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Abstract. Since the 1980s, there has been a worldwide re-emergence of vector-

borne diseases including Malaria, Dengue, Yellow fever or, more recently, chikun-
gunya. These viruses are arthropod-borne viruses (arboviruses) transmitted by

arthropods like mosquitoes of Aedes genus. The nature of these arboviruses is
complex since it conjugates human, environmental, biological and geographi-

cal factors. Recent researchs have suggested, in particular during the Réunion

Island epidemic in 2006, that the transmission by Aedes albopictus (an Aedes
genus specie) has been facilitated by genetic mutations of the virus and the

vector capacity to adapt to non tropical regions. In this paper we formulate an

optimal control problem, based on biological observations. Three main efforts
are considered in order to limit the virus transmission. Indeed, there is no vac-

cine nor specific treatment against chikungunya, that is why the main measures

to limit the impact of such epidemic have to be considered. Therefore, we look
at time dependent breeding sites destruction, prevention and treatment efforts,

for which optimal control theory is applied. Using analytical and numerical

techniques, it is shown that there exist cost effective control efforts.

1. Introduction. The chikungunya virus, is an arthropod-borne virus (arbovirus)
transmitted by mosquitoes of Aedes genus. The chikungunya term, used for both
the virus and the disease comes from the Makonde Plateau language in Tanzania,
where the virus was first identified in 1953 [31, 39]. It means ”that which bends up”
in reference to symptoms observed on affected people, like cardiovascular manifes-
tation and fever [37]. The mosquito responsible of this first epidemic is the Aedes
aegypti [40]. This mosquito is most known for being the main vector of the dengue
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fever [25], the most rapidly spreading mosquito-borne viral disease in the world.
Indeed, in the last 50 years, the incidence of this virus has increased with increasing
geographic expansion to new countries, and in the last decades, from urban to rural
settings. Moreover, approximately one billion people live in dengue endemic coun-
tries and annually, an estimated 50 million dengue infections occur [47]. Like dengue
epidemic, which is a major public health problem in several countries, chikungunya
appears also to be one of the most important vector-borne disease.

Many factors have influenced the resurgence of such vector-borne diseases like
the increase of travel and exchanges [9] or the development of insecticide and drug
resistance [4]. Studies have suggested that human activities help carrying eggs on
eventually long distances whereas once hatched a mosquito may not have a perime-
ter wider that 200 meters. This means that people, rather than mosquitoes, rapidly
help the spread of the virus within and between communities. Nevertheless, each of
these species has a particular ecological behaviour and geographical distribution.

In the fifties, various outbreaks of chikungunya have been observed like in Thäı-
land (1960s and 1995) [29], or in Senegal (1972 to 1986)[15]. After a break of twenty
years, severals epidemics have been reported in India [44, 41], in Europe, or in the
Indian Ocean Islands like in Mayotte, Comoros archipelago [42], or in the Réunion
Island [43]. In the last one, one third of the total population has been infected by
this virus in 2006.
Usually transmitted by Aedes aegypti, it has been observed during recent epidemics
that the virus is additionally transmitted by Aedes albopictus [26], also called Asian
tiger mosquito and native from Southeast Asia [27]. Indeed, the Aedes aegypti
mosquito is a tropical and a subtropical specie widely distributed around the world,
while the Aedes albopictus has developed capabilities to adapt to non tropical re-
gions. The chikungunya used to be localized in tropical regions but, nowadays,
because of climate changes that create suitable conditions for outbreaks of diseases,
they slowly start to spread all over the world, Europe included where the Aedes
albopictus mosquito is also present since a long time. For instance, an outbreak of
chikungunya occurred in the Emilia Romagna region, in Italy [14, 38, 46], in 2007,
with 254 cases of infection. It was the first case of chikungunya transmission within
Europe.
Moreover, recent research [21] suggested that in the case of the Réunion Island
epidemic, the transmission by Aedes albopictus has been facilitated by genetic mu-
tations of the virus. Indeed, during the recent outbreaks reported in the Indian
ocean island, the identified chikungunya virus was characterized by a genetic muta-
tion in the E1 glycoprotein gene (E1-226V). This mutation allowed the virus to be
present in the mosquito saliva only two days after the infection, instead of approx-
imately seven days [18]. This greatly helped the transmission by Aedes albopictus.
Moreover this mosquito is present in several parts of the world, like in Albania [3],
Spain [10], USA and Australia [7].

