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Abstract. Anaerobic digestion has been modeled as a two-stage process us-
ing coupled chemostat models with non-monotone growth functions, [9]. This

study incorporates the effects of an external toxin. After reducing the model

to a 3-dimensional system, global stability of boundary and interior equilibria
is proved using differential inequalities and comparisons to the corresponding

toxin-free model. Conditions are given under which the behavior of the toxin-

free model is preserved. Introduction of the toxin results in additional patterns
such as bistabilities of coexistence steady states or of a periodic orbit and an

interior steady state.

1. Introduction. Anaerobic digestion is a natural process during which cohorts
of micro-organisms break down organic matter in the absence of oxygen. The re-
sulting biogas consists of methane, carbon dioxide, and trace gases. Recently, there
has been an increased interest in the commercial utilization of anaerobic digestion
for its environmental and economic benefits. Anaerobic digestion is used in waste
treatment facilities, especially for the treatment of sewage sludge; the biogas is
captured before it can escape into the atmosphere and can be used as renewable en-
ergy either by combusting the gas to produce electrical energy or by extracting the
methane and using it as a natural gas fuel. While anaerobic digestion is a naturally
occurring bioprocess, the process appears to be unstable and difficult to control in
industrial settings. Anaerobic digestion is an extremely complex process that in-
volves a large number of strains of bacteria and is not yet completely understood. In
particular, biologists’ understanding of the microbiology of the organisms involved
is still incomplete. Mathematical models can provide insight into the process and
the microbiology, and help to establish guidelines for the control and stabilization
of large scale installations.

Numerous comprehensive models for anaerobic digestion processes have been
developed, see [2, 5, 13] and the references therein. Among these, the most compre-
hensive model was developed in [2]. This high-dimensional model describes many
of the biological, chemical, and kinetic processes of anaerobic digestion and can be
used to calibrate individual installations. However, the complexity of this model
makes a qualitative analysis very difficult. A different, more macroscopic approach
to modeling anaerobic digestion was taken in [8, 9, 11, 17]. We are continuing this
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effort in an attempt to gain a better understanding of the process and how the
bacteria interact.

Anaerobic digestion is a 4-phase process consisting of hydrolysis, acidogenesis,
acetogenesis, and methanogenesis. In the first phase, glucose, long chain fatty acids,
amino acids are formed. During acidogenesis these are converted to ethanol, volatile
fatty acids, acetate, hydrogen, and carbon dioxide. Hydrogen-producing heteroace-
togens convert alcohols and short fatty acids into acetate, hydrogen, and carbon
dioxide through acetogenic dehydrogenation. Hydrogen-consuming homoacetogens
convert hydrogen and carbon dioxide into acetate. In the final stage, aceticlastic
methanogens convert acetic acid into methane and carbon dioxide through acetate
decarboxylation and hydrogenotrophic methanogens combine carbon dioxide and
hydrogen into methane and water. In most biogas installations, about 70% of
the methane is produced through the conversion of acetate to methane. By fo-
cusing on this main path and separating hydrolysis from the overall process one
can model anaerobic digestion as a two-stage process consisting of (1) acidogene-
sis/acetogenesis to volatile fatty acids/acetate and (2) aceticlastic methanogenesis
as was done in [11, 17, 9]. The models considered in these studies consist equations
involving two substrates and two micro-organisms. In [11], monotone growth of the
bacteria was assumed and the existence of a unique interior equilibrium was shown.

Methanogens belong to the group of Archaebacteria. They are strict anaerobes
and can only survive within pH-range of about 6.5 - 8. A high concentration of acids
lowers the pH and inhibits the growth of methanogenic archae and the production of
methane. To model the impact of acid concentration on methanogens, their growth
is described by a non-monotone growth function as was done in [9, 17]. In [9] it
was shown that for some parameter conditions a unique, globally stable interior
equilibrium exists while for other parameters the system exhibits the bistability of
an interior equilibrium and a boundary equilibrium. The boundary equilibrium is
such that methanogens responsible for the second phase are no longer present in the
system and corresponds to a frequently observed scenario in industrial installation
described as acid accumulation under which all methane production ceases.

In [8], the role of hydrogen on the acetogenesis and methanogenesis phases of
anaerobic digestion were considered. The impact of acid on bacteria growth was
ignored. This model can be considered a modification of the model studied in [11]
where one of the substrates acts as an internally allocated inhibitor. The analysis
gives conditions for the existence of a unique, globally stable interior equilibrium.

In this paper we perturb the model considered in [9, 11] to study the effects of an
externally introduced toxin. We wish to know under what conditions an external
toxin has limited to no effects on the limiting behavior of the system and whether
a toxin can alter the limiting behavior to patterns different from steady state.

External toxins can act in different ways; they can affect both micro-organisms,
or they can affect only one of the micro-organisms. If none of the micro-organisms
are able to break-down the toxin, thus reducing its toxicity, the effects of the toxin
can be studied by changing the parameters. However, if the micro-organisms can
reduce the toxicity, then the toxin has to be modeled as a state variable. Here we
assume that the toxin affects only one microorganism and that the other microor-
ganisms breaks down the toxin or is able to decrease its toxicity. In the context
of anaerobic digestion, well-known toxins are heavy metals, [7]. In separate studies
[3, 15, 16] it has been shown methanogens are able to reduce heavy metal toxi-
city by converting methylmercury to an oxidation stage with increased solubility,
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therefore decreasing the toxicity of methylmercury. While methane production has
been reported in methylmercury decomposition, it is unclear whether it contributes
to bacteria growth. In this study it is assumed that the reduction of toxin does
not result in bacteria growth. We show that while many of the features of the
inhibition-free system studied in [9] are preserved, including such a toxin increases
the complexity of the system and may lead to the bistabilities of two coexistence
equilibria or of a coexistence equilibrium and a periodic solution. Previous models
for anaerobic digestion did not possess periodic solutions. Thus, an observed peri-
odic pattern in biogas production data can be indicative of the presence of a toxin
in the system.

