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Abstract. When a new pandemic influenza strain has been identified, mass-
production of vaccines can take several months, and antiviral drugs are expen-
sive and usually in short supply. Social distancing measures, such as school
closures, thus seem an attractive means to mitigate disease spread. However,
the transmission of influenza is seasonal in nature, and as has been noted in
previous studies, a decrease in the average transmission rate in a seasonal dis-
ease model may result in a larger final size. In the studies presented here, we
analyze a hypothetical pandemic using a SIR epidemic model with time- and
age-dependent transmission rates; using this model we assess and quantify, for
the first time, the the effect of the timing and length of widespread school
closures on influenza pandemic final size and average peak time.

We find that the effect on pandemic progression strongly depends on the
timing of the start of the school closure. For instance, we determine that
school closures during a late spring wave of an epidemic can cause a pandemic
to become up to 20% larger, but have the advantage that the average time
of the peak is shifted by up to two months, possibly allowing enough time
for development of vaccines to mitigate the larger size of the epidemic. Our
studies thus suggest that when heterogeneity in transmission is a significant
factor, decisions of public health policy will be particularly important as to
how control measures such as school closures should be implemented.

1. Introduction. Influenza, a seasonal viral disease, presents a significant mor-
bidity and mortality burden on the population, with a typical seasonal influenza
epidemic in the United States killing around 40,000 people per year[12]. However,
during pandemic years, this number can be much larger. Influenza pandemics occur
when a human influenza A virus re-assorts with an animal influenza A virus, such as
one from birds or pigs. Pre-existing immunity within the population is low to these
new strains, and thus pandemics are created if the strain is highly transmissible.

Because several months are needed to mass-produce vaccines once a new pan-
demic strain has been identified, mitigation strategies must be considered to reduce
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influenza-related infections, such as pharmaceutical interventions (vaccination, an-
tiviral drugs), and/or social distancing measures, such as school or workplace clo-
sures. In a pandemic situation school closures tend to be particular attractive in
light of the high morbidity of pandemic influenza strains in children and young
adults, compared to seasonal influenza which has highest morbidity in infants and
the elderly.

While school closures are a relatively easy intervention to implement compared
with pharmaceutical methods, they can nevertheless cause significant social and eco-
nomic disruption to the community. For instance, the estimated potential economic
cost of blanket school closure in U.S. is 2.7 million dollars per 1000 population per
week, or ∼ 6% GDP[30]. There thus remains substantial debate over the impact of
school closure as a mitigation strategy during an influenza pandemic.

Reference [7] reviews multiple studies of past data that assess the effect of school
closures on the spread of influenza. While several appear to find that closures of
several weeks are sufficient to reduce the attack rate, it must be cautioned that most
of these studies compare the attacks rate over a short period immediately during
and after the school closure to the attacks rate immediately before (e.g.; they do
not examine the longer-term effect of the school closure). The longer-term impact
of such school closures has thus been poorly studied.

There have also been many modeling studies to assess the efficacy of school
closures and other intervention strategies on the spread of pandemic influenza[10,
14, 17, 18, 19, 20, 23, 24, 28]. All predict that school closures of at least several
weeks generally have notable impact on the course of the epidemic (as long as they
do not occur too late in the pandemic), and none find that school closures negatively
impact the course of the pandemic.