Unfortunately, this disease has no specific treatment nor vaccine, that is why
preventing or reducing chikungunya virus transmission depends mainly on control
of the mosquito vectors or interruption of human-vector contact. Actions focus on
individual protection against mosquito bites, symptomatic treatment of patients
and mosquito proliferation control. For instance, the number of breeding sites are
reduced by eliminating container habitats that are favorable oviposition sites and
that permit the development of aquatic stages. Indeed, the Aedes albopictus female
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lays its eggs in wet places adjacent to the surface of water in all sorts of receptacles:
vases, rainwater barrels, used tyres, etc. Moreover, as winter approaches, eggs may
enter a diapause, that is to say the progression from egg to adult is interrupted by
a period of dormancy [24]. In this stage, eggs are resistant to cold climates and
droughts, and can wait until next spring to hatch. This diapause may explain the
adaptation of the mosquito to temperate climate [34, 32].

Recently, a number of studies have been conducted to explore optimal control
theory in some mathematical models for infectious diseases including HIV diseases
[2, 1], tuberculosis [28] and vector-borne diseases [8]. Authors in [8] derive the
optimal control efforts for treatment and prevention in order to prevent the spread
of a vector-borne disease using a system of ordinary differential equations (ODEs)
for the host and vector populations. In our effort, we investigate such optimal
strategies for prevention, treatment and vector control using two systems of ODEs
which consist of a stage structure model for the vector and a SI/SIR type model
for the vector/host population.

In this paper, using models described in [33] for the mosquito population dynam-
ics and the transmission virus, we formulate the associated control model in order
to derive optimal prevention and treatment strategies with minimal implementa-
tion cost. Controls used here are based on three main actions applied in the recent
epidemics.

The paper is organized as follows. In section 2, we present the compartmental
model used in [33] to describe the Aedes albopictus population dynamics and the
chikungunya virus transmission to the human population.

In section 3, we formulate an optimal control problem; first, we investigate the
existence of an optimal control, then we derive the optimality system which charac-
terizes the optimal control using Pontryagin’s Maximum Principle [36]. In section
4 numerical results illustrate our theoretical results.

2. The basic model. We have proposed two models [33] to describe the population
dynamics of the Aedes albopictus mosquito population and the transmission of the
virus to human population. For the reader convenience, we briefly recall here main
results which are developed in this work.

i. The vector population is described by a stage-structured model based on the
biological life cycle. It consists in four main stages described by the following com-
partment: egg (E), larvae and pupae (L) which are biologically very closed stages,
and the adult stage (A) which contains only females because they are responsible for
the transmission. The density variation of each stage is easily done by making the
input-output balance in each evolution stage. The per capita mortality rate of eggs,
larvae and adults are denoted by d, dL and dm respectively. The net oviposition
rate per female insect is proportional to their density, but it is also regulated by a
carrying capacity effect depending on the occupation of the available breeder sites.
Moreover, it has been observed that females are able to detect the best breeding
sites for the egg development, that is to say breeding sites where eggs and then
larvae will be able to develop easily. Thus, in this model, we assume that the per
capita oviposition rate is also proportional to the number of females and given by
bA(t)(1 − E(t)/KE), where KE is the carrying capacity related to the amount of
available nutrients and space, and b is the intrinsic oviposition rate. The egg pop-
ulation becomes larvae at a per capita transfer rate s and the larvae population
becomes mosquito female at a per capita rate sL. In addition to the transfer rate
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Figure 1. Transmission diagram. Coupling of a stage structured
model for Aedes albopictus population dynamics (dashed line) and
a compartmental model describing the transmission of the virus
between adult mosquito and human population.

s, the flows from eggs to larvae is regulated by a carrying capacity KL due to the
intra-specific competition with young larvae. Thus the number of new larvae is
given by sE(t)(1 − L(t)/KL). All this hypothesis may be summarize in figure (1)
(dashed line) which describes the input-output of each mosquito stages. Therefore,
the mosquito population dynamics is described by:

dE

dt
(t) = bA(t)

(
1− E(t)

KE

)
− (s+ d)E(t)

dL

dt
(t) = sE(t)

(
1− L(t)

KL

)
− (sL + dL)L(t)

dA

dt
(t) = sLL(t)− dmA(t)

(1)

This system is defined on the bounded subset of R3,

∆ =

(E,L,A) |
0 ≤ E ≤ KE

0 ≤ L ≤ KL

0 ≤ A ≤ sL
dm

KL

 (2)

Let us introduce the following threshold parameter:

r =
b

s+ d

s

sL + dL

sL
dm
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which, as we will see, governs the asymptotic behavior of the mosquito population.

Theorem 2.1.

• System (1) always has the mosquito free equilibrium X∗0 = (0, 0, 0) which is
globally asymptotically stable iff r ≤ 1.

• If r > 1, there is a unique non-trivial equilibrium, which is globally asymptot-
ically stable and given by

X∗ =

(
1− 1

r

)(
KE

γE
;
KL

γL
;
sL
dm

KL

γL

)T

= (E∗;L∗;A∗) ,

where

γE = 1 +
(s+ d)dmKE

bsLKL
and γL = 1 +

(sL + dL)KL

sKE
.

