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ABSTRACT. Anaerobic digestion has been modeled as a two-stage process us-
ing coupled chemostat models with non-monotone growth functions, [9]. This
study incorporates the effects of an external toxin. After reducing the model
to a 3-dimensional system, global stability of boundary and interior equilibria
is proved using differential inequalities and comparisons to the corresponding
toxin-free model. Conditions are given under which the behavior of the toxin-
free model is preserved. Introduction of the toxin results in additional patterns
such as bistabilities of coexistence steady states or of a periodic orbit and an
interior steady state.

1. Introduction. Anaerobic digestion is a natural process during which cohorts
of micro-organisms break down organic matter in the absence of oxygen. The re-
sulting biogas consists of methane, carbon dioxide, and trace gases. Recently, there
has been an increased interest in the commercial utilization of anaerobic digestion
for its environmental and economic benefits. Anaerobic digestion is used in waste
treatment facilities, especially for the treatment of sewage sludge; the biogas is
captured before it can escape into the atmosphere and can be used as renewable en-
ergy either by combusting the gas to produce electrical energy or by extracting the
methane and using it as a natural gas fuel. While anaerobic digestion is a naturally
occurring bioprocess, the process appears to be unstable and difficult to control in
industrial settings. Anaerobic digestion is an extremely complex process that in-
volves a large number of strains of bacteria and is not yet completely understood. In
particular, biologists’ understanding of the microbiology of the organisms involved
is still incomplete. Mathematical models can provide insight into the process and
the microbiology, and help to establish guidelines for the control and stabilization
of large scale installations.

Numerous comprehensive models for anaerobic digestion processes have been
developed, see [2, 5, 13] and the references therein. Among these, the most compre-
hensive model was developed in [2]. This high-dimensional model describes many
of the biological, chemical, and kinetic processes of anaerobic digestion and can be
used to calibrate individual installations. However, the complexity of this model
makes a qualitative analysis very difficult. A different, more macroscopic approach
to modeling anaerobic digestion was taken in [8, 9, 11, 17]. We are continuing this
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effort in an attempt to gain a better understanding of the process and how the
bacteria interact.

Anaerobic digestion is a 4-phase process consisting of hydrolysis, acidogenesis,
acetogenesis, and methanogenesis. In the first phase, glucose, long chain fatty acids,
amino acids are formed. During acidogenesis these are converted to ethanol, volatile
fatty acids, acetate, hydrogen, and carbon dioxide. Hydrogen-producing heteroace-
togens convert alcohols and short fatty acids into acetate, hydrogen, and carbon
dioxide through acetogenic dehydrogenation. Hydrogen-consuming homoacetogens
convert hydrogen and carbon dioxide into acetate. In the final stage, aceticlastic
methanogens convert acetic acid into methane and carbon dioxide through acetate
decarboxylation and hydrogenotrophic methanogens combine carbon dioxide and
hydrogen into methane and water. In most biogas installations, about 70% of
the methane is produced through the conversion of acetate to methane. By fo-
cusing on this main path and separating hydrolysis from the overall process one
can model anaerobic digestion as a two-stage process consisting of (1) acidogene-
sis/acetogenesis to volatile fatty acids/acetate and (2) aceticlastic methanogenesis
as was done in [11, 17, 9]. The models considered in these studies consist equations
involving two substrates and two micro-organisms. In [11], monotone growth of the
bacteria was assumed and the existence of a unique interior equilibrium was shown.

Methanogens belong to the group of Archaebacteria. They are strict anaerobes
and can only survive within pH-range of about 6.5 - 8. A high concentration of acids
lowers the pH and inhibits the growth of methanogenic archae and the production of
methane. To model the impact of acid concentration on methanogens, their growth
is described by a non-monotone growth function as was done in [9, 17]. In [9] it
was shown that for some parameter conditions a unique, globally stable interior
equilibrium exists while for other parameters the system exhibits the bistability of
an interior equilibrium and a boundary equilibrium. The boundary equilibrium is
such that methanogens responsible for the second phase are no longer present in the
system and corresponds to a frequently observed scenario in industrial installation
described as acid accumulation under which all methane production ceases.

In [8], the role of hydrogen on the acetogenesis and methanogenesis phases of
anaerobic digestion were considered. The impact of acid on bacteria growth was
ignored. This model can be considered a modification of the model studied in [11]
where one of the substrates acts as an internally allocated inhibitor. The analysis
gives conditions for the existence of a unique, globally stable interior equilibrium.

In this paper we perturb the model considered in [9, 11] to study the effects of an
externally introduced toxin. We wish to know under what conditions an external
toxin has limited to no effects on the limiting behavior of the system and whether
a toxin can alter the limiting behavior to patterns different from steady state.