However, these models do not take into account the seasonality of influenza;
influenza is known to be more transmissible in the winter months in temperate
regions than in tropical regions, in part due to seasonality of host health (sus-
ceptibility to infection) and environmental effects on the transmissibility of the
virus[1, 8, 11, 25, 26]. School closures temporarily reduce the transmission rate of
the virus, and thus reduce the average transmission rate taken over the course of
the year. As has been shown in References [4] and [32], reduction of the average
transmission rate in a seasonal model may result in an increased epidemic final size.
Thus seasonality is important to take into consideration when considering interven-
tions such as school closures; a school closure applied during the spring/summer
wave of a pandemic, which occurs during relatively unfavorable time of year when
transmissibility is waning, may indeed reduce the peak of that wave, but only to
supply a much greater number of susceptible individuals when school finally recon-
venes in autumn, which is a more favorable season for influenza transmissibility. If
the virus is still circulating in the population at that time, a large autumn pandemic
could potentially result, instead of the smaller summer epidemic that would have
occurred (and burned itself out) if school closures had not taken place. This could
explain the curious phenomenon observed in the 1918 pandemic, where Connecticut
cities that kept schools open reported lower death rates compared to Connecticut
cities that closed their schools[35].

In the studies presented here we examine the seasonality of influenza with a Sus-
ceptible, Infected, Recovered (SIR) mathematical model with a periodically forced
transmission rate to reflect the fact that the transmissibility of influenza is higher
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in the winter than in summer. We extend this seasonal model to include age-
heterogeneity, with two age classes representing children and adults.

Using this model, we study the impact of reduced contact between children dur-
ing school closures on the final size of a pandemic influenza outbreak under various
scenarios of length of school closure and closure trigger conditions. We show that
when transmissibility is seasonal in nature, school closures do not always have the
desired effect of reducing the size of the epidemic, and in fact can sometimes make
the epidemic substantially larger than it might otherwise have been. We also show
that the average peak timing of seasonal epidemics is delayed by school closures,
sometimes significantly so. Indeed, as we will show, closures that result in signifi-
cantly increased final size also tend to significantly delay the average peak time; an
outcome which may be desirable if vaccines can be produced in time to ameliorate
the associated increase in the final size. These results have obvious implications for
public health policy, and underline the role that mathematical models can play in
helping to assess disease intervention strategies.

2. Model. One of the simplest epidemiological models is the so called SIR model[2],
in which we model the number of susceptible (S), infected (I), and recovered (R)
people in the population using the deterministic ordinary differential equations:

S′ = −β(t)SI/N (1)

I ′ = β(t)SI/N − γI

R′ = γI,

where 1/γ is the average infectious period (assumed here to be three days for
influenza[9]), β(t) is the transmission rate, and population size N = S + I + R.
Because we will be considering pandemics of very short duration relative to human
population dynamics, we do not include vital dynamics in the models we discuss
here.

In most simple epidemiological models, β(t) = β is assumed to be a constant.
However, for diseases such as influenza, seasonal variation in the transmission rate
is important to consider[3, 4, 13, 32, 34]. Any periodic function can be expressed
as a sum of harmonic terms. In this analysis we model periodicity of transmission
due to seasonal effects on host health and seasonal environmental effects (such as
temperature, humidity, etc) using the first order harmonic

β(t) = β0 [1 + ε cos(2πωt)] , (2)

where the period is 1/ω = 365 days, β0 is the average transmission rate over one
period, and ε is the degree of seasonal forcing. We define the β function given in
Equation (2) to have its maximum at the beginning of a calendar year. The results
of this analysis can be easily generalized to include a phase if it is believed that
influenza transmission peaks at some other time of year, but inclusion of a phase
does not affect the overall conclusions of the study.

The time of introduction of the virus to the population, t0, is a parameter of the
seasonal model when the transmission rate is expressed in a periodic form, and the
final size and shape of the epidemic curve (including how many peaks the epidemic
exhibits) can depend quite strongly on this parameter (whereas for constant β the
final size and shape are independent of t0, and the epidemic curve can exhibit only
one peak in the absence of vital dynamics in the model)[3, 4, 13, 32]. We will discuss
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in a moment how we add into the model the additional seasonality due to periodic
school closures.