Proof. The global stability of both equilibrium points is given using Lyapunov func-
tion theory. This function is obtained by the construction of a symmetric matrix.
The detailed proof is given in [33].

Then, by the previous theorem, we observe that the mosquito population may
have two different behaviors. All populations may die out if the threshold parameter
r is less than one or tends to an endemic equilibrium which corresponds to the
coexistence of species.

ii. The second model uses SI and SIR schemes, which are ordinary differential
equations describing the numbers of susceptible, infective and recovered individuals
during an epidemic. Indeed, the adult mosquito population (A) is described thanks
to a SI model, because an infected vector remains infective until its death, whereas
human population is described by an SIR model.

With respect to the circulation of chikungunya virus among adults mosquitoes,
they are sub-divided into susceptible (S̄m) and infectious (Īm). The total size of
the population is A = S̄m + Īm, where A is given previously in system (1). The
chikungunya infection occurs when susceptible mosquitoes (S̄m) are infected during
the blood meal from infectious humans (ĪH). The per capita incidence rate among

mosquitoes βm
Īh
NH

depends on the fraction of infectious humans
ĪH
NH

, where NH

is the total human population size. This rate takes into account the encounters
between susceptible mosquitoes and infectious humans, given by the contact rate
βm, which is related to the frequency of bites. We assume that the mortality rates
related to susceptible and infectious mosquitoes are equals and given by dm. Bio-
logical observations allow us to assume that there is no vertical transmission, i.e.
all new births are susceptible and after recovering, humans become immune.
The chikungunya infection among humans occurs when susceptible individuals S̄H

are bitten by infectious mosquitoes Īm during the blood meal. The per capita
incidence rate among susceptible humans depends on the fraction of infectious

mosquitoes
Īm
A

and takes into account the encounters between susceptible humans

and infectious mosquitoes, designed by βH . These infected individuals enter in the
recovered class (R̄H) at a constant rate γH . Moreover we assume that NH is con-
stant, i.e. bH = dH . Then the hypothesis leads to the following virus transmission
model:
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

dS̄H

dt
(t) = bHNH − βH

Īm(t)

A(t)
S̄H(t)− dH S̄H(t)

dĪH
dt

(t) = βH
Īm(t)

A(t)
S̄H(t)− γĪH(t)− dH ĪH(t)

dR̄H

dt
(t) = γĪH(t)− dHR̄H(t)

dS̄m

dt
(t) = sLL(t)− dmS̄m(t)− βm

ĪH(t)

NH
S̄m(t)

dĪm
dt

(t) = βm
ĪH(t)

NH
S̄m(t)− dmĪm(t).

(3)

System (3) is defined on the bounded subset of R5,

{
(S̄H , ĪH , R̄H , S̄m, Īm) | S̄H + ĪH + R̄H = NH ,

S̄m + Īm = A

}
,

where A corresponds to the female adult mosquito stage of system (1) and is

bounded by
sL
dm

KL.

Introducing proportions SH = S̄H/NH , IH = ĪH/NH , RH = R̄H/NH , Sm =
S̄m/A, Im = Īm/A in system (3) by using relations S̄H + ĪH + R̄H = NH and S̄m +
Īm = A and the derivative dSH/dt = (dS̄H/dt)(1/NH), dIH/dt = (dĪH/dt)(1/NH)
and dIm/dt = (1/A2)((dĪm/dt)A− Īm(dA/dt)), we obtain the following system,



dSH

dt
(t) = − (bH + βHIm(t))SH(t) + bH

dIH
dt

(t) = βHIm(t)SH(t)− (γ + bH)IH(t)

dIm
dt

(t) = −
(
sL
L(t)

A(t)
+ βmIH(t)

)
Im(t) + βmIH(t).

(4)

Remark 1. Due to this classical variable changes, mathematical study of system
(3) may reduce to the study of (4).

Our transmission virus model including mosquito population dynamic is then
given by:
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



dE

dt
(t) = bA(t)

(
1− E(t)

KE

)
− (s+ d)E(t)

dL

dt
(t) = sE(t)

(
1− L(t)

KL

)
− (sL + dL)L(t)

dA

dt
(t) = sLL(t)− dmA(t)

(a)



dSH

dt
(t) = − (bH + βHIm(t))SH(t) + bH

dIH
dt

(t) = βHIm(t)SH(t)− (γ + bH)IH(t)

dIm
dt

(t) = −
(
sL
L(t)

A(t)
+ βmIH(t)

)
Im(t) + βmIH(t).