External toxins can act in different ways; they can affect both micro-organisms,
or they can affect only one of the micro-organisms. If none of the micro-organisms
are able to break-down the toxin, thus reducing its toxicity, the effects of the toxin
can be studied by changing the parameters. However, if the micro-organisms can
reduce the toxicity, then the toxin has to be modeled as a state variable. Here we
assume that the toxin affects only one microorganism and that the other microor-
ganisms breaks down the toxin or is able to decrease its toxicity. In the context
of anaerobic digestion, well-known toxins are heavy metals, [7]. In separate studies
[3, 15, 16] it has been shown methanogens are able to reduce heavy metal toxi-
city by converting methylmercury to an oxidation stage with increased solubility,
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therefore decreasing the toxicity of methylmercury. While methane production has
been reported in methylmercury decomposition, it is unclear whether it contributes
to bacteria growth. In this study it is assumed that the reduction of toxin does
not result in bacteria growth. We show that while many of the features of the
inhibition-free system studied in [9] are preserved, including such a toxin increases
the complexity of the system and may lead to the bistabilities of two coexistence
equilibria or of a coexistence equilibrium and a periodic solution. Previous models
for anaerobic digestion did not possess periodic solutions. Thus, an observed peri-
odic pattern in biogas production data can be indicative of the presence of a toxin
in the system.

The paper is organized as follows. We first summarize the results of [9] and
provide a different but equivalent analysis in the appendix. In section 3 we give a
local and global analysis of the modified model with an externally introduced toxin.
The results give conditions under which the behavior of the toxin-free model is
preserved. We conclude with a numerical study that shows the existence of stable
periodic solution which coexists with a locally stable steady state. The periodic
solutions are the result of a toxin-induced supercritical Hopf bifurcation.

2. Two-stage model for methanogenesis. We consider anaerobic digestion as
a two-stage process. During the first stage, acid-forming bacteria (X;) convert
sugars and volatile fatty acids (S7) into acetic acid (S2). Methanogens (X3) then
transform acetic acid into methane and carbon dioxide. The nutrient supplied to
the chemostat, S7, is growth limiting for X;. The intermediate product Ss is growth
limiting to Xo. However, if the concentration of Sy is large, the conditions in the
chemostat are altered leading to growth inhibiting conditions for Xs.

Si 25 8y 235 M
The interaction between the species can be described by the following system of
differential equations.

. 1
S, = DS —Ds - o a(SXy
X1 = -DXi+pigi(S1)Xa (1)
. 1
Sy = —DSy+ L2 g1(S1)X1 — — ga(S2) X>
C12 C2
Xo = —DXy+ g2(52)Xo

with S;(0) > 0 and X;(0) > 0. Here D is the dilution rate, S;O) the concentration
of nutrient S7 in the inflow, ¢1, c12, co are yield coefficients, p; is the fraction
of substrate consumption dedicated to bacteria growth, and py is the fraction of
substrate consumption used to form the second nutrient S;. We assume that g;
are non-negative with g;(0) = 0 and continuously differentiable. Furthermore, g;
is monotone increasing, and gs is non-monotone, i.e., there is an s,, > 0 such that
g5(s) > 0 for s < s,, and gh(s) < 0 for s > 8.

A similar model was given in [11] where both ¢g; and g2 were of Monod-type. The
analysis given here also applies in that case if we allow for s, = oo and g5(s) > 0 for
s> 0. In [9], (1) was considered with the inclusion of an inflow term DSéO) in the
equation for Ss and under the assumption that ¢; is of Monod-type. Since (S1, X7)
evolve independently of (Ss, X»), the results for the global behavior of (1) are very
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similar to that given in [9]. We will first derive a dimensionless version of (1) and
then give a summary of the global behavior of the scaled system in Proposition
1. The analysis (which is different from the one given in [9] and foreshadows the
techniques used in section 3) is given in the appendix.

Using the scaling £ = tD, §; = Si/SEO), X, = Xi/(cng))), and letting g;(s) =
gi (sSfO)) /D, (i =1,2), (1) becomes (after leaving off the ")

51 = 1=-51— g1(51) X1 S51(0) >0
X1 = —Xi+na(S)X: X1(0) =0 2)
Sy = =82+ 7201(51)X1 — g2(52) X2 S2(0) >0
Xo = —=Xo+92(52) X2 X5(0)>0

where v; = p; and v2 = c¢1pa/c12. The following two assumptions are needed to
ensure the existence of an interior equilibrium and are standard in the theory of the
chemostat, [18].

(H1) there exist a unique s = A, > 0 such that y11(s) =1
(H2) there exist two s = g; with 0 < o1 < 73 so that g(s) =1

We will refer to A, as toxin-free break-even concentration and note that (H2)
implies that go(s) < 1 for s ¢ [01,02] and ga(s) > 1 for s € (01, 02).