The paper is organized as follows. We first summarize the results of [9] and
provide a different but equivalent analysis in the appendix. In section 3 we give a
local and global analysis of the modified model with an externally introduced toxin.
The results give conditions under which the behavior of the toxin-free model is
preserved. We conclude with a numerical study that shows the existence of stable
periodic solution which coexists with a locally stable steady state. The periodic
solutions are the result of a toxin-induced supercritical Hopf bifurcation.

2. Two-stage model for methanogenesis. We consider anaerobic digestion as
a two-stage process. During the first stage, acid-forming bacteria (X1) convert
sugars and volatile fatty acids (S1) into acetic acid (S2). Methanogens (X2) then
transform acetic acid into methane and carbon dioxide. The nutrient supplied to
the chemostat, S1, is growth limiting for X1. The intermediate product S2 is growth
limiting to X2. However, if the concentration of S2 is large, the conditions in the
chemostat are altered leading to growth inhibiting conditions for X2.

S1
X1−→ S2

X2−→M

The interaction between the species can be described by the following system of
differential equations.

Ṡ1 = DS
(0)
1 −DS1 −

1

c1
g1(S1)X1

Ẋ1 = −DX1 + p1g1(S1)X1 (1)

Ṡ2 = −DS2 +
p2
c12

g1(S1)X1 −
1

c2
g2(S2)X2

Ẋ2 = −DX2 + g2(S2)X2

with Si(0) ≥ 0 and Xi(0) ≥ 0. Here D is the dilution rate, S
(0)
1 the concentration

of nutrient S1 in the inflow, c1, c12, c2 are yield coefficients, p1 is the fraction
of substrate consumption dedicated to bacteria growth, and p2 is the fraction of
substrate consumption used to form the second nutrient S2. We assume that gi
are non-negative with gi(0) = 0 and continuously differentiable. Furthermore, g1
is monotone increasing, and g2 is non-monotone, i.e., there is an sm > 0 such that
g′2(s) > 0 for s < sm and g′2(s) < 0 for s > sm.

A similar model was given in [11] where both g1 and g2 were of Monod-type. The
analysis given here also applies in that case if we allow for sm =∞ and g′2(s) > 0 for

s > 0. In [9], (1) was considered with the inclusion of an inflow term DS
(0)
2 in the

equation for S2 and under the assumption that g1 is of Monod-type. Since (S1, X1)
evolve independently of (S2, X2), the results for the global behavior of (1) are very
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similar to that given in [9]. We will first derive a dimensionless version of (1) and
then give a summary of the global behavior of the scaled system in Proposition
1. The analysis (which is different from the one given in [9] and foreshadows the
techniques used in section 3) is given in the appendix.

Using the scaling t̂ = tD, Ŝi = Si/S
(0)
1 , X̂i = Xi/(ciS

(0)
1 ), and letting ĝi(s) =

gi

(
sS

(0)
1

)
/D, (i = 1, 2), (1) becomes (after leaving off theˆ)

Ṡ1 = 1− S1 − g1(S1)X1 S1(0) ≥ 0

Ẋ1 = −X1 + γ1g1(S1)X1 X1(0) ≥ 0

Ṡ2 = −S2 + γ2g1(S1)X1 − g2(S2)X2 S2(0) ≥ 0

Ẋ2 = −X2 + g2(S2)X2 X2(0) ≥ 0

(2)

where γ1 = p1 and γ2 = c1p2/c12. The following two assumptions are needed to
ensure the existence of an interior equilibrium and are standard in the theory of the
chemostat, [18].

(H1) there exist a unique s = λo > 0 such that γ1g1(s) = 1
(H2) there exist two s = σi with 0 < σ1 < σ2 so that g2(s) = 1

We will refer to λo as toxin-free break-even concentration and note that (H2)
implies that g2(s) < 1 for s /∈ [σ1, σ2] and g2(s) > 1 for s ∈ (σ1, σ2).

Proposition 1. Assume that (H1) and (H2) hold. Then Eo = (1, 0, 0, 0), E1 =
(λo, γ1(1−λo), γ2(1−λo), 0), and Eic = (λo, γ1(1−λo), σi, γ2(1−λo)−σi), (i = 1, 2),
are the equilibria of (2). Assuming Si(0) > 0 and Xi(0) > 0, the behavior of the
solution is as follows:

(P1) If λo > 1, then all solutions of (2) approach Eo.
(P2) If λo < 1, and γ2(1− λo) < σ1, then all solutions of (2) approach E1.
(P3) If λo < 1, and γ2(1− λo) ∈ (σ1, σ2), then all solutions of (2) approach E1

c .
(P4) If λo < 1, and γ2(1 − λo) > σ2, then all equilibria of (2) lie in R4

+, and E1

and E1
c are locally asymptotically stable, while Eo and E2

c are unstable.

The following lemma is a direct consequence of Proposition 1 and will be used
in later proofs of global stability.