(b)

(5)

defined on ∆× Ω, where ∆ is given by (2) and

Ω =

{
(SH , IH , Im) ∈ R3

+ |
0 ≤ SH + IH ≤ 1
0 ≤ Im ≤ 1

}
. (6)

Remark 2. Note that this system has two different time scales, since the subsystem
(5a) describes the dynamics of our different mosquito stages, while the subsystem
(5b) describes the dynamics of the proportion of susceptible and infected popula-
tions. In this paper we consider proportions rather than quantities in the proposed
model. We believe it is more convenient for the reader since it refers more eas-
ily to the study proposed in [33]. A switch back to a system without densities is
straightforward, thanks to the variable change proposed earlier. Besides, consid-
ering proportions allows us to use mathematical results on competitive theory for
3-dimensional systems and second compound matrix to study the global stability
of the endemic equilibrium of subsystem (5b).

Let us introduce the following reproduction number [16, 17], which is defined as
the average number of secondary infections produced by an infected individual in a
completely susceptible population

R0 =
βmβH

dm(γ + bH)
. (7)

Theorem 2.2. Assume that r > 1.

• System (4) always has the disease free equilibrium N∗0 = (1, 0, 0) which is
globally asymptotically stable iff R0 ≤ 1.

• If R0 > 1, there is a unique globally asymptotically stable endemic equilibrium
given by

N∗ =



bH
βH + bH

+
βH

(βH + bH)R0

dmbH
βm(βH + bH)

(R0 − 1)

bH
βH + bHR0

(R0 − 1)

 =

 S∗H
I∗H
I∗m

 .

Proof. We use Lyapunov function and competitive system theory. The detailed
proof is given in [33].
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Remark 3. Note that in this model we have considered a non classical incidence
rate among humans depending on the total vector population (as in [22, 48]). A
simple variable change allows us to consider a classical incidence rate substituing

βH by βH
A(t)

NH
in system (3). The second reproduction number is then given by:

R0 =
βmβH

dm(γ + bH)

A∗

NH

=
βmβH

dm(γ + bH)

1

Nh

(
1− 1

r

)
sKEsLKL

dm
(
sKE + (sL + dL)KL

) .
Biological and modeling details of the previous model and a study of the asymp-

totic dynamics are given in [33].

3. A model for optimal control. There are several possible interventions in
order to reduce or limit the proliferation of mosquitoes and the explosion of the
number of infected people.

Using previous models (1) and (4), we formulate the associated control model
in order to derive optimal prevention and treatment strategies with minimal im-
plementation cost. Controls used here are based on effective actions applied in the
recent epidemics.

• The first control u1 represents efforts made for prevention on a time interval
[0, T ]. It mainly consists in reducing the number of vector-host contacts due
to the use of repulsive against adult mosquitoes and protection with mosquito
nets or wearing appropriate clothing. Indeed Aedes albopictus has a peak
of activity during fresh temperatures, early in the morning and late in the
afternoon.

• The second control u2 represents efforts made for treatment on a time interval
[0, T ]. It mainly consists in isolating infected patients in hospitals, installing
an anti-mosquito electric diffuser in the hospital room, or symptomatic treat-
ments. Because, there are no vaccine nor completely satisfying drug to treat
all symptoms [11], which can persist several months after the infection [35],
the vector control remains a major tool to prevent and control the illness.

More precisely, only symptomatic treatments are used in order to allevi-
ate the symptoms. Their efficacy varies from one person to another, using
for instance corticosteroids, paracetamol and non-steroidal anti-inflammatory
drugs.

• Finally the third control u3 represents the effect of interventions used for
the vector control. It mainly consists in the reduction of breeding sites with
chemical application methods, for instance using larvicides like BTI (Bacillus
Thuringensis Israelensis) which is a biological larvicide, or by introducing
larvivore fish. This control focuses on the reduction of the number of larvae,
and thus eggs, of any natural or artificial water-filled container. Moreover, in
France, one other type of intervention is the use of traps. This consists in using
simple black buckets (black colour is recognized as being attractive), with a
capacity of one liter of water, three-quarters full with tannic water (water
macerated for 3 days with dead branches and leaves). This traps contain
laying sites (little plates of square extruded polystyrene placed on the surface
of the water [5]. Finally tablets of bio-insecticide (Dimilin) are introduced in
the traps in order to neutralise the potential development of larvae.
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We will not consider the use of Deltamethrin, a chemical adulticide, because
it has a negative effect on the environment. Moreover the sensitiveness to this
adulticide depends on the area, for instance in Martinique Island, a French
department, 60% of Aedes population have rapidly developed a resistance to
Deltamethrin. Let us remark that we have not converted this control by a
reduction of eggs and larvae carrying capacity. Indeed, while it is possible to
reduce the number of artificial breeding sites, the only possibility to reduce
natural ones is to dry them rather than to destroy them. This solution is of
course not realistic. Moreover, even if artificial breeding sites are man-made,
it is impossible to inventory them all because they are often temporary or
random.