Table 1. Definition of symbols and parameter values used in sim-
ulations

Variables Definition Value (range)
S(t) # of susceptible individuals at time t
I(t) # of infectious individuals at time t
R(t) # of recovered individuals at time t
Parameters
γ Recovery rate 1/γ = 3 days[9]
ε oscillation magnitude of 0.10

the transmission rate, β(t)
t0 time of introduction of the virus Varied

to the population
f Fraction population under 19 years of age 0.29[33]
N Population size 10, 000, 000

(results of study not
sensitive to N)

C11 Number of child-to-child contacts per day 13
C12 Number of child-to-adult contacts per day 3
C21 Number of adult-to-child contacts per day 2
C22 Number of adult-to-adult contacts per day 10
R0 Reproduction number of 1.7

pandemic influenza
β0 Average transmission rate R0γ/14

(see Equation 6)
p scale factor for child-to-child contact 0.50

during school closure
f crit Trigger value of prevalence for closure Varied
tclose Beginning time of school closure Varied
Lclose Duration of school closure Varied

In order to study age-targeted disease intervention strategies, such as school
closures, we expand the model in Equations (1) to include age heterogeneity, with
mixing between n = 2 different age-stratified classes representing children less than
19 years of age, and adults:

S′
i = −β(t)Si

n
∑

j=1

CijIj/Nj (3)

I ′i = β(t)Si

n
∑

j=1

CijIj/Nj − γIi

R′
i = γIi,

where the population size, N , is N =
∑

iNi =
∑

Si +
∑

Ii +
∑

Ri. The matrix
Cij is known as the contact matrix, and is the average number of contacts made
per day by an individual in class i with an individual in class j. In this analysis
we determine Cij using physical contact data from the detailed sociological contact
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survey data of Mossong et al [29], where participants kept daily diaries recording
the length and nature of their contacts. We do this using the methods outlined in
Reference [27]. The resulting contact matrix is shown in Table (1).

We implement school closures in our model with factors multiplying the elements
of the contact matrix to simulate social distancing between members of the pop-
ulation during closures. In a study of the effect of school closures in France on
the spread of seasonal influenza, Cauchemez et al concluded that school closures
appear to result only in reduced contact rate patterns between children (they find
the contacts of children reduce by a factor of 25% during holidays), and that the
contact patterns of adults remain essentially unchanged[8]. We thus include school
closures in our model as a factor, p(t), multiplying C11 only. Namely,

S′
1 = −λ1(t)S1 (4)

S′
2 = −λ2(t)S2

I ′1 = λ1(t)S1 − γI1

I ′2 = λ2(t)S2 − γI2

λ1(t) = β(t) [ p(t) C11I1/N1 + C12I2/N2]

λ2(t) = β(t) [C21I1/N1 + C22I2/N2] ,

with initial conditions at the time of introduction, t0, of the infection into the
population

S1(t0) = fN − 1, (5)

S2(t0) = (1− f)N − 1

I1(t0) = 1

I2(t0) = 1

R1(t0) = 0

R2(t0) = 0,

where f is based on the demographics of the population. In the U.S. population, the
fraction of people under the age of 19 is f = 29%[33]. We assume the scale factor
p(t) = 1 when school is in session, and p(t) = 0.5 when school is closed, unless
otherwise specified.1 In this way we implement in the model not only extra school
closures designed to intervene in the spread of disease, but also regularly scheduled
school holiday closures. In this analysis the start time of disease-intervention school
closures is determined by trigger conditions, determined by the prevalence of the
disease in the population, fcrit. We explore the efficacy of the school closure as a
disease intervention strategy as a function of the trigger condition, and the length
of the closure, Lclose.