Proposition 1. Assume that (H1) and (H2) hold. Then E, = (1,0,0,0), Ey =
(onvl(l_)\o)v'72(1_)‘0),0): and B = ()\07’}/1(1—)\0),01,’72(1—)\0)—02'), (Z = 1a2))
are the equilibria of (2). Assuming S;(0) > 0 and X;(0) > 0, the behavior of the
solution is as follows:

(P1) If A, > 1, then all solutions of (2) approach E,.

(P2) If A\, < 1, and y2(1 — X)) < 01, then all solutions of (2) approach E;.

(P3) If Ao < 1, and y2(1 — X,) € (01,02), then all solutions of (2) approach E!.

(P4) If Ao < 1, and v2(1 — Xo) > 02, then all equilibria of (2) lie in RY, and E;
and E} are locally asymptotically stable, while E, and E? are unstable.

The following lemma is a direct consequence of Proposition 1 and will be used
in later proofs of global stability.

Lemma 2.1. Let 8 > 0 and assume that y18¢1(s) = 1 has a solution A\g. Consider

1
1'1:11(92 (%u—v) —1)
(i) If A\g > 1, then tli)m u(t) =0 and tli)m v(t) = 0.
(it) If A\g < 1, then tlim u(t) = v1(1 — Ag). If, in addition, v2(1 — A\g) < 01, then
—00
tlim v(t) =0. If y2(1 — Ag) € (01,02), then tlim v(t) = v2(1 = Ag) — o1.
— 00 — 00

sufn (1-4) ) o= 5

3. Non-lethal external inhibition. System (1) describes how the micro-organism
X5 depends on the activities of micro-organism X;. Assume that a toxin T is in-
troduced into the environment that inhibits the growth of the organism X; while
X5 has the ability to break down the toxin.
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S, = qS;fO) —qS1 — 591(51)f(T)X1
X1 = —¢Xi+(1-p)gi(S)f(T) X,
Sy = —qS+pgi(S)f(T) X1 — égz(sfz)X? (4)
Xy = —qXo+g2(52)X,
T = T —qT - g3(T)X;

S5i(0) = 0, X,(0) = 0,7(0) =0,

where f and g3 are continuously differentiable, f is decreasing and g3 is decreasing,
f(T) >0for T >0, f(0) = 1 and ¢g(0) = 0. Using the same scaling as in the
previous section with the addition of 7' = T/T®, f(T) = f(TT©®) and §3(T) =

g3(TT)

Co , (4) can be written as

(T
Si = 1-8—a(S) f(T)X1
X1 = —Xi+ma(S) f(1)X:
S = —Sa+7201(51) F(T)X1 — ga(S2) X (5)
Xy = —Xo+g2(S2)Xo
T = 1-T—g3(T)X,

Proposition 2. The solutions of (5) are bounded.

Proof. From the equations for X; we can deduce directly that X;(¢) > 0, (i = 1, 2).
Thus, T < 1—1T, T(0) > 0, which proves the boundedness of T. S;|s,—0 > 0

implies that S;(t) > 0. The boundedness of (S7, X1) follows from d (51 + %Xl) =

dt
1-5; — 7—11X1. With (S1, X1) bounded, 4 (92 + X2) < —(S2 4+ X3) + M for some
M > 0. Therefore, (S2, X2) is also bounded. O

The theory of autonomous asymptotic systems developed in [14, 18, 19] can be
used to obtain results for the global stability of (5). Let

Si=1-8 - X and Sy= -8 X+ 2X,
T 71

Then &) = ~%; and £,(0) > 0 if 51(0) + 2 X1(0) < 1. limy o0 £1(t) = 0, and

0 < %1 (t) < 21(0) gives S1(0)+ - X1(0) < 81 (t)+5-X1(t) < 1 for t > 0. Similarly,

¥, = =35 and 3¥3(0) > 0 if S2(0) + 711)(2(0) < 2X1(0). limyoo X2(t) = 0, and

¥2(t) = 0 together with earlier observations gives 0 < Sy(t) + X2(t) < 22X (t) for

t>0.
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Writing (5) in terms of ¥; and X5 gives

¥ = =

Y = -,

. 1

X = =X + 7191 (1 - — ’yX1> f(T)Xl (6)
1

v 72

Xy = —Xo+go (%X1 - X5 — Z2> Xo

T = 1-T—g(T)X

with D = {(21,22,X1,X2,T) | X 20,3 20,8 + 12X < 1,5+ X, <
%Xl, 0<T< 1}. Note that D is positively invariant for (6). Letting X7 = X9 =0

results in the reduced system

. 1

X1 = —Xi+man (1 - %X1) f(1)Xy

Xy = —Xot g2 <sz1 - X2) Xo (7)
T = 1-T—g3(T)X,

0= {(Xl,X%T) |0< X <7,0< X < EXl,OSTS 1}
Y1

The existence of interior equilibria is dependent on 7" and the following condition
is necessary.
(H3) there exists a unique s = Ar so that v1 f(1)g1(s) =1

We will refer to A as the maximum inhibition break-even concentration. (H3)
implies (H1) and A, < Ap. Furthermore, (H3) implies that v18¢91(s) = 1 has
unique solution Ag for all f(1) < f < 1 with Aglg=1 = Ao, Ag|B8 = f(1) = Ap, an
dXN(B) < 0.