Another approach using a biological control consists in the introduction of
sterile insects [45]. This method allows to reduce the number of mosquitoes
thanks to a decrease of the oviposition rate.

Therefore, our transmission and optimal control model of chikungunya disease
reads as



dE

dt
(t) = bA(t)

(
1− E(t)

KE

)
− (s+ d+ εu3(t))E(t)

dL

dt
(t) = sE(t)

(
1− L(t)

KL

)
− (sL + dL)L(t)− dcu3(t)L(t)

dA

dt
(t) = sLL(t)− dmA(t)

dSH

dt
(t) = − (bH + βH(1− u1(t))Im(t))SH(t) + bH

dIH
dt

(t) = βH(1− u1(t))Im(t)SH(t)− (γ + γ0u2(t) + bH)IH(t)

dIm
dt

(t) = −sL
L(t)

A(t)
Im(t) + βm(1− u1(t))IH(t)(1− Im(t)).

(8)

where u1 ∈ [0, 1] corresponds to prevention effort, thus if u1 = 1 there is no con-
tact between humans and mosquitoes and if u1 = 0 the infection rate is maximal
and equal to βH or βm; u2 ∈ [0, 1] corresponds to the treatment effort and γ0 is
the proportion of effective treatment (thus γ0u2(t) is the per capita recovery rate
induced by treatment); u3 ∈ [0, 1] corresponds to the reduction of the mosquito
proliferation effort, and ε and dc are eggs and larvae mortality rates induced by
chemical intervention respectively.

Theorem 3.1. ∆× Ω is positively invariant under system (8).
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Proof. On the one hand, one can easily see that it is possible to get,

dE

dt
≥ −(

b

KE
+ s+ d+ ε)E

dL

dt
≥ −(

s

KL
+ sL + dL + dc)L

dA

dt
≥ −dmA

dSH

dt
≥ −(bH + βH)SH

dIH
dt
≥ −(γ + γ0 + bH)IH

dIm
dt
≥ −(sL + βm)Im,

(9)

for Ei(0), Li(0), Ai(0), SH(0), IH(0), Im(0) ≥ (0). Thus, solutions with initial value
in ∆× Ω remain nonnegative for all t ≥ 0. On the other hand, we have

dE

dt
≤ bA

(
1− E

KE

)
− (s+ d)E

dL

dt
≤ sE

(
1− L

KL

)
− (sL + dL)L

dA

dt
≤ sLL− dmA

dSH

dt
≤ (bH + βHIm)SH + bH

dIH
dt
≤ βHImSH − (γ + bH)IH

dIm
dt
≤
(
sL
L

A
+ βmIH

)
Im + βmIH .

(10)

The right hand side of the inequality corresponds to the transmission model
without control (1) and (3) for which we have shown in [33] that solutions remain
in ∆× Ω. Then using Gronwall’s inequality as before, we deduce that solutions of
(8) are bounded.

Using system (8), we consider an optimal control problem with the objective
(cost) functional given by

J(u1, u2, u3) =∫ T

0

(
A1IH(t) +A2Im(t) +A3L(t) +B1u

2
1 +B2u

2
2 +B3u

2
3

)
dt.

(11)

The first three terms represent benefit of IH , Im and L populations. Positive
constants B1, B2 and B3 are weight for prevention, treatment and vector control
effort respectively, which regularize the optimal control. These costs are given in
quadratic form as usually done in the literature. Our goal is to limit the number
of IH and Im populations and control the proliferation of the vector population
by minimizing the number of larvae and pupae L. We look for an optimal control
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(u∗1, u
∗
2, u
∗
3) such that

J(u∗1, u
∗
2, u
∗
3) = min {J(u1, u2, u3)|(u1, u2, u3) ∈ Γ} , (12)

where

Γ = {(u1, u2, u3)|ui(t) is piecewise continuous function on

[0, T ] such that ai ≤ ui(t) ≤ bi, i = 1, 2, 3}

is the control set and ai, bi are constants in [0, 1], i = 1, 2, 3. The basic framework
of this problem is to prove the following:

• the existence of the optimal control;
• the characterization of the optimal control.

3.1. Existence and characterization of an optimal control. The existence of
an optimal control can be obtained by using a result of Fleming and Rishel [23].

Theorem 3.2. Consider the control problem with system (8). There exists
(u∗1, u

∗
2, u
∗
3) ∈ Γ such that

min
(u1,u2,u3)∈Γ

J(u1, u2, u3) = J(u∗1, u
∗
2, u
∗
3).