Estimation of ε, the seasonal forcing term of β(t) must be considered; it is known
that seasonality of influenza is due to both periodicity in school closures, and en-
vironmental effects on host health and virus transmissibility, however the relative
contribution of these to the overall disease dynamics is not well know. However,
data and modeling studies indicate that values of 0.25 to 0.35 appear to be reason-
able estimates for the overall seasonal variation in transmission due to the effects
of both β(t) and p(t) combined[3, 15, 31]. From the studies of Cauchemez et al, we

1We assume a somewhat greater reduction of contacts between children than that observed by
Cauchemez et al during school holidays, because we wish to replicate the extra social distancing
more likely to be experienced during a pandemic situation.
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know that the value p(t) only reduces the contact rates of children by 25% during
school holidays/closures, not the entire population, thus the contact rate of the
entire population is reduced by around 12%. We thus assume in our studies that
the remaining seasonal variation is incorporated in the β(t) function, and is on the
order of ε = 0.10. We will use this value in this analysis, unless otherwise specified.

The parameters of the model are shown in Table (1).

3. Results. In this section we study the school closure model in Equations (4)
under two scenarios:

1. Transmission rate β(t) =constant.
2. Periodic transmission rate.

We show that the first scenario always improves the outcome of the epidemic, but
that this is not always necessarily the case for the latter.

3.1. The case of constant transmission rate. In epidemiological models, one
of the most important quantities is the basic reproduction number, denoted by R0.
It is the average number of secondary infections produced by one infected individual
during his/her entire period of infection in an entirely susceptible population. If R0

falls below 1, the disease fails to spread within the population, and the epidemic
dies out. This number determines whether there will be an epidemic outbreak
when a small number of cases are introduced in the population, and how severe the
outbreak will be in the absence of any programs of disease control and prevention.

For constant β(t) = β0, the basic reproduction number of the system in Equa-
tions (3) is

R0 =
β0

2γ

[

(C11 + C22) +

√

(C11 − C22)
2
+ 4C12C21

]

. (6)

When control measures are implemented, the corresponding quantity is termed
the control reproduction number and denoted by Rc (c for control). One of the
objectives of control programs is to reduce Rc to below 1, and the best strategies
is usually the one that reduces Rc the most, given the constraints of the resources
at hand. However, when model parameters are varying with time, as they are
in the model of Equations (4) because of the time varying scale factor p(t), the
analytical results for Rc such as reproduction number described in Equation (6)
will be difficult to obtain; Rc cannot be obtained simply from the average of β(t)
over the period[4, 5, 6]. In this analysis we thus rely on numerical studies to examine
how control measures affect the spread of disease.

We focus on three important measures in assessment of the effect of a school
closure program: (i) peak size of the epidemic curve (the maximum number of
infections during the course of a pandemic); (ii) peak time (the time at which
the peak occurs); and (iii) final size (the total number of infected by the end of
a pandemic). Both the peak size and the peak time can be observed from the
epidemic curve, while the cumulative infection curve shows the final size. Control
strategies should aim to lower the peak size to reduce the burden on health care
facilities (lest the demand exceed the supply), lower the final size of the epidemic
to reduce morbidity and mortality, and delay the timing of the peak(s) to provide
time for preparation of response measures, such as vaccines.

In Figure (1) we show the percent relative difference in final size of an epidemic
versus the time of the start of school closure, as predicted by the model in Equa-
tions (4), for prevalence trigger conditions for the school closure, fcrit = 0.001 and
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Figure 1. The percent relative difference in final size of a
pandemic versus the time of the start of school closure, for
prevalence closure trigger conditions fcrit = 0.001 and 0.01, and
constant transmission rate (i.e.; no seasonality). The relative
difference is the final size with closure, minus the final size without
closure, divided by the final size without closure. We show this for
four different closure lengths Lclose = 1 week, 2 weeks, 4 weeks,
and 6 weeks for a pandemic with R0 = 1.7, ε = 0, and reduction
in contacts between children during closure of p = 0.50. The grey
areas indicate regularly scheduled school holidays.
To examine further the epidemic dynamics behind these results, in
Figure (4) we show the behavior of the epidemic curves before and
after school closure for the points represented by the asterisks.