The Jacobian of (7) is

Ju 0 Jis
J=1 Jau Joo O
0 Jzo J33

with Ji = =1+ ¢4 (1= LX) Xa f(T) + g1 (1= £X0) £(T), Jis = mn (1 -
%Xl)le,(T), J21 = %gé (%Xl — Xz) XQ, JQQ = —-1- 9/2 (%Xl - X2> X2 +
g2 (%Xl — XQ), J32 = —g3(T), and J33 = —]. — gé(T)XQ

3.1. Equilibria on the boundary of . Since X; = 0 implies Xs = 0, which
implies T' = 1, there exist two equilibrium on the boundary of , R, = (0,0, 1) and,
provided that Ay < 1, Ry = (X1,0,1), where X; = v;(1 — A7).

At R,, J13 = Jo1 = 0 and the eigenvalues of J are on the main diagonal with
Ji1 = 191(1) f(1) — 1 and Jap = J33 = —1. Hence, if Ay > 1, all eigenvalues are
negative, and R, is locally asymptotically stable. If Ay < 1, then R, is a saddle
with dimW?*(R,) = 2 corresponding to the (X2,T) plane.
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Assuming that A\p < 1, we find that at R;, Jo; = 0 and the eigenvalues are
given by the main diagonal of J, J;; = —¢ (1 - %X1> X1f(1) <0, Jg3 = —1, and

Joo = go (::—fX}) —1. Thus, R; is locally asymptotically stable if either g2 (s) < 1 for
all s > 0or %Xl ¢ (01,09). If :’/—ff(l € (01,02), Ry is a saddle with dimW?*(Ry) = 2
corresponding to the (X1, T) plane.

Theorem 3.1. (Global stability of R,) Assume (H1), (H2), and (H3) hold and
either Ay > 1 or1— 22 < )\, <1< Ap. Then tlim X1(t) = tli)m Xo(t) = 0 and
(o) o0

2
tlggo T(t) =1.

Proof. Since f is decreasing and 0 < T < 1, f(1) < f(T) < 1. Consequently,
X, < X, (’ylgl ( — %Xl) - 1). If A, > 1, then limy_. X1 (f) = 0. Since 0 <
Xo(t) < %Xl (t), lim;—, 00 Xo(t) = 0. This implies lim;_, o T'(t) = 1.

If yymy f(1) > 1and 1— % < Ao < 1 < Ap, then from Lemma 2.1 it follows that

limsup,_, o X1(t) <71(1—A,) and lim;_,oo X2(¢) = 0. Therefore, lim; ,o, T'(t) = 1.
Ar > 1 implies ﬁ(l) > ¢1(1). There exists an € > 0 so that m > g1(1).
For t sufficiently large, T'(t) > 1 — € and f(T(t)) < f(1 —€). This implies X; <
X1 ('ylgl ( — %Xl) fl—¢) — 1). Let A(e) be the solution to gi(s) = m

Then A(e) > 1, and lim;_, o, X1(t) = 0 follows directly from Lemma 2.1. O

Next, we see that the behavior of the inhibition-free model is preserved if both
break-even concentrations A\, and Ar satisfy the conditions given in (P2).

Theorem 3.2. (Global stability of Ry) Assume (H1), (H2), and (H3) hold. If
o . - - . - g -
; Tt < Ao < Arp <1, then tlggc X1(t) =v1(1=Ap), tlggng(t) =0 and tlirgoT(t) =
Proof. As before f(T) < 1 gives X; < X, (7191( — %Xl) — 1). Lemma 2.1
implies h?isongl(t) < (1 — Xp) and tlgglo Xs(t) = 0, and thus tlLIEOT(t) = 1L
Since Ar < 1, 1191(1)f(1) > 1, there is an ¢ > 0 so that for all 0 < n < ¢,

mg1(1)f(1 —n) > 1. For t sufficiently large, T'(t) > 1 —n and f(T(¢)) < f(1 —n).
Thus,

X1 <Xy <7191 <1 - 1X1) f(l—mn)— 1)
4!