Lemma 2.1. Let β > 0 and assume that γ1βg1(s) = 1 has a solution λβ. Consider

u̇ = u
(
γ1βg1

(
1− 1

γ1
u
)
− 1
)

u(0) ≥ 0

v̇ = v
(
g2

(
γ2
γ1
u− v

)
− 1
)

v(0) ≥ 0
(3)

(i) If λβ > 1, then lim
t→∞

u(t) = 0 and lim
t→∞

v(t) = 0.

(ii) If λβ < 1, then lim
t→∞

u(t) = γ1(1− λβ). If, in addition, γ2(1− λβ) < σ1, then

lim
t→∞

v(t) = 0. If γ2(1− λβ) ∈ (σ1, σ2), then lim
t→∞

v(t) = γ2(1− λβ)− σ1.

3. Non-lethal external inhibition. System (1) describes how the micro-organism
X2 depends on the activities of micro-organism X1. Assume that a toxin T is in-
troduced into the environment that inhibits the growth of the organism X1 while
X2 has the ability to break down the toxin.
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Ṡ1 = qS
(0)
1 − qS1 −

1

c1
g1(S1)f(T )X1

Ẋ1 = −qX1 + (1− p) g1(S1)f(T )X1

Ṡ2 = −qS2 + p g1(S1)f(T )X1 −
1

c2
g2(S2)X2 (4)

Ẋ2 = −qX2 + g2(S2)X2

Ṫ = qT (0) − qT − g3(T )X2

Si(0) ≥ 0, Xi(0) ≥ 0, T (0) ≥ 0,

where f and g3 are continuously differentiable, f is decreasing and g3 is decreasing,
f(T ) > 0 for T ≥ 0, f(0) = 1 and g(0) = 0. Using the same scaling as in the

previous section with the addition of T̂ = T/T (0), f̂(T ) = f(TT (0)) and ĝ3(T ) =

c2
g3(TT (0))

qT (0)
, (4) can be written as

Ṡ1 = 1− S1 − g1(S1) f(T )X1

Ẋ1 = −X1 + γ1g1(S1) f(T )X1

Ṡ2 = −S2 + γ2g1(S1) f(T )X1 − g2(S2)X2 (5)

Ẋ2 = −X2 + g2(S2)X2

Ṫ = 1− T − g3(T )X2

Si(0) ≥ 0, Xi(0) ≥ 0, T (0) ≥ 0

Proposition 2. The solutions of (5) are bounded.

Proof. From the equations for Xi we can deduce directly that Xi(t) ≥ 0, (i = 1, 2).

Thus, Ṫ ≤ 1 − T , T (0) ≥ 0, which proves the boundedness of T . Ṡi|Si=0 > 0

implies that Si(t) ≥ 0. The boundedness of (S1, X1) follows from d
dt

(
S1 + 1

γ1
X1

)
=

1− S1 − 1
γ1
X1. With (S1, X1) bounded, d

dt (S2 +X2) ≤ −(S2 +X2) +M for some

M > 0. Therefore, (S2, X2) is also bounded.

The theory of autonomous asymptotic systems developed in [14, 18, 19] can be
used to obtain results for the global stability of (5). Let

Σ1 = 1− S1 −
1

γ1
X1 and Σ2 = −S2 −X2 +

γ2
γ1
X1

Then Σ′1 = −Σ1 and Σ1(0) ≥ 0 if S1(0) + 1
γ1
X1(0) ≤ 1. limt→∞Σ1(t) = 0, and

0 ≤ Σ1(t) ≤ Σ1(0) gives S1(0)+ 1
γ1
X1(0) ≤ S1(t)+ 1

γ1
X1(t) ≤ 1 for t ≥ 0. Similarly,

Σ′2 = −Σ2 and Σ2(0) ≥ 0 if S2(0) + 1
γ1
X2(0) ≤ γ2

γ1
X1(0). limt→∞ Σ2(t) = 0, and

Σ2(t) ≥ 0 together with earlier observations gives 0 ≤ S2(t) +X2(t) ≤ γ2
γ1
X1(t) for

t ≥ 0.
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Writing (5) in terms of Σ1 and Σ2 gives

Σ̇1 = −Σ1

Σ̇2 = −Σ2

Ẋ1 = −X1 + γ1g1

(
1− Σ1 −

1

γ1
X1

)
f(T )X1 (6)

Ẋ2 = −X2 + g2

(
γ2
γ1
X1 −X2 − Σ2

)
X2

Ṫ = 1− T − g3(T )X2

with D =
{

(Σ1,Σ2, X1, X2, T ) | Xi ≥ 0,Σi ≥ 0,Σ1 + 1
γ1
X1 ≤ 1,Σ2 + X2 ≤

γ2
γ1
X1, 0 ≤ T ≤ 1

}
. Note that D is positively invariant for (6). Letting Σ1 = Σ2 = 0

results in the reduced system

Ẋ1 = −X1 + γ1g1

(
1− 1

γ1
X1

)
f(T )X1

Ẋ2 = −X2 + g2

(
γ2
γ1
X1 −X2

)
X2 (7)

Ṫ = 1− T − g3(T )X2

Ω =

{
(X1, X2, T ) | 0 ≤ X1 ≤ γ1, 0 ≤ X2 ≤

γ2
γ1
X1, 0 ≤ T ≤ 1

}
The existence of interior equilibria is dependent on T and the following condition

is necessary.

(H3) there exists a unique s = λT so that γ1f(1)g1(s) = 1

We will refer to λT as the maximum inhibition break-even concentration. (H3)
implies (H1) and λo < λT . Furthermore, (H3) implies that γ1βg1(s) = 1 has
unique solution λβ for all f(1) < β ≤ 1 with λβ |β=1 = λo, λβ |β = f(1) = λT , an
dλ′(β) < 0.