0.012. The relative difference is the final size with closure minus the final size with-
out closure, divided by the final size without closure. We show this for four different
closure lengths Lclose = 1 week, 2 weeks, 4 weeks, and 6 weeks for a pandemic flu-
like illness with R0 = 1.7, ε = 0, and reduction in contacts between children during
closure of p = 0.50. Note that some closure scenarios result in a significant reduction
in the size of the epidemic, but at worst cause no change in the final size.

It is also important to consider whether or not the peak of the epidemic was
delayed. When we consider the case of seasonality of transmission, we will find

2Prevalence trigger condition fcrit = 0.1 was tried as well, but no epidemic curve had a large
enough peak to meet the condition when the transmission rate was constant.
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Figure 2. The difference the average peak time of the pandemic

before and after school closure, (µpeak
after−µpeak

before), versus the time of
the start of school closure, for prevalence closure trigger conditions
fcrit = 0.001 and 0.01, and constant transmission rate (i.e.; no sea-
sonality). We show this for four different closure lengths Lclose = 1
week, 2 weeks, 4 weeks, and 6 weeks for a pandemic with R0 = 1.7,
ε = 0, and reduction in contacts between children during closure of
p = 0.50.
In Figure (4) we show the behavior of the epidemic curves before
and after school closure for the points represented by the asterisks.

that multiple peaks can occur in the epidemic curve, thus we must define a statistic
that indicates when the average peak time of the epidemic occurred. If we have
prevalence measurements at k consecutive time points, we can calculate this average
peak time of the epidemic as

µpeak =

∑k

i=1 tiIi
∑k

i=1 Ii
. (7)

One goal of social distancing measures, such as school closures, is to shift the peak
time of the epidemic to be later, to allow more time for mass-production of vaccines
and other pharmaceutical interventions. In Figure (2) we show the difference in
µpeak for the prevalence trigger and school closure length conditions described above.
Note that some closure scenarios result in a delay of the average peak time, but at
worst cause no difference in the timing of the peak.
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Figure 3. The difference the average peak width of the pandemic

before and after school closure, (σpeak
after −σpeak

before), versus the time of
the start of school closure, for prevalence closure trigger conditions
fcrit = 0.001 and 0.01 and constant transmission rate (i.e.; no sea-
sonality). We show this for four different closure lengths Lclose = 1
week, 2 weeks, 4 weeks, and 6 weeks for a pandemic with R0 = 1.7,
ε = 0, and reduction in contacts between children during closure
of p = 0.50. The grey areas indicate regularly scheduled school
holidays.
In Figure (4) we show the behavior of the epidemic curves before
and after school closure for the points represented by the asterisks.

We can also calculate the standard deviation (width of the peak); a smaller width
implies a sharper distribution, and greater average load on hospital resources near
the peak. A larger width is a desirable outcome of social distancing measures. The
standard deviation is calculated as

σpeak =

√

√

√

√

∑k

i=1 (ti − µpeak)
2
Ii

∑k

i=1 Ii
. (8)

In Figure (3) we show the difference in σpeak for the prevalence trigger and school
closure length conditions described above. Note that some closure scenarios result
in a significant widening of the peak, but at worst make no difference in the width
of the peak.

To examine further the epidemic dynamics behind these results, Figure (4) gives
an example of two pandemic scenarios, one of which is a school closure triggered in
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Figure 4. The right hand plots indicate prevalence of a pandemic
versus time, when the trigger condition for the school closure is
prevalence in the population of 1/100, and the transmission rate is
constant (i.e.; there is no seasonality), and for school closure length
of four weeks and reduction in contacts between children during
closure by a factor of p = 0.50. The left hand plots indicate the
cumulative incidence over time. In both plots the light gray area
indicates the school closure, and the hatched gray area represents
the regular school holiday.
In the top (bottom) scenario the closure was triggered in early
(late) spring. The closure that ended just as summer vacation
began resulted in maximum possible reduction of the spring wave.

early spring, and the other of which is a school closure triggered in late spring that
results in a maximal reduction in final size. The former had an epidemic that peaked
earlier than the latter, and the epidemic had ended before school holidays began
(thus school holidays had no further impact on reducing the epidemic size). In
contrast, closure that occurred during the late spring epidemic shifted the timing of
the peak forward, causing it to peak just as the school holidays began, thus allowing
those holidays to have a much greater impact on reducing the size of the epidemic
than they otherwise would have had.