This implies, limsup X1(¢t) < 71(1 — A(n)), where g1 (A\(n)) = m
lim, 0 A(n) = Az. Thus, limsup X;(¢) < 71(1 — Ar). On the other hand, X, >
t— o0

Clearly,

X3 (’Ylf(l)g1 (1 — %Xl) — 1). Therefore, litrgior.}f Xi(t) 271 = Ar). O

3.2. Equilibria in the interior of Q. Define F(T) = (y.f(T))”" and Gi(T) =

g1 (1 — %2 (O'i + 9137(%)), i = 1,2. Any interior equilibrium R! = (X1, X2,T) has

to satisfy the equations

1-T et o
93(T) X1= “/2( i+ Xo) ®

Gi(T)=F(T) Xo=
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It is easy to see that G4(T) > 0 and GY(T) > 0 for T € (0,1). G;(T) =0
for glci% = 9 — 0. Since h(T) = gf% is decreasing in (0,1), k(1) = 0, and
limy_o+ h(T) = 0o, h(T) = 72 — 0; has a unique solution 7; € (0, 1) provided that
v2 — o; > 0. Consequently, any solution T' € (0,1) of G;(T) = F(T') must lie in
(74, 1). Assume that

(H4) f"(T)f(T) < 2[f"(T)]* for T € (0,1)

This condition is satisfied by exponential functions f(7T) = exp(—pT) with u > 0,
which are frequently used to describe inhibition. (H4) ensures that F(T') is concave
up in (0,1). Since G; is concave down, equation G;(T") = F'(T) can have at most
two solutions in (7;,1). The solutions and corresponding equilibria will be denoted
R and R, with the understanding that T0*) < T,

Lemma 3.3. Assume (H1)-(H{) hold. If1— 22 < X; < Ap < 1— 2%, then
G1(T) = F(T) has a unique solution T"*) in (11,1) while Go(T) = F(T) has no
solution in (0,1).

Proof. Since % < F(T) < f(l) for 0 < T < 1, any solution of G;(T) = F(T)
must be such that A\, <1 — % (0; + M(T)) < Ar or

Yo(1 = Ap) — 03 < h(T) “ Y2 (1 = Xo) — 0 (9)

1= 22 <X, is equivalent t0 y2(1 — Ao) — 02 < 0. Since A(T') > 0 for T € (0,1), (x)
in (9) does not hold for i = 2 and G2(T') = F(T) has no solution.

Ar < 1— % implies v — 01 > 0. Thus h(T) = 72 — o1 has a unique solution
71 € (0,1), for which F(71) > 0 = G1(71). On the other hand, G1(1) = g1(1-2L) >
g1(Ar) = F(1). Since both G; and F are continuous on (11,1), G1(T) = F(T) has
at least one solution in (71,1). The uniqueness of the solution follows from the
concavity of F and G1. O

Theorem 3.4. (Global stability of Rgl’*)) Assume that (H1)-(H4) hold. If1—22 <
Ao <A < 1-— %, then (7) has a unique interior equilibrium Rgl’*) in Q and any

solution of (7) converges to RE.

Proof. Lemma 3.3 guarantees the existence of a unique solution 7(:*) for G4 (T') =
F(T) only. Let Xél’*) = h(T1*) and Xl(l’*) = %(01 + h(TX)).

Assume that (X7(t), X2(t),T(t)) is a solution of (7). It suffices to show that
tlirgo T(t) = TM%) . Since f(1) < f(T) < 1, Lemma 2.1 assures that v (1—\p)—0; <
liminf X5 < limsup X3 < v2(1 — A,) — 1. For € > 0 there is an s1(e) > 0 such
that for all t > sy, a; < Xo(t) < 51, where a1 = y2(1 — Ap) — 01 — € > 0 and
B1 = vl —X) — o1 +e Let p; and vy be the solutions to h(T) = a; and
h(T) = f31, respectively. Since for t > s1, 1 =T — g3(T) 1 < T<1-T- 93(T)ax,
we obtain that vy < liminf T'(¢) < limsupT'(t) < ui. Hence, for n > 0 there is a
t1(n) > 0 such that forallt > ¢1, 0 < vy —n < T(t) < p1+n < 1. Define ¢; = p1+7
and & = v — 7, and denote the solutions to ¢;(s) = F({1) and ¢1(s) = F(&) by
A(¢1) and A(&1), respectively. Then A, < A(&1) < A((1) < Ap.

For n > 1, let ay = y2(1 — A(Cn—1)) — 01 — €, B = 72(1 — A(&n—1)) — 01 + €,
tn, such that h(p,) = ay, v, so that h(v,) = B, (o = tn + 1 and &, = v, — 1,
and label the solutions to gi(s) = F(¢,) and g1(s) = F(&,) by A(¢,) and A(&,),
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respectively.

