calculate

α1 = a4β2d2
2d2

3 + α2
(
−β2δ(2m3d3 + δ)d2

1 + δ2 − 2a2βd2d3

)
. (3.12)

It can be easily seen that if (3.11) holds, then conditions

d2d3 <
δ2

2a2β
and d1 <

1
β

√
δ2 − 2a2βd2d3

δ(2m3d3 + δ)
(3.13)
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Figure 1. Here n = 1 and f j, j = 1, 2, are Hill functions defined by
(2.3) with a2 = 0.4, b1 = 2.3, c1 = 1.5, c2 = 1. In the left hand-
side and middle graphs the dependence of the first and last coordinate of
the positive steady state, respectively, on the parameter m3 is presented.
Solid and dashed lines denote stable (for τ1 = τ2 = 0) and unstable steady
state, respectively. In the right-hand graph the dependence of critical
values of τ1 on the parameter m3 for the positive steady state is presented.
Dashed lines denote values for which eigenvalue crosses imaginary axis
from left to right and the solid line – from right to left. We see that if
m3 is small enough, then multiple stability switches are possible. Other
model parameters are: δ = 0.34, α = 1, a3 = b3 = 1.

are fulfilled yielding α1 > 0. Since α0, α1 and α2 are all positive, by the rule of signs,
F2(x) has no real roots and this contradicts the assumption that W2 has a purely imaginary
root. �

4. Numerical simulations. In this section we illustrate the theoretical results obtained
above by numerical simulations. For these simulations we consider almost the same spe-
cific functions as in [4]. Namely, we take

f1(E) =
b1En

c1 + En , f2(E) =
a2c2

c2 + E
, f3(P) =

b3(P2 − m2
3)

m2
3b3

a3
+ P2

.

Clearly, depending on the model parameters we have from zero up to three positive steady
states (compare Proposition 2.2). We consider two cases n = 1 and n = 2, fix parameters:

a2 = 0.4, a3 = 1, b1 = 2.3, b3 = 1,
c1 = 1.5, c2 = 1, α = 1, δ = 0.34, (4.1)

and study the behaviour of the system depending on m3, τ1 and τ2.
We are motivated by the number of recent studies on the different kinds of anti-angiogenic

treatment applied to vascular tumours, [19, 23, 28, 26, 10]. We have decided to investigate
the influence of m3 parameter on the model dynamics since, together with a3 and b3, it
characterises the per capita growth of vessels described by the function f3, compare with
(C3) assumption.

In Fig. 1 (left and middle graphs) the dependence of the number of positive steady
states and their local stability on m3 for system (1.2) with n = 1 and τ1 = τ2 = 0 is
presented. For sufficiently small m3 there exists exactly one steady state, while for larger
values there exist two steady states: stable and unstable one. Clearly, for τ1 = 0 a single
Hopf bifurcation takes place and no other stability switches are possible. On the other hand,
for τ2 = 0, according to Theorem 3.6, we might expect multiple stability switches of the
positive steady state that is stable without delays. On the other hand, Theorem 3.4 implies
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Figure 2. Here n = 2 and f j, j = 1, 2, are Hill functions defined by (2.3)
with a2 = 0.4, b1 = 2.3, c1 = 1.5, c2 = 1. In the left hand-side panel the
dependence of the first and last coordinate of the positive steady states
on the parameter m3 is presented. Solid and dashed lines denote stable
(for τ1 = τ2 = 0) and unstable steady states, respectively. In the right-
hand panel the dependence of critical values of τ1 on the parameter m3
for the positive steady states is presented. Dashed lines denote values
for which eigenvalues cross imaginary axis from left to right, while solid
lines – from right to left. We see that if m3 is small enough, then multiple
stability switches are possible. Other model parameters are: δ = 0.34,
α = 1, a3 = b3 = 1.

that the unstable positive steady state for system (1.2) without delays remains unstable
for almost all positive delays. In Fig. 1 (right graph) the plot of critical values of the
bifurcation parameter (τ1) is presented. Dashed lines indicate the values of τ1 for which
the eigenvalues cross the imaginary axis from left to right in the complex plane. Solid
lines stand for the values of bifurcation parameter for which we observe the movement in
the opposite direction when τ2 increases. For example, for m3 = 1.2 only three stability
switches are possible, while for m3 = 1.14 there are 7 stability switches. Moreover, the
number of stability switches decreases with increasing m3.