The Jacobian of (7) is

J =

 J11 0 J13
J21 J22 0
0 J32 J33


with J11 = −1 + g′1

(
1− 1

γ1
X1

)
X1f(T ) + γ1g1

(
1− 1

γ1
X1

)
f(T ), J13 = γ1g1

(
1 −

1
γ1
X1

)
X1f

′(T ), J21 = γ2
γ1
g′2

(
γ2
γ1
X1 −X2

)
X2, J22 = −1 − g′2

(
γ2
γ1
X1 −X2

)
X2 +

g2

(
γ2
γ1
X1 −X2

)
, J32 = −g3(T ), and J33 = −1− g′3(T )X2.

3.1. Equilibria on the boundary of Ω. Since X1 = 0 implies X2 = 0, which
implies T = 1, there exist two equilibrium on the boundary of Ω, Ro = (0, 0, 1) and,
provided that λT < 1, R1 = (X̄1, 0, 1), where X̄1 = γ1(1− λT ).

At Ro, J13 = J21 = 0 and the eigenvalues of J are on the main diagonal with
J11 = γ1g1(1)f(1) − 1 and J22 = J33 = −1. Hence, if λT > 1, all eigenvalues are
negative, and Ro is locally asymptotically stable. If λT < 1, then Ro is a saddle
with dimW s(Ro) = 2 corresponding to the (X2, T ) plane.
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Assuming that λT < 1, we find that at R1, J21 = 0 and the eigenvalues are

given by the main diagonal of J , J11 = −g′1
(

1− 1
γ1
X̄1

)
X̄1f(1) < 0, J33 = −1, and

J22 = g2

(
γ2
γ1
X̄1

)
−1. Thus, R1 is locally asymptotically stable if either g2(s) < 1 for

all s ≥ 0 or γ2
γ1
X̄1 /∈ (σ1, σ2). If γ2γ1 X̄1 ∈ (σ1, σ2), R1 is a saddle with dimW s(R1) = 2

corresponding to the (X1, T ) plane.

Theorem 3.1. (Global stability of Ro) Assume (H1), (H2), and (H3) hold and
either λo > 1 or 1 − σ1

γ2
< λo < 1 < λT . Then lim

t→∞
X1(t) = lim

t→∞
X2(t) = 0 and

lim
t→∞

T (t) = 1.

Proof. Since f is decreasing and 0 ≤ T ≤ 1, f(1) ≤ f(T ) ≤ 1. Consequently,

Ẋ1 ≤ X1

(
γ1g1

(
1− 1

γ1
X1

)
− 1
)

. If λo > 1, then limt→∞X1(t) = 0. Since 0 ≤
X2(t) ≤ γ2

γ1
X1(t), limt→∞X2(t) = 0. This implies limt→∞ T (t) = 1.

If γ1m1f(1) > 1 and 1− σ1

γ2
< λo < 1 < λT , then from Lemma 2.1 it follows that

lim supt→∞X1(t) ≤ γ1(1−λo) and limt→∞X2(t) = 0. Therefore, limt→∞ T (t) = 1.
λT > 1 implies 1

γ1f(1)
> g1(1). There exists an ε > 0 so that 1

γ1f(1−ε) > g1(1).

For t sufficiently large, T (t) > 1 − ε and f(T (t)) < f(1 − ε). This implies Ẋ1 ≤
X1

(
γ1g1

(
1− 1

γ1
X1

)
f(1− ε)− 1

)
. Let λ(ε) be the solution to g1(s) = 1

γ1f(1−ε) .

Then λ(ε) > 1, and limt→∞X1(t) = 0 follows directly from Lemma 2.1.

Next, we see that the behavior of the inhibition-free model is preserved if both
break-even concentrations λo and λT satisfy the conditions given in (P2).

Theorem 3.2. (Global stability of R1) Assume (H1), (H2), and (H3) hold. If
1− σ1

γ2
< λo < λT < 1, then lim

t→∞
X1(t) = γ1(1−λT ), lim

t→∞
X2(t) = 0 and lim

t→∞
T (t) =

1.

Proof. As before f(T ) ≤ 1 gives Ẋ1 ≤ X1

(
γ1g1

(
1− 1

γ1
X1

)
− 1
)

. Lemma 2.1

implies lim sup
t→∞

X1(t) ≤ γ1(1 − λo) and lim
t→∞

X2(t) = 0, and thus lim
t→∞

T (t) = 1.

Since λT < 1, γ1g1(1)f(1) > 1, there is an ε > 0 so that for all 0 < η < ε,
γ1g1(1)f(1− η) > 1. For t sufficiently large, T (t) > 1− η and f(T (t)) < f(1− η).
Thus,

Ẋ1 ≤ X1

(
γ1g1

(
1− 1

γ1
X1

)
f(1− η)− 1

)
This implies, lim supX1(t) ≤ γ1(1 − λ(η)), where g1 (λ(η)) = 1

γ1f(1−η) . Clearly,

limη→0 λ(η) = λT . Thus, lim sup
t→∞

X1(t) ≤ γ1(1 − λT ). On the other hand, Ẋ1 ≥

X1

(
γ1f(1)g1

(
1− 1

γ1
X1

)
− 1
)

. Therefore, lim inf
t→∞

X1(t) ≥ γ1(1− λT ).