Claim 1: &, < T(t) < (, for t sufficiently large.
Assume that &,—1 < T(t) < (-1 for n > 1. Then

X1(1191(1 — 712X1)f(§n71) -1) < X1 < Xi(mgi(1— %Xl)f(fnq) -1)
Xo = X2(92(%X1 - Xo)—1)

According to Lemma 2.1 there is an s,, > 0 such that for all t > s, a, < Xa(t) <
Bn. As aresult, for t > s,, 1 =T — g3(T) B, <T <1—T — g3(T),,. Hence, there
is a t, > 0 so that for t > t,,, &, < T(t) < (p.

Claim 2: The sequences {(,} and {&,} are monotone and bounded, and thus con-
vergent.

From the definition of (., pin, an, and A((,), we see that ¢, > Coi1 iff i > ping1
iff a1 > ap iff A(Gu—1) > A(¢n) where A({o) = Ar. Thus, (1 > (3 follows from
Ar > A((p). Assume that §,—1 > (,. Then F((,—1) > F((,) which leads to
A(Cn—1) > A(¢n). The boundedness follows from ¢; < 1 and ¢, > 0. The mono-
tonicity and boundedness of {£,,} can be deduced similarly.

Denote the limits of {(,} and {£,} by ¢ and &, respectively. Then,
1 1 .
610 = o (1= 2+ 0@)) =an (1= = (o1 + Jim hGw) +0m) )

= lim ¢ (1 - % (o1 + an + O(n)))

n—oo
On the other hand,
. . 1
F(C) = nh_{gogl(/\(Cn)) = nh_{gogl (1 - % (01 + an-i—l) - 6)

1
= lim gy (1—(01+an)—e>

n—0o0 ")/2

Since € and 7 were arbitrary, we may let ¢ — 0 and 7 — 0, and see that G1({) =
F(¢). Similarly, G1(§) = F(€). Since the solution of G1(T) = F(T) is unique, we
conclude that ¢ = & = T0*) . As a result, limy_,o, T(t) = T, 0

Other interior equilibria may exist. Necessary conditions for the existence of
an interior equilibrium are v2 — o; > 0 and F(0) < G;(1) which is equivalent to
Ao < 1 — 2. If this holds, then G;(T') = F(T) has a unique solution provided
that Gi(1) > F(1). This is equivalent to Ay < 1 — Z&. If Gi(1) < F(1), then
G;(T) = F(T) may have no, one (degenerate), or two solutions, as illustrated
in figure 2. The existence of interior equilibria and global stability results are

summarized in table 1.

Theorem 3.5. (i) If R exists, it is locally asymptotically stable.
(i) If RE) exists, it is unstable.

(i) If R egists, it is unstable.

() If R£2’**) exists, it is locally asymptotically stable provided that

(2,%%)
1+4, <1 - %) X (T2 4 gy (TP X > —gh(o0) X (10)
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Case II or III: No or multiple equilibria

Va

F(T) > Gi(T)

i
no Ry

Gi(T)

F intersects G;
RU*) and R

Ti 1

Ficure 1. Case I: For A\p < 1 — % there exist two interior equi-

libria, in case II: 1 — % < Ar<1l-— % or case III: A\p > 1 — %

multiple equilibria may exist

AT
N | I, I3 | 14
I ((:1’*) &1’*) potential R(I*) | R{L**)
! Rg’*) potential Rgz’*), R&Q’**) potential Rg’*), REQY**)

R((;l’*)

globally stable potential e, REH
y

I Ry R,
3 globally stable | globally stable
R,

globally stable

TABLE 1. Existence of interior equilibria and global stability,
where I; = (071—ﬂ), I, = (1— ﬂ,l—ﬂ), Iy = (1—ﬂ,1),

2 72 2 2
and I, = (1,00)

Proof. The Jacobian J is such that Ji; = —¢} (1— %Xl) X1f(T) <0, Ji3 =
7191 (1 - %Xl) Xif'(T) <0, Jo1 = g5 <:YY—fX1 _XQ) X, Jog = —g) (%Xl -

Y1
Xz)Xz, J3g = —gg(T) <0, and J33 = —1 — gé(T)Xg < 0.

The characteristic polynomial is Q(z) = 23+ a122 +az2z + a3 where a; = —(J1; +
Joo + J33), az = Ji1Joz + Ji1J3z + JaoJzz, az = —(Ji1Ja2Js3 + JizJa1J32). The
Routh-Hurwitz criterion states that all solutions of @Q(z) = 0 have negative real
parts if and only if a; > 0, ag > 0, and ajas > as.