3.2. The case of periodic transmission rate. In this section, we examine a
model where the transmission rate β(t) has the periodic form as in Equation (2).

The basic reproduction number of a periodic disease system is not straightforward
to define[4, 6, 34]. However, we note that near the beginning of the 2009 A(H1N1)
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pandemic, the R0 of the virus was estimated to be around 1.3 to 1.7[16, 31, 36]. For
simplicity, we assume these measurements occurred when β(t) = β0, and then use
the estimate of R0 to estimate β0 using Equation (6). We assume a hypothetical
pandemic flu-like illness, with R0 at the upper end of this range, R0 = 1.7. The
result for β0 is shown in Table (1).

Under the assumption of seasonal forcing ε = 0.10, we determine how school
closures of varying lengths might potentially impact the course of such a pandemic
for various prevalence trigger conditions.

We begin with examination of a range of times-of-introduction of the virus to
the population from [−182,+182], in increments of one day, and using the model in
Equations (1), we calculate the resulting epidemic curve for the case of no school
closure. For each subset of parameters, we then examine the school closure model
in Equations (4).

We assume a range of school closure lengths from Lclose = 1 week, 2 weeks, 4
weeks, and 6 weeks, and we compare the final size of the epidemic with and without
school closure. In all simulations we assume a reduction in contacts between children
during closure p = 0.50, unless otherwise noted.

This study primarily focuses on the sensitivity of the final epidemic outcomes to
the duration and timing of school closures. We do not consider pre-vaccination, and
assume no pre-immunity within the population to the virus due to prior infection
with related strains, similar to what would be the case in an actual pandemic
situation. We consider vaccination and pre-immunity effects with a periodic SIR
model in [13].

Results of the model simulations are shown in Figure (5). In the Figure we show
the percent relative difference in final size of an epidemic versus the time of the
start of school closure, as predicted by the model in Equations (4), for prevalence
trigger conditions fcrit = 0.001, 0.01, and 0.1. We show this for four different clo-
sure lengths Lclose = 1 week, 2 weeks, 4 weeks, and 6 weeks. Note that, unlike
the constant transmission scenario seen in Figure (1), closures in late spring appear
to detrimentally impact the pandemic, resulting in larger final size. Closures trig-
gered in late winter or early spring appear to be most advantageous, with greatest
reduction in final size. Larger prevalence trigger fractions also appear to be most
advantageous in producing a greater reduction in final size, however only winter
epidemics have a large enough peak to trigger a school closure if the trigger fraction
is too high.

In Figure (6) we show the difference in the average peak time, µpeak, for the
prevalence trigger and school closure length conditions described above. Nearly all
closure scenarios result in a delay of the average peak time when the closure trigger
prevalence is less than 1%. The closures triggered by a high prevalence of 10% are,
however, ineffective at delaying the peak. Note that although late spring closures
result in significant delays in the average peak time, they also usually result in
significantly increased in final size (see Figure (5)), usually because they result in
the creation of an autumn wave (a scenario which we shall discuss in detail in a
moment). This can still be considered advantageous if the aim of the closure is to
obtain enough time to mass-produce vaccines before the bulk of the epidemic has
passed; if the vaccines are implemented before the autumn peak, they can mitigate
the increase in the final size brought on by the school closure.