3.2. Equilibria in the interior of Ω. Define F (T ) = (γ1f(T ))
−1

and Gi(T ) =

g1

(
1− 1

γ2

(
σi + 1−T

g3(T )

))
, i = 1, 2. Any interior equilibrium Ric = (X1, X2, T ) has

to satisfy the equations

Gi(T ) = F (T ) X2 =
1− T
g3(T )

X1 =
γ1
γ2

(σi +X2) (8)
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It is easy to see that G′i(T ) > 0 and G′′i (T ) > 0 for T ∈ (0, 1). Gi(T ) = 0
for 1−T

g3(T ) = γ2 − σi. Since h(T ) = 1−T
g3(T ) is decreasing in (0, 1), h(1) = 0, and

limT→0+ h(T ) =∞, h(T ) = γ2 − σi has a unique solution τi ∈ (0, 1) provided that
γ2 − σi > 0. Consequently, any solution T ∈ (0, 1) of Gi(T ) = F (T ) must lie in
(τi, 1). Assume that

(H4) f ′′(T )f(T ) < 2[f ′(T )]2 for T ∈ (0, 1)

This condition is satisfied by exponential functions f(T ) = exp(−µT ) with µ > 0,
which are frequently used to describe inhibition. (H4) ensures that F (T ) is concave
up in (0, 1). Since Gi is concave down, equation Gi(T ) = F (T ) can have at most
two solutions in (τi, 1). The solutions and corresponding equilibria will be denoted

R
(i,∗)
c and R

(i,∗∗)
c , with the understanding that T (i,?) < T (i,??).

Lemma 3.3. Assume (H1)-(H4) hold. If 1 − σ2

γ2
< λo < λT < 1 − σ1

γ2
, then

G1(T ) = F (T ) has a unique solution T (1,?) in (τ1, 1) while G2(T ) = F (T ) has no
solution in (0, 1).

Proof. Since 1
γ1

< F (T ) < 1
γ1f(1)

for 0 < T < 1, any solution of Gi(T ) = F (T )

must be such that λo < 1− 1
γ2

(σi + h(T )) < λT or

γ2(1− λT )− σi < h(T )
(∗)
< γ2(1− λo)− σi (9)

1− σ2

γ2
< λo is equivalent to γ2(1− λo)− σ2 < 0. Since h(T ) > 0 for T ∈ (0, 1), (∗)

in (9) does not hold for i = 2 and G2(T ) = F (T ) has no solution.
λT < 1 − σ1

γ2
implies γ2 − σ1 > 0. Thus h(T ) = γ2 − σ1 has a unique solution

τ1 ∈ (0, 1), for which F (τ1) > 0 = G1(τ1). On the other hand, G1(1) = g1(1− σ1

γ2
) >

g1(λT ) = F (1). Since both G1 and F are continuous on (τ1, 1), G1(T ) = F (T ) has
at least one solution in (τ1, 1). The uniqueness of the solution follows from the
concavity of F and G1.

Theorem 3.4. (Global stability of R
(1,?)
c ) Assume that (H1)-(H4) hold. If 1− σ2

γ2
<

λo < λT < 1 − σ1

γ2
, then (7) has a unique interior equilibrium R

(1,?)
c in Ω and any

solution of (7) converges to R
(1,?)
c .

Proof. Lemma 3.3 guarantees the existence of a unique solution T (1,?) for G1(T ) =

F (T ) only. Let X
(1,?)
2 = h(T (1,?)) and X

(1,?)
1 = γ1

γ2
(σ1 + h(T (1,?))).

Assume that (X1(t), X2(t), T (t)) is a solution of (7). It suffices to show that

lim
t→∞

T (t) = T (1,?). Since f(1) < f(T ) < 1, Lemma 2.1 assures that γ2(1−λT )−σ1 ≤
lim inf X2 ≤ lim supX2 ≤ γ2(1 − λo) − σ1. For ε > 0 there is an s1(ε) > 0 such
that for all t > s1, α1 ≤ X2(t) ≤ β1, where α1 = γ2(1 − λT ) − σ1 − ε > 0 and
β1 = γ2(1 − λo) − σ1 + ε. Let µ1 and ν1 be the solutions to h(T ) = α1 and

h(T ) = β1, respectively. Since for t > s1, 1− T − g3(T )β1 ≤ Ṫ ≤ 1− T − g3(T )α1,
we obtain that ν1 ≤ lim inf T (t) ≤ lim supT (t) ≤ µ1. Hence, for η > 0 there is a
t1(η) > 0 such that for all t > t1, 0 < ν1−η ≤ T (t) ≤ µ1+η < 1. Define ζ1 = µ1+η
and ξ1 = ν1 − η, and denote the solutions to g1(s) = F (ζ1) and g1(s) = F (ξ1) by
λ(ζ1) and λ(ξ1), respectively. Then λo < λ(ξ1) < λ(ζ1) < λT .

For n > 1, let αn = γ2(1 − λ(ζn−1)) − σ1 − ε, βn = γ2(1 − λ(ξn−1)) − σ1 + ε,
µn such that h(µn) = αn, νn so that h(νn) = βn, ζn = µn + η and ξn = νn − η,
and label the solutions to g1(s) = F (ζn) and g1(s) = F (ξn) by λ(ζn) and λ(ξn),



EXTERNAL TOXIN IN ANAEROBIC DIGESTION 453

respectively.

Claim 1: ξn ≤ T (t) ≤ ζn for t sufficiently large.
Assume that ξn−1 ≤ T (t) ≤ ζn−1 for n > 1. Then

X1(γ1g1(1− 1
γ2
X1)f(ζn−1)− 1) ≤ Ẋ1 ≤ X1(γ1g1(1− 1

γ2
X1)f(ξn−1)− 1)

Ẋ2 = X2(g2(γ2γ1X1 −X2)− 1)

According to Lemma 2.1 there is an sn > 0 such that for all t > sn, αn ≤ X2(t) ≤
βn. As a result, for t > sn, 1− T − g3(T )βn ≤ Ṫ ≤ 1− T − g3(T )αn. Hence, there
is a tn > 0 so that for t > tn, ξn ≤ T (t) ≤ ζn.