For i = 1, condition ag > 0 is equivalent to G (T) > _le[),”(%' This only holds

for Rél’*). Consequently, Rgl’**) is unstable. For Rgl), Jag < 0, which gives a; > 0.
The remaining condition, ajas > ag, is a1a2 —az = ayas+J11J22J33+ J13J21J32 > 0
because ajas + Ji1J22J33 > 0 and Ji3J21J30 > 0. Thus, if Rgl’*) exists, it is locally

#k)

asymptotically stable while Rél’ is unstable.
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For i =2, ag > 0 is equivalent to G} (T') < —%. This only holds for R,
ay > 0 is equivalent to (10). If a; > 0 and a3 > 0, ajas > a3 holds. O

The possibility for bi-stability is preserved after the inclusion of inhibition. More
precisely, if the inhibition-free system exhibited bi-stability, then so will system (5)
if the maximum inhibition break-even concentration Ar is sufficiently small.

Corollary 1. If0 < A, < Ap <1-— %, then (7) has two interior equilibria, R

and Rg’*). Rgl’*) and Ry are locally asymptotically stable while R, and Rg’*) are
unstable.

Proof. Since 1 — % <1-— %7 the existence of Rgl’*) follows from Lemma 3.3. The
existence of E**) can be shown as in Lemma 3.3, replacing o1 by oa. G;(1) > F(1)
implies that there are no other interior equilibria. The local stability of the various
equilibria was given in Theorem 3.5 and in section 3.1. O

0.5

o ¢
0

FIGURE 2. Bistable attractors for system (7). Functions and pa-
10x 150z

rameter values used: g¢i(x) = {77, g2(2) = g5 -exp(—0.9z),

g&(m) = %7 f(T) = €£Cp(—05T), = 057 Y2 = d.

3.3. Existence of limit cycles. Assume f(T) = exp(—uT), p > 0 and A, <
1 —03/y2. For A\r <1 —02/v2, G1(T) = F(T) has one solution T** in (11,1) and
G2(T) = F(T) has one solution T>* in (79, 1). Each equation has a second solution
which is greater than 1.

As p increases, Ar increases, and there are two possibilities. Either Go(T) =
F(T) has no solutions for p sufficiently large and G1(T') = F(T) eventually has two
solutions, or, an increase in p causes the second solution of Go(T') = F(T) to move
into (72,1) and that of G1(T") = F(T) into (71,1). With p increasing further, the
two solutions of either equation would merge and vanish.

Numerical results show that when the second solution of Go(T) = F(T') enters

(72,1), the corresponding equilibrium E£2’**) is first locally asymptotically stable,
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but becomes unstable as p increases. This loss of stability appears to be accompa-
nied by a Hopf bifurcation and the existence of a stable limit cycle. In this case,
system (5) exhibits the bi-stability of an interior equilibrium and a limit cycle (Fig.
3).

FIGURE 3. Bifurcation diagram for (7) for bifurcation parameter u
showing several bifurcations including a Hopf-bifurcation and bista-
bilities (thick lines correspond to stable equilibria while thin lines
correspond to unstable equilibria, the periodic orbits are stable).
Functions and parameter values as in Fig. 2 with f(7T") = exp(—puT)
for p ranging from 0.5 to 1.5.

4. Conclusion. The inhibition-free model exhibits three basic types of behavior:
complete wash-out of all bacteria and accumulation of substrate in the reactor,
accumulation of acids in the reactor so that one organism X5 (methanogens) goes
extinct, or coexistence of both cohorts of micro-organisms. The later is the behavior
most desired in practical settings as it results in continuous biogas production.

In industrial settings, system failure is usually associated with hydraulic and/or
organic overload, [13]. In terms of the constants in the unscaled model (1), the
break-even concentration ), is the solution to pyg(sS (0)) = D. Thus ), increases
with D and decreases with S(®). A complete wash-out occurs when the hydraulic
loading rate D is so large that the acid forming bacteria cannot grow fast enough
to absorb the incoming material (no M, exists or it is greater that S(°).) A high
hydraulic loading rate can also result in the acidification of the reactor. In our
notation, the equilibria E; and R; correspond to an acidification scenario. Condi-
tion (P2) is equivalent to %(550) — Xo) < 71, where & solves go(s) = D. This
condition can hold for large values of D. Thus, a hydraulic overload causes either
a complete washout of all bacteria or acidification.

Organic overload on the other hand can cause bistable conditions as described in
(P4) or in Corollary 1. For g2(d2) = D, condition (P4) becomes 72 < 0162[)(550) -
Ao) which holds for large values of S§O). In this case, the system may either stabilize
around the acidification state or around the state of coexistence. In practical setting
with such operating conditions, a one-time addition of the micro-organism X5 to
the system may prevent acidification.

We have seen that it is possible to preserve the behavior of the toxin-free system
when a toxin is introduced externally (theorems 3.1 - 3.4 and corollary 1). However,
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if strong enough, the toxin may cause complete wash-out of bacteria, fluctuations
(limit cycles) or additional bistabilities. This is similar to what has been seen for
other chemostat models with inhibitors, [4, 10, 21]. The effects of a strong toxin are
such that the system can have two stable coexistence steady states. In this case the
long-term behavior of the system depends on the initial conditions of the system.
For very strong toxins, the system exhibits the presence of a stable periodic solution
and a stable coexistence steady state.