In Figure (7) we show the difference in the peak width, σpeak, for the prevalence
trigger and school closure length conditions described above. Similar to what was
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Figure 5. The percent relative difference in final size of a pan-
demic versus the time of the start of school closure, for prevalence
closure trigger conditions fcrit = 0.001, 0.01, and 0.1, and seasonal
forcing of the transmission rate, ε = 0.10. The relative difference
is the final size with closure, minus the final size without closure,
divided by the final size without closure. We show this for four
different closure lengths Lclose = 1 week, 2 weeks, 4 weeks, and 6
weeks for a pandemic with R0 = 1.7, ε = 0, and reduction in con-
tacts between children during closure of p = 0.50. The grey areas
indicate regularly scheduled school holidays.
To examine further the epidemic dynamics behind these results, in
Figure (8) we show the behavior of the epidemic curves before and
after school closure for the points represented by the asterisks.

noted for the average peak timing, we note that late spring closures generally result
in widening of the epidemic curve, which can be considered advantageous because
it lowers demand on hospital resources near the peak. However, most of those
scenarios also resulted in significantly increased final sizes. The school closures
caused by the high prevalence trigger of 10% had virtually no effect on the peak
width, usually because the closure occurred right near the time of the peak.

To examine further the epidemic dynamics behind these results, Figure (8) gives
an example of two pandemic scenarios, one of which is detrimentally impacted by
school closure, and the other of which is not. The top row of plots have time of
introduction of the virus t0 = 103 days, and the trigger threshold of school closure
when prevalence is 1/100 results in an increase in the final size of the epidemic,
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Figure 6. The difference the average peak time of the pandemic

before and after school closure, (µpeak
after−µpeak

before), versus the time of
the start of school closure, for prevalence closure trigger conditions
fcrit = 0.001, 0.01, and 0.1, and seasonal forcing of the transmission
rate, ε = 0.10. We show this for four different closure lengths
Lclose = 1 week, 2 weeks, 4 weeks, and 6 weeks for a pandemic with
R0 = 1.7, ε = 0, and reduction in contacts between children during
closure of p = 0.50. The grey areas indicate regularly scheduled
school holidays.
In Figure (8) we show the behavior of the epidemic curves before
and after school closure for the points represented by the asterisks.

and an autumn wave that otherwise would not have existed but for the school
closure. This is because the school closure causes the fraction of susceptibles in the
population to be larger in the fall than it would be otherwise, providing “kindling”
for the epidemic to continue on into the autumn when β(t) is again rising.

In contrast, the bottom row of plots in Figure (8) use exactly the same model
parameters, except with time of introduction only 22 days earlier, t0 = 81 days.
There is now a reduction in the final size of the epidemic. Epidemics that are seeded
earlier in the year, and thus peak earlier (and accordingly pass the prevalence trigger
threshold earlier), are more likely to burn out by the end of the summer holidays
with the aid of a school closure, and not produce a second autumn wave of infection.

4. Discussion. In this paper we presented an age-structured SIR epidemic model
to study the effect of school closures on the control and prevention of pandemic
influenza. A novel aspect of these studies involved our extension of the model to
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Figure 7. The difference the average peak width of the pandemic

before and after school closure, (σpeak
after −σpeak

before), versus the time of
the start of school closure, for prevalence closure trigger conditions
fcrit = 0.001, 0.01, and 0.10, and constant transmission rate (i.e.;
no seasonality). We show this for four different closure lengths
Lclose = 1 week, 2 weeks, 4 weeks, and 6 weeks for a pandemic with
R0 = 1.7, ε = 0, and reduction in contacts between children during
closure of p = 0.50. The grey areas indicate regularly scheduled
school holidays.
In Figure (8) we show the behavior of the epidemic curves before
and after school closure for the points represented by the asterisks.

include a seasonally forced transmission rate; this model more accurately reflects
the fact that the seasonality of influenza is not only due to periodicity of school
closures, but also due to seasonality of host health, and environmental effects on
the transmissibility of the virus. This seasonal transmission model predicts that
school closure carries significant risk of making the final size of a pandemic larger
if the timing of the closure occurs too late in the spring. School closures that occur
earlier in the year are generally beneficial in reducing the final size of the epidemic,
with the relative size of the reduction depending on the length of the closure.