Claim 2: The sequences {ζn} and {ξn} are monotone and bounded, and thus con-
vergent.
From the definition of ζn, µn, αn, and λ(ζn), we see that ζn > ζn+1 iff µn > µn+1

iff αn+1 > αn iff λ(ζn−1) > λ(ζn) where λ(ζ0) = λT . Thus, ζ1 > ζ2 follows from
λT > λ(ζ1). Assume that ζn−1 > ζn. Then F (ζn−1) > F (ζn) which leads to
λ(ζn−1) > λ(ζn). The boundedness follows from ζ1 < 1 and ζn > 0. The mono-
tonicity and boundedness of {ξn} can be deduced similarly.

Denote the limits of {ζn} and {ξn} by ζ and ξ, respectively. Then,

G1(ζ) = g1

(
1− 1

γ2
(σ1 + h(ζ))

)
= g1

(
1− 1

γ2

(
σ1 + lim

n→∞
h(µn) +O(η)

))
= lim

n→∞
g1

(
1− 1

γ2
(σ1 + αn +O(η))

)
On the other hand,

F (ζ) = lim
n→∞

g1(λ(ζn)) = lim
n→∞

g1

(
1− 1

γ2
(σ1 + αn+1)− ε

)
= lim

n→∞
g1

(
1− 1

γ2
(σ1 + αn)− ε

)
Since ε and η were arbitrary, we may let ε→ 0 and η → 0, and see that G1(ζ) =

F (ζ). Similarly, G1(ξ) = F (ξ). Since the solution of G1(T ) = F (T ) is unique, we
conclude that ζ = ξ = T (1,?). As a result, limt→∞ T (t) = T (1,?).

Other interior equilibria may exist. Necessary conditions for the existence of
an interior equilibrium are γ2 − σi > 0 and F (0) < Gi(1) which is equivalent to
λo < 1 − σi

γ2
. If this holds, then Gi(T ) = F (T ) has a unique solution provided

that Gi(1) > F (1). This is equivalent to λT < 1 − σi

γ2
. If Gi(1) < F (1), then

Gi(T ) = F (T ) may have no, one (degenerate), or two solutions, as illustrated
in figure 2. The existence of interior equilibria and global stability results are
summarized in table 1.

Theorem 3.5. (i) If R
(1,?)
c exists, it is locally asymptotically stable.

(ii) If R
(1,??)
c exists, it is unstable.

(iii) If R
(2,?)
c exists, it is unstable.

(iv) If R
(2,??)
c exists, it is locally asymptotically stable provided that

1 + g′1

(
1− X

(2,??)
1

γ1

)
X

(2,??)
1 f(T 2,??) + g′3(T 2,??)X

(2,??)
2 > −g′2(σ2)X

(2,??)
2 (10)
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6

F (1)

-T

G1(T )

G2(T )

τ1 τ2 1

I

II

III

Case II or III: No or multiple equilibria

6

-T

Gi(T )

τi 1

F (T ) > Gi(T )

no Ri
c

F intersects Gi

R(i,?)
c and R(i,??)

c

Figure 1. Case I: For λT < 1 − σ2

γ2
there exist two interior equi-

libria, in case II: 1 − σ2

γ2
< λT < 1 − σ1

γ2
or case III: λT > 1 − σ1

γ2
multiple equilibria may exist

λT
λo I1 I2 I3 I4

I1
R

(1,?)
c R

(1,?)
c potential R(1,?)

c , R(1,??)
c

R
(2,?)
c potential R(2,?)

c , R(2,??)
c potential R(2,?)

c , R(2,??)
c

I2
R

(1,?)
c

potential R(1,?)
c , R(1,??)

cglobally stable

I3
R1 Ro

globally stable globally stable

I4
Ro

globally stable

Table 1. Existence of interior equilibria and global stability,

where I1 =
(

0, 1− σ2

γ2

)
, I2 =

(
1− σ2

γ2
, 1− σ1

γ2

)
, I3 =

(
1− σ1

γ2
, 1
)

,

and I4 = (1,∞)

Proof. The Jacobian J is such that J11 = −g′1
(

1− 1
γ1
X1

)
X1f(T ) < 0, J13 =

γ1g1

(
1− 1

γ1
X1

)
X1f

′(T ) < 0, J21 = γ2
γ1
g′2

(
γ2
γ1
X1 −X2

)
X2, J22 = −g′2

(
γ2
γ1
X1 −

X2

)
X2, J32 = −g3(T ) < 0, and J33 = −1− g′3(T )X2 < 0.

The characteristic polynomial is Q(z) = z3 +a1z
2 +a2z+a3 where a1 = −(J11 +

J22 + J33), a2 = J11J22 + J11J33 + J22J33, a3 = −(J11J22J33 + J13J21J32). The
Routh-Hurwitz criterion states that all solutions of Q(z) = 0 have negative real
parts if and only if a1 > 0, a3 > 0, and a1a2 > a3.

For i = 1, condition a3 > 0 is equivalent to G′1(T ) > − f ′(T )
γ1[f(T )]2 . This only holds

for R
(1,∗)
c . Consequently, R

(1,∗∗)
c is unstable. For R

(1)
c , J22 < 0, which gives a1 > 0.