Previous models for anaerobic digestion have not shown periodic solutions. Thus,
if data for biogas production show fluctuations with a periodic pattern, this might
indicate the presence of a toxin in the system. Our numerical results show that a
stable periodic solution can only exist in conjunction with a stable coexistence equi-
librium. This implies that even if a toxin is present, altering the initial conditions
can stabilize the system at the more desirable coexistence steady state.
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Appendix A. Analysis of toxin-free model (2). Consider system (2) repli-
cated below and assume that (H1) and (H2) hold.

S = 1-51- 91(51) X4 S1(0) >0
X1 = —Xi+na(S)X X1(0)=0 2)
Sy = =52+ 7201(51)X1 — g2(52) X2 S2(0) >0
X2 = —XQ + gg(SQ)XQ XQ(O) Z 0

We see immediately that X;(¢) > 0 and can deduce S;(t) > 0 from S;|g,—¢ > 0.
The boundedness of solutions is guaranteed because for ¥>; =1 — 5 — %X 1 and

22 = —SQ — X2 + :%Xl we obtain Zi = —Ei. AAISO7 D = {(Sl,Xl,SQ,X2)| Si 2
0, X;>0,81 + %Xl <1,8 +X; < %Xl} is positively invariant for (2).

Proposition 1 can be seen intuitively by recognizing that the equations for (S7, X1)
decouple from (S2, X3). The equations for (S7, X;) correspond to a basic chemostat
model for which it is well known that if A, > 1, then tlim S1(t) =1and tlim X1(t) =

— 00 —00

0. On the other hand, if A\, < 1, then tli)m S1(t) = Ao and tlim X1(t) =71 = Xo).
oo o
Assuming that tlim S1(t) = o and tlim X1(t) = B, and setting S; =« and X; = f8
—00 —00
in (2), gives

Sy = TI— S5 — ga2(S2)Xo
Xo = —Xo+g2(52)X>

where II = v9¢g1 (a)8. Chemostat equations with non-monotone response functions
have been considered for much more general equations involving multiple species
and substrates [6, 12, 20]). Under assumption (H2), the system has three equilib-
ria in R, My = (I1,0), M} = (01,11 — o), and M2 = (02,11 — 03), where M_ is
always stable and M? is always stable. Thus one can see why Proposition 1 would
hold.

A more formal analysis is given below using the theory of asymptotic autonomous
differential equations, which was also used in section 3.

Proof. Proof of Proposition 1.
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Replacing S; by ¥; in (2) and setting 3; = 0 reduces (2) to

X = -X; (1 — 0 <1 - ;X1>> (11)
X, = —X, (1 — g (ﬁxl _ X2)> (12)

The region Q = {(Xl,X2)| 0< X <7, 0< X < :%Xl} is positively invariant
for (11, 12).

This system can have up to four equilibria, F, = (0,0), F; = (y1(1 — Xp),0)
and F! = (v1(1 — Xo),72(1 — Xo) — 03), where F; lies in Q only if A, < 1 and
F! € Q provided that A, < 1 —0;/v2. The local stability analysis of these equilibria
immediately transfers to that of the corresponding equilibria of (2). Any global
stability results only transfer if the conditions from the theory of asymptotic au-
tonomous differential equations are satisfied. Among those one has to guarantee
that no polycycle exists between the equilibria, [18; 19], which is reasoned below.

Equilibrium Existence Local stability
F, always Ao > 1
Fy Ao <1 /\o>170'1/")/2 OI‘)\0<17(72/’}/2
F! Ao <1—01/7 always
F? Ao < 1—09/7 never

TABLE 2. Conditions for existence and local stability of the equi-
libria of (11,12)

Since equation (11) is independent of X3, X;(¢) cannot be a periodic solu-
tion. This in turn implies that (11,12) can have no periodic solution. The set
{(X1,X2)| X1 >0, Xo =0} is positively invariant. Thus there can be no polycycle
connecting F, and F, or F,,, F} and F2. Since F! is always locally asymptotically
stable, it cannot be part of a polycycle. The Poincaré-Bendixson Theorem implies
that when only one locally asymptotically equilibrium exists in €2, it must be glob-
ally stable. This means that the above conditions for existence and local stability
also give global stability as summarized here.

e )\, > 1 implies that F}, is globally stable.

e If 1 —01 /v < A, <1, F is globally stable.

o If 1 —03/y2 < A\, < 1—01/72, F! is globally stable.

As a result, the corresponding equilibria of system (2) share the same stability
properties. O
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