For the same set of parameters (4.1) and for n = 2 we have from one to three positive
steady states, as presented in left panel in Fig. 2. For τ1 = τ2 = 0 and small or large enough
values of m3 parameter there exists exactly one stable steady state. For the intermediate
vales of m3 parameter we have bistable model, i.e there exist two stable steady states and
one unstable, and we observe the hysteresis phenomenon which was described in more
details in [4]. In this case, for fixed parameters, the behaviour of solutions depends on the
initial conditions. In Fig. 3 (left graph) we present the basins of attraction of stable steady
states D1 and D3, while in Fig. 3 (right graph) the separating surface (so called separatrix)
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Figure 3. Left: basins of attraction for both non-negative locally
stable steady states D1 = (1.009762, 1.1, 0.079959) and D3 =

(2.493861, 1.1, 1.667231) (denoted by black dots) for τ1 = τ2 = 0, n = 2,
f j j = 1, 2, Hill functions defined by (2.3) with a2 = 0.4, b1 = 2.3,
c1 = 1.5, c2 = 1, δ = 0.34, α = 1, a3 = b3 = 1 and m3 = 1.1, are
presented. Lighter (darker) stars indicate initial values for which solu-
tions tend to D1 (D3). Right: the separatrix for the same set parameters
is plotted.

is plotted. Clearly, the shape of this surface indicates that for τ1 = τ2 = 0 there is no
possibility to start in the neighbourhood of tumour free state, i.e. N0 ≈ 0, and reach D3
steady state. For positive delays the situation is again similar to case n = 1: the middle
steady state remains unstable independently of the model parameters and for odd steady
states we observe a Hopf bifurcation, compare with the right panel in Fig. 2. For example,
for the largest positive steady state D3 (right bottom graph) and m3 = 1.06 only three
stability switches are possible, while for m3 = 1.02 we observe 11 stability switches. For
this steady state the number of stability switches decreases with increasing m3, while for
the smallest one, that is D1, that number increases, see right top graph in Fig. 2.

In Fig. 4, for the same set of parameters and particular delays values τ1 = 18 and τ2 = 0,
the plots of solution as a function of time in different time intervals are presented. Here we
observe an interesting long time behaviour. First, the solution reaches the neighbourhood
of the stable steady state D1 and after some time oscillations of the solution are observed.

As it is mentioned before, we are interested in the influence of the anti-angiogenic treat-
ment, hence in Fig. 5 we present an example of simulations run for the same fixed set of
parameters excluding delays and the parameter m3. For these simulations the parameter m3
is treated as a continuous slowly oscillating function of time and the delay values are varied.
Clearly, for all cases the change in m3 function forces that change in solutions behaviour.
However, while for zero delays there is no oscillation corresponding to the constant parts
of m3 function and we observe typical hysteresis effect in switching the steady state attract-
ing the solution, when we perturbed delays (as indicated in the plots titles) sometimes we
observe the oscillatory behaviour.

5. Summary and conclusions. The model of tumour angiogenesis studied in this paper
includes two time delays reflecting the time needed for maturation/stabilisation of blood
vessels τ1 and angiogenic proteins production τ2. We presented analysis of existence and
stability of steady states with respect to the magnitude of delays. In the general form
the right-hand side of the system is described by three functions reflecting the tumour
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Figure 4. Solution to system (1.2) for n = 2 and f j, j = 1, 2, are Hill
functions defined by (2.3) with a2 = 0.4, b1 = 2.3, c1 = 1.5, c2 = 1,
δ = 0.34, α = 1, a3 = b3 = 1, m3 = 1.0225 and τ1 = 18, τ2 = 0. In
this case there exist three positive steady states. The steady states D1 and
D2 are unstable, while D3 is stable. Initial functions are constant with
N0 ≡ 0.04, P0 ≡ 0 and E0 ≡ 0.1. Similar type of the behaviour was
observed for various initial data.