The remaining condition, a1a2 > a3, is a1a2−a3 = a1a2+J11J22J33+J13J21J32 > 0

because a1a2 + J11J22J33 > 0 and J13J21J32 > 0. Thus, if R
(1,∗)
c exists, it is locally

asymptotically stable while R
(1,∗∗)
c is unstable.
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For i = 2, a3 > 0 is equivalent to G′1(T ) < − f ′(T )
γ1[f(T )]2 . This only holds for R

(2,∗∗)
c .

a1 > 0 is equivalent to (10). If a1 > 0 and a3 > 0, a1a2 > a3 holds.

The possibility for bi-stability is preserved after the inclusion of inhibition. More
precisely, if the inhibition-free system exhibited bi-stability, then so will system (5)
if the maximum inhibition break-even concentration λT is sufficiently small.

Corollary 1. If 0 < λo < λT < 1− σ2

γ2
, then (7) has two interior equilibria, R

(1,?)
c

and R
(2,?)
c . R

(1,?)
c and R1 are locally asymptotically stable while Ro and R

(2,?)
c are

unstable.

Proof. Since 1− σ2

γ2
< 1− σ1

γ2
, the existence of R

(1,?)
c follows from Lemma 3.3. The

existence of E
(2,?)
c can be shown as in Lemma 3.3, replacing σ1 by σ2. Gi(1) > F (1)

implies that there are no other interior equilibria. The local stability of the various
equilibria was given in Theorem 3.5 and in section 3.1.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

X
1

X
2

E1,?
c

E2,?
c

Figure 2. Bistable attractors for system (7). Functions and pa-
rameter values used: g1(x) = 10x

1+x , g2(x) = 150x
50+xexp(−0.9x),

g3(x) = 0.5x
1+x , f(T ) = exp(−0.5T ), γ1 = 0.5, γ2 = 5.

3.3. Existence of limit cycles. Assume f(T ) = exp(−µT ), µ > 0 and λo <
1− σ2/γ2. For λT < 1− σ2/γ2, G1(T ) = F (T ) has one solution T 1,? in (τ1, 1) and
G2(T ) = F (T ) has one solution T 2,? in (τ2, 1). Each equation has a second solution
which is greater than 1.

As µ increases, λT increases, and there are two possibilities. Either G2(T ) =
F (T ) has no solutions for µ sufficiently large and G1(T ) = F (T ) eventually has two
solutions, or, an increase in µ causes the second solution of G2(T ) = F (T ) to move
into (τ2, 1) and that of G1(T ) = F (T ) into (τ1, 1). With µ increasing further, the
two solutions of either equation would merge and vanish.

Numerical results show that when the second solution of G2(T ) = F (T ) enters

(τ2, 1), the corresponding equilibrium E
(2,??)
c is first locally asymptotically stable,
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but becomes unstable as µ increases. This loss of stability appears to be accompa-
nied by a Hopf bifurcation and the existence of a stable limit cycle. In this case,
system (5) exhibits the bi-stability of an interior equilibrium and a limit cycle (Fig.
3).

0.5

1

1.5

0

0.1

0.2

0.3

0.4
0

1

2

3

4

5

6

7

µ
X

1

X
2

0.84
0.85

0.86
0.87

0.88

0

0.1

0.2

0.3

0.4
0

1

2

3

4

5

6

7

µX
1

X
2

Figure 3. Bifurcation diagram for (7) for bifurcation parameter µ
showing several bifurcations including a Hopf-bifurcation and bista-
bilities (thick lines correspond to stable equilibria while thin lines
correspond to unstable equilibria, the periodic orbits are stable).
Functions and parameter values as in Fig. 2 with f(T ) = exp(−µT )
for µ ranging from 0.5 to 1.5.

4. Conclusion. The inhibition-free model exhibits three basic types of behavior:
complete wash-out of all bacteria and accumulation of substrate in the reactor,
accumulation of acids in the reactor so that one organism X2 (methanogens) goes
extinct, or coexistence of both cohorts of micro-organisms. The later is the behavior
most desired in practical settings as it results in continuous biogas production.

In industrial settings, system failure is usually associated with hydraulic and/or
organic overload, [13]. In terms of the constants in the unscaled model (1), the
break-even concentration λ̄o is the solution to p1g1(sS(0)) = D. Thus λ̄o increases
with D and decreases with S(o). A complete wash-out occurs when the hydraulic
loading rate D is so large that the acid forming bacteria cannot grow fast enough
to absorb the incoming material (no λ̄o exists or it is greater that S(o).) A high
hydraulic loading rate can also result in the acidification of the reactor. In our
notation, the equilibria E1 and R1 correspond to an acidification scenario. Condi-

tion (P2) is equivalent to c1p2
c12

(S
(0)
1 − λ̄o) < σ̄1, where σ̄1 solves g2(s) = D. This

condition can hold for large values of D. Thus, a hydraulic overload causes either
a complete washout of all bacteria or acidification.

Organic overload on the other hand can cause bistable conditions as described in

(P4) or in Corollary 1. For g2(σ̄2) = D, condition (P4) becomes σ̄2 < c1c2p(S
(0)
1 −

λ̄o) which holds for large values of S
(0)
1 . In this case, the system may either stabilize

around the acidification state or around the state of coexistence. In practical setting
with such operating conditions, a one-time addition of the micro-organism X2 to
the system may prevent acidification.