Proof. To use an existence result, theorem III.4.1 from [23], we must check if the
following properties are satisfied:

1. the set of controls and corresponding state variables is non empty;
2. the control set Γ is convex and closed;
3. the right hand side of the state system is bounded by a linear function in the

state and control;
4. the integrand of the objective functional is convex;
5. there exist constants c1, c2, c3 > 0, and β > 0 such that the integrand of the

objective functional is bounded below by c1(|u1|2 + |u2|2 + |u3|2)
β
2 − c2.

In order to verify these properties, we use a result from Lukes [30] to give the
existence of solutions for the state system (8) with bounded coefficients, which gives
condition 1. The control set Γ is bounded by definition, then, condition 2 is satisfied.
The right hand side of the state system (8) satisfies condition 3 since the state
solutions are bounded. The integrand of our objective functional is clearly convex
on Γ, which gives condition 4. Finally, there are c1, c2 > 0 and β > 1 satisfying

A1IH(t)+A2Im(t)+A3L(t)+B1u
2
1 +B2u

2
2 +B3u

2
3 ≥ c1(|u1|2 + |u2|2 + |u3|2)

β
2 − c2,

because the states variables are bounded.
We conclude that there exists an optimal control (u∗1, u

∗
2, u
∗
3) that minimizes the

objective functional J(u1, u2, u3).

Now, that we have established, the existence of an optimal control, we focus on
the determination of an optimal control.
Let Z = (E,L,A, SH , IH , Im) ∈ ∆ × Ω, U = (u1, u2, u3) ∈ Γ and the adjoint
variables Π = (λ1, λ2, λ3, λ4, λ5, λ6).
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Let us define the Lagrangian of our problems as follows:

L(Z,U,Π) = A1IH(t) +A2Im(t) +A3L(t)

+B1u
2
1 +B2u

2
2 +B3u

2
3

+λ1

(
bA(t)

(
1− E(t)

KE

)
− (s+ d+ εu3(t))E(t)

)
+λ2

(
sE(t)

(
1− L(t)

KL

)
− (sL + dL + dcu3(t))L(t)

)
+λ3 (sLL(t)− dmA(t))

+λ4 (− (bH + βH(1− u1(t))Im(t))SH(t) + bH)

+λ5 (βH(1− u1(t))Im(t)SH(t)− (γ + γ0u2(t) + bH)IH(t))

+λ6

(
−sL

L(t)

A(t)
Im(t) + βmIH(t)(1− u1(t))(1− Im(t))

)
−w11(u1 − a1)− w12(b1 − u1)− w21(u2 − a2)

−w22(b2 − u2)− w31(u3 − a3)− w32(b3 − u3),

(13)

where wij(t) ≥ 0 are the penalty multipliers satisfying

w11(t)(u1(t)− a1) = w12(t)(b1 − u1(t)) = 0 at optimal control u∗1,

w21(t)(u2(t)− a2) = w22(t)(b2 − u2(t)) = 0 at optimal control u∗2

and

w31(t)(u3(t)− a3) = w32(t)(b3 − u3(t)) = 0 at optimal control u∗3.

Theorem 3.3. Given an optimal control (u∗1, u
∗
2, u
∗
3) and solutions E,L,A, SH , IH ,

and Im of the corresponding state system (8), there exist adjoint variables
Π = (λ1, λ2, λ3, λ4, λ5, λ6) satisfying,

λ̇1 = −
(
λ1[−b A

KE
− (s+ d+ εu3)] + λ2s(1−

L

KL
)

)
λ̇2 = −

(
A3 + λ2[−s E

KL
− (sL + dL + dcu3)] + λ3sL − λ6sL

Im
A

)
λ̇3 = −

(
λ1b(1−

E

KE
)− λ3dm + λ6sL

L

A2
Im

)
λ̇4 = − (−λ4[(bH + βH(1− u1)Im)] + λ5βH(1− u1)Im)

λ̇5 = − (A1 − λ5(γ + γ0u2 + bH) + λ6βm(1− u1)(1− Im))

λ̇6 = −
(
A2 − λ4βH(1− u1)SH + λ5βH(1− u1)SH

−λ6

[
sL
L

A
+ βmIH(1− u1)

])
,

(14)

with the terminal condition

λi(T ) = 0 for i = 1, ..., 6. (15)
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Furthermore, u∗1, u∗2 and u∗3 are represented by

u∗1 =

max

{
a1,min

{
b1,

1

2B1
[(λ5 − λ4)βHImSH + λ6βmIH(1− Im)]

}}
u∗2 = max

{
a2,min

{
b2,

1

2B2
(λ5γ0IH)

}}
u∗3 = max

{
a3,min

{
b3,

1

2B3
(λ1εE + λ2dcL)

}}
.