Disease models with periodic transmission rates are extremely non-linear, and
the final size and dynamics predicted by such models are strongly dependent upon
the model parameters and initial conditions[4, 13, 32]. This can lead to interesting
multi-wave dynamics, such as those observed during the 2009 and 1918 pandemics.
For instance, an epidemic which begins in the population during an unfavorable time
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Figure 8. The right hand plots indicate prevalence of a pandemic
versus time, when the trigger condition for the school closure is
prevalence in the population of fcrit = 0.01, and the transmission
rate is periodic (i.e.; there is seasonality with ε = 0.10), and for
school closure length of four weeks and reduction in contacts be-
tween children during closure by a factor of p = 0.50. The left hand
plots indicate the cumulative incidence over time. In both plots the
light gray area indicates the school closure, and the hatched gray
area represents the regular school holiday.
In the top (bottom) row, the school closure is triggered in late
(early) spring, resulting in maximally increased (decreased) final
size.

of year when β(t) is falling, may not reduce the stock of susceptible individuals
sufficiently to prevent the epidemic from forming a second wave in the autumn,
during a favorable time of year when β(t) begins to rise again. A model with the
same parameters, except for a different time of introduction of the virus to the
population, could exhibit only a winter or spring peak of infection if that peak was
large enough to reduce the stock of susceptible individuals sufficiently by the end
of the summer to prevent a second autumn wave of infection from occurring. The
underlying reason for the increase in pandemic final size when school closures occur
in late spring is related to these non-linear dynamics.

Spring school closures essentially increase the stock of susceptible individuals in
the population at the end of the summer, and if the epidemic is still ongoing by
that point (even at a low level), this larger stock of susceptible individuals can act
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as tinder for the pandemic to continue in the more favorable influenza season of
autumn, resulting in a larger overall final size than might have occurred if school
closures had not been implemented (up to 20% larger for a school closure that occurs
in late spring). However, late spring school closures have the advantage that the
average time of the peak is shifted by up to two months, possibly allowing enough
time for development of vaccines to mitigate the larger size of the epidemic; school
closures in the seasonally forced model always delay the average time of the peak,
although if the school closure occurs too close to the peak time (which occurs for a
high prevalence trigger threshold), the delay is not significant.

In our studies we examined scenarios involving various prevalence fractions used
to trigger the school closure. Prior to 2009, few states in the U.S. had official pan-
demic school closure policies, but those that did employed remarkably high school
absentee thresholds, from 10% to 30%[21, 22]. We observed that the only pandemics
in our study that met the 10% prevalence trigger threshold were pandemics that
peaked in winter, and that while a 4 week school closure triggered by this threshold
did in fact have noticeable impact on the final size of the pandemic, reducing it by
a relative factor of almost 10%, it had virtually no impact on the timing or width of
the peak. Very low prevalence thresholds of 0.1% tended to have significant positive
impact on the final size and peak width and timing only for early spring pandemics.
More moderate prevalence triggers of around 1% appeared to perform the best,
reducing the final size with a 4 week school closure during winter pandemics just
as much as a closure triggered by a 10% trigger. The 1% trigger also appeared to
carry lower risk of negatively impacting the final size of the pandemic compared to
the 0.1% trigger, as long as it was not applied just before the summer holidays.

In summary, our model studies suggest that when a disease exhibits periodic
patterns in transmission, decisions of public health policy will be particularly im-
portant as to how control measures, such as school closures, should be implemented.
Our studies underline that it is important to simultaneously consider various figures
of merit when making these decisions (such as timing of the closure, length of the
closure, and the prevalence threshold triggering the closure). Mathematical models,
such as the ones we have implemented here, can be helpful for understanding these
complex disease transmission dynamics, and can be useful for identifying optimal
control strategies.
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