We have seen that it is possible to preserve the behavior of the toxin-free system
when a toxin is introduced externally (theorems 3.1 - 3.4 and corollary 1). However,
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if strong enough, the toxin may cause complete wash-out of bacteria, fluctuations
(limit cycles) or additional bistabilities. This is similar to what has been seen for
other chemostat models with inhibitors, [4, 10, 21]. The effects of a strong toxin are
such that the system can have two stable coexistence steady states. In this case the
long-term behavior of the system depends on the initial conditions of the system.
For very strong toxins, the system exhibits the presence of a stable periodic solution
and a stable coexistence steady state.

Previous models for anaerobic digestion have not shown periodic solutions. Thus,
if data for biogas production show fluctuations with a periodic pattern, this might
indicate the presence of a toxin in the system. Our numerical results show that a
stable periodic solution can only exist in conjunction with a stable coexistence equi-
librium. This implies that even if a toxin is present, altering the initial conditions
can stabilize the system at the more desirable coexistence steady state.
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Appendix A. Analysis of toxin-free model (2). Consider system (2) repli-
cated below and assume that (H1) and (H2) hold.

Ṡ1 = 1− S1 − g1(S1)X1 S1(0) ≥ 0

Ẋ1 = −X1 + γ1g1(S1)X1 X1(0) ≥ 0

Ṡ2 = −S2 + γ2g1(S1)X1 − g2(S2)X2 S2(0) ≥ 0

Ẋ2 = −X2 + g2(S2)X2 X2(0) ≥ 0

(2)

We see immediately that Xi(t) ≥ 0 and can deduce Si(t) ≥ 0 from Ṡi|Si=0 > 0.
The boundedness of solutions is guaranteed because for Σ1 = 1 − S1 − 1

γ1
X1 and

Σ2 = −S2 − X2 + γ2
γ1
X1 we obtain Σ̇i = −Σi. Also, D = {(S1, X1, S2, X2)| Si ≥

0, Xi ≥ 0, S1 + 1
γ1
X1 ≤ 1, S2 +X2 ≤ γ2

γ1
X1} is positively invariant for (2).

Proposition 1 can be seen intuitively by recognizing that the equations for (S1, X1)
decouple from (S2, X2). The equations for (S1, X1) correspond to a basic chemostat
model for which it is well known that if λo > 1, then lim

t→∞
S1(t) = 1 and lim

t→∞
X1(t) =

0. On the other hand, if λo < 1, then lim
t→∞

S1(t) = λo and lim
t→∞

X1(t) = γ1(1− λo).
Assuming that lim

t→∞
S1(t) = α and lim

t→∞
X1(t) = β, and setting S1 = α and X1 = β

in (2), gives

Ṡ2 = Π− S2 − g2(S2)X2

Ẋ2 = −X2 + g2(S2)X2

where Π = γ2g1(α)β. Chemostat equations with non-monotone response functions
have been considered for much more general equations involving multiple species
and substrates [6, 12, 20]). Under assumption (H2), the system has three equilib-
ria in R2

+, M1 = (Π, 0), M1
c = (σ1,Π− σ1), and M2

c = (σ2,Π− σ2), where M1
c is

always stable and M2
c is always stable. Thus one can see why Proposition 1 would

hold.

A more formal analysis is given below using the theory of asymptotic autonomous
differential equations, which was also used in section 3.

Proof. Proof of Proposition 1.
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Replacing Si by Σi in (2) and setting Σi = 0 reduces (2) to

Ẋ1 = −X1

(
1− γ1g1

(
1− 1

γ1
X1

))
(11)

Ẋ2 = −X2

(
1− g2

(
γ2
γ1
X1 −X2

))
(12)

The region Ω =
{

(X1, X2)| 0 ≤ X1 ≤ γ1, 0 ≤ X2 ≤ γ2
γ1
X1

}
is positively invariant

for (11, 12).
This system can have up to four equilibria, Fo = (0, 0), F1 = (γ1(1 − λo), 0)

and F ic = (γ1(1 − λo), γ2(1 − λo) − σi), where F1 lies in Ω only if λo < 1 and
F ic ∈ Ω provided that λo < 1−σi/γ2. The local stability analysis of these equilibria
immediately transfers to that of the corresponding equilibria of (2). Any global
stability results only transfer if the conditions from the theory of asymptotic au-
tonomous differential equations are satisfied. Among those one has to guarantee
that no polycycle exists between the equilibria, [18, 19], which is reasoned below.

Equilibrium Existence Local stability
Fo always λo > 1
F1 λo < 1 λo > 1− σ1/γ2 or λo < 1− σ2/γ2
F 1
c λo < 1− σ1/γ2 always
F 2
c λo < 1− σ2/γ2 never

Table 2. Conditions for existence and local stability of the equi-
libria of (11,12)

Since equation (11) is independent of X2, X1(t) cannot be a periodic solu-
tion. This in turn implies that (11,12) can have no periodic solution. The set
{(X1, X2)| X1 > 0, X2 = 0} is positively invariant. Thus there can be no polycycle
connecting Fo and F1, or Fo, F1 and F 2

c . Since F 1
c is always locally asymptotically

stable, it cannot be part of a polycycle. The Poincaré-Bendixson Theorem implies
that when only one locally asymptotically equilibrium exists in Ω, it must be glob-
ally stable. This means that the above conditions for existence and local stability
also give global stability as summarized here.

• λo > 1 implies that Fo is globally stable.
• If 1− σ1/γ2 < λo < 1 , F1 is globally stable.
• If 1− σ2/γ2 < λo < 1− σ1/γ2, F 1

c is globally stable.

As a result, the corresponding equilibria of system (2) share the same stability
properties.
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