(16)

Proof. The form of the adjoint equations and terminal conditions are standard
results from Pontryagin’s Maximum Principle [36]. We differentiate the Lagrangian
(which is the Hamiltonian augmented with penalty terms for the control constraints)
with respect to states and then the adjoint system can be written as

λ̇1 = − ∂L
∂E

, λ̇2 = −∂L
∂L

, λ̇3 = −∂L
∂A

,

λ̇4 = − ∂L
∂SH

, λ̇5 = − ∂L
∂IH

, λ̇6 = − ∂L
∂Im

.

To obtain the optimal control given by (16), we also differentiate the Lagrangian
L, with respect to U = (u1, u2, u3) and set it equal to zero.

∂L
∂u1

= 2B1u1 + λ4βHImSH − λ5βHImSH

−λ6βmIH(1− Im)− w11 + w12 = 0,

∂L
∂u2

= 2B2u2 − λ5γ0IH − w21 + w22 = 0,

∂L
∂u3

= 2B3u3 − λ1εE − λ2dcL− w31 + w32 = 0.

Solving for the optimal control, we obtain

u∗1 =
1

2B1
[(λ5 − λ4)βHImSH + λ6βmIH(1− Im) + w11 − w12],

u∗2 =
1

2B2
[λ5γ0IH + w21 − w22],

u∗3 =
1

2B3
[(λ2dcL) + w31 − w32].

To determine an explicit expression for the optimal control without w11, w12, w21,
w22, w31 and w32 , we use a standard optimality technique involving the bounds
of control. We consider the three following cases.

• On the set {t | a1 < u∗1 < b1}, we have

w11(u∗1 − a1) = w12(b1 − u∗1) = 0⇒ w11 = w12 = 0.

Hence the optimal control is

u∗1 =
1

2B1
[(λ5 − λ4)βHImSH + λ6βmIH(1− Im)].

• On the set {t | u∗1 = b1}, we have

w11(u∗1 − a1) = w12(b1 − u∗1) = 0⇒ w11 = 0.
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Hence,

b1 = u∗1 =
1

2B1
[(λ5 − λ4)βHImSH + λ6βmIH(1− Im)− w12],

and then,

1

2B1
[(λ5 − λ4)βHImSH + λ6βmIH(1− Im) ≥ b1 since w12(t) > 0.

• On the set {t | u∗1 = a1}, we have

w11(u∗1 − a1) = w12(b1 − u∗1) = 0⇒ w12 = 0.

Hence,

a1 = u∗1 =
1

2B1
[(λ5 − λ4)βHImSH + λ6βmIH(1− Im)− w11],

and then,

1

2B1
[(λ5 − λ4)βHImSH + λ6βmIH(1− Im)] ≤ a1 since w11(t) > 0,

which, in compact notation, reads as

u∗1 =

max

{
a1,min

{
b1,

1

2B1
[(λ5 − λ4)βHImSH + λ6βmIH(1− Im)]

}}
.

• On the set {t | a2 < u∗2 < b2}, we have

w21(u∗2 − a2) = w22(b2 − u∗2) = 0⇒ w21 = w22 = 0.

Hence the optimal control is

u∗2 =
1

2B2
[λ5γ0IH ].

• On the set {t | u∗2 = b2}, we have

w21(u∗2 − a2) = w22(b2 − u∗2) = 0⇒ w21 = 0.

Hence,

b2 = u∗2 =
1

2B2
[λ5γ0IH + w22],

and then,
1

2B2
[λ5γ0IH ] ≥ b2 since w22(t) ≥ 0.

• On the set {t | u∗2 = a2}, we have

w21(u∗2 − a2) = w22(b2 − u∗2) = 0⇒ w22 = 0.

Hence,

a2 = u∗2 =
1

2B2
[λ5γ0IH − w21],

and then,
1

2B2
[λ5γ0IH ] ≤ a2 since w12(t) ≥ 0,

which, in compact notation, reads as

u∗2 = max

{
a2,min

{
b2,

1

2B2
(λ5γ0IH)

}}
.
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• On the set {t | a3 < u∗3 < b3}, we have

w31(u∗3 − a3) = w32(b3 − u∗3) = 0⇒ w31 = w32 = 0.

Hence the optimal control is

u∗3 =
1

2B3
(λ1εE + λ2dcL).

• On the set {t | u∗3 = b3}, we have

w31(u∗3 − a3) = w32(b3 − u∗3) = 0⇒ w31 = 0.

Hence

b3 = u∗3 =
1

2B3
[λ1εE + λ2dcL+ w32],

and then,
1

2B3
(λ2dcL) ≥ b3 since w32(t) ≥ 0.

• On the set {t | u∗3 = a3}, we have

w31(u∗3 − a3) = w32(b3 − u∗3) = 0⇒ w32 = 0.