carrying capacity depending on the amount of vessels f1, angiogenic proteins production
f2 and stimulation of tumour vessels production f3. These functions have some specific
properties that are satisfied by some type of Hill functions. The analysis performed in
the general case showed that apart the trivial and semi-trivial steady states there can be
an arbitrary number of positive steady states and the model dynamics strongly depends
both on the model parameters and the magnitude of delays. We focused on the cases in
which one of the delays is positive and the other is zero. It occurred that multiple stability
switches and periodic orbits arising due to a Hopf bifurcation are possible even under this
simplifying assumption. Moreover, choosing the simplest Hill functions we were able to
illustrate this theoretical result numerically. It should be noticed that, as showed in [24],
for the d’Onofrio&Gandolfi and Hahnfeldt et al. models with single delay or two equal
delays stability switches are not possible. On the other hand, although the dynamics of
the Hahnfeldt et al. model with more than one delay included into it can also exhibit such
properties like multiple stability switches, compare [24], hysteresis effect is not present
in that model because only one positive steady state exists. Clearly, in [4] we showed
that there can exist more than one positive steady state and for some parameter values the
hysteresis loop and cusp catastrophe occur. Due to such effects as well as possible stability
switches due to the increasing delay found in the present paper, small changes in parameter
values can cause huge changes in the solution dynamics. Hence, we can conclude that such
small changes of parameters can reflect instability described in [1, 3]. On the other hand,
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Figure 5. Solutions to system (1.2) for n = 2 and f j, j = 1, 2, are Hill
functions defined by (2.3) with a2 = 0.4, b1 = 2.3, c1 = 1.5, c2 = 1,
δ = 0.34, α = 1, a3 = b3 = 1 and slowly varying, periodic m3, and
different values of time delays. The graph of m3(t) is presented in the left-
hand side panel (bottom graph). A change of the behaviour is observed
when m3 changes from the values for which only D1 exists to the values
with only D3 existing.

similar behaviour as observed due to the cusp catastrophe was described in [21, 13] as
“sneaking through” mechanism. This mechanism is described as the possibility of change
of the attractor of the model from the steady state with small tumour volume (less harm to
the host) to the other with large one (much more dangerous) when some model parameters
admit little changes. Therefore, the dynamics of our simple model can cover the behaviour
observed for many other models that can be found in the literature.

Moreover, comparing to the Agur et al. model dynamics [1], we get possibility of stabil-
isation of tumour structure on some level which is impossible in the original model. In that
model the only positive steady state of the system is a saddle in the case without delay and
oscillatory dynamics that appear due to a Hopf bifurcation with increasing delay cannot
be stable; we always observe oscillations increasing in time. Therefore, the changes we
proposed in the original structure of the Agur at al. model [1] seem to be necessary to get
biologically relevant model dynamics. Moreover, as we can see in numerical simulations
presented in this paper, our model admits really complex dynamics that can be comparable
with the results for real carcinoma studied using the complex numerical model in [3]. On
the other hand, it can be very difficult to fit solutions of such simplified system to real data,
as done in [3]. However, in our future work we plan to estimate our model parameters to fit
as well as it is possible the dynamics of human ovarian carcinoma from [3]. It will allow
us to bring closer to reality and make more useful predictions from the model dynamics.
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[12] U. Foryś, Y. Kheifetz and Y. Kogan, Critical point analysis for three-variable cancer angiogenesis model,

Math. Biosci. Eng., 2 (2005), 511–525.
[13] M. Gałach, Dynamics of the tumor-immune system competition - the effect of time delay, Int J Appl Math

Comput Sci, 3 (2003), 395–406.
[14] A. Gilead and M. Neeman, Dynamic remodeling of the vascular bed precedes tumor growth: MLS ovarian

carcinoma spheroids implanted in nude mice, Neoplasia, 1 (1999), 226–230.
[15] P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling:

a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res., 59
(1999), 4770–4775 (eng).

[16] J. K. Hale, “Theory of Functional Differential Equations,” Springer, New York, 1977.
[17] J. K. Hale and S. M. V. Lunel, “Introduction to Functional Differential Equations,” Springer, New York,

1993.
[18] S. J. Holash, G. D. Wiegandand and G. D. Yancopoulos, New model of tumour angiogenesis: Dynamic

balance between vessel regression andgrowth mediated by angiopoietins and VEGF, Oncogene, 18 (1999),
5356–5362.

[19] R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science,
307 (2005), 58–62 (eng).

[20] Y. Kuang, “Delay Differential Equations with Applications in Population Dynamics,” Academic Press Inc.,
1993.

[21] V. A. Kuznetzov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunologenic
tumors: Parameters estimation and global bifurcation analysis, Bull Math Biol, 56 (1994), 295–321.

[22] U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,
SIAM J. Control Optim., 46 (2007), 1052–1079.

[23] , Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis,
J. Theor. Biol., 252 (2008), 295–312.
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