Hence,

a3 = u∗3 =
1

2B3
[λ1εE + λ2dcL− w31],

and then,
1

2B3
(λ1εE + λ2dcL) ≤ a3 since w13(t) ≥ 0,

which, in compact notation, reads as

u∗3 = max

{
a3,min

{
b3,

1

2B3
(λ1εE + λ2dcL)

}}
.

The optimality system contains the state system (8) with initial condition Z(0),
the adjoint system (14) with terminal condition (15), and the optimality condition
(16).

4. Numerical results. First of all, note that the optimality system is a two-point
boundary problem. Indeed the state (8) is solved forward in time with initial con-
ditions Z(0) = (100, 40, 10, 0.9, 0.1, 0.2) while the adjoint (or costate) system (14)
is solved backward in time with terminal conditions Π(T ) = (0, 0, 0, 0, 0, 0), where
T = 100 days. We implemented a gradient method, using standard Matlab routines,
to solve numerically the optimality system . First of all, we solve the state system
and the costate system with an initial guess control (u1(t), u2(t), u3(t)) = (0, 0, 0).
The state system is solved forward in time while the costate system is solved back-
ward in time. Then, we update control functions using the optimality condition
given by (16) in each iteration. Iterations continue until convergence is achieved.

In the objective functional (11) weight constant values are chosen as follows:

A1 = A2 = 10000, A3 = 1, B1 = B2 = B3 = 10,

since the mosquito population dynamic and the virus transmission dynamics and
control functions are on different scales. The other parameters are given in table 1.
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Parameter Description Value

b per capita oviposition rate 1 or 6
KE carrying capacity for eggs 1000
ε chemical eggs mortality rate 0.001
KL carrying capacity for larvae 500
s transfer rate from eggs to larvae 0.7
sL transfer rate from larvae to mosquitoes 0.5
d eggs death rate 0.2 or 0.4
dL larvae natural mortality rate 0.2 or 0.4
dc chemical larvae mortality rate 0.3
dm adult mosquitoes mortality rate 0.25 or 0.5
bH human birth rate 0.0000457
βH effective contact rate human → vector 0.2 or 0.75
βm effective contact rate vector →human 0.1 or 0.5
γH natural recovery rate 0.1428
γ0 recovery rate induced by treatment 0.3

Table 1. Values of parameters in the chikungunya model. Most of
the values were obtained from entomologists and given for instance
in [6, 13, 20, 12, 19].

At first, we look for three optimal control functions u1, u2 and u3 for prevention,
treatment and proliferation mosquito control respectively. Numerical results are
obtained for different values of b (oviposition rate), dE , dL, dm (mortality rates), βH
and βm (effective contact rates), while keeping the remaining parameters unchanged
in each simulation.

By performing numerical simulations with different parameter sets, we investigate
effects of the threshold parameter, r, and the basic reproduction, R0, governing the
dynamics of the mosquito stage population and the proportion of individuals in
each class, respectively.

Data 1 : b = 1, d = 0.4, dL = 0.4, dm = 0.5, βH = 0.2,

βm = 0.1. In this case r = 0.7071, R0 = 0.2800.

Data 2 : b = 1, d = 0.4, dL = 0.4, dm = 0.5, βH = 0.75,

βm = 0.5. In this case r = 0.7071, R0 = 5.2504

Data 3 : b = 6, d = 0.2, dL = 0.2, dm = 0.25, βH = 0.2,

βm = 0.1. In this case r = 13.3333, R0 = 0.5600.

Data 4 : b = 6, d = 0.2, dL = 0.2, dm = 0.25, βH = 0.75,

βm = 0.5. In this case r = 13.3333, R0 = 10.5008.

Optimal strategies, optimal solutions, the threshold parameter, r and the basic
reproduction, R0 suggested by Data 1, Data 2, Data 3 and Data 4, are illustrated
in Figs. 2-Fig. 5, respectively. These optimal solutions (solid line), together with
non-optimal solutions (dashed line) corresponding to no control functions (that is,
u1 = u2 = u3 = 0) are presented in (b) and (c) for comparison. In Data 1 and 2, all
stages of the vector population without any control become extinct. By contrast, in
Data 3 and 4, a certain level of all stages of the vector population is maintained, as
we expect in Theorem 2.1 (see (c) in all figures). From (a) in all figures, we observe
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that, in the case of Data 1 and Data 2, that is for r < 1, almost no efforts on the
vector control u3 are recommended, while the full efforts on the vector control are
needed in the case of Data 3 and Data 4, that is for r > 1. Notable features include
that the shapes of optimal solutions (solid line) are much better than those of
solutions (dashed line) of the system without control (see (b) and (c) in all figures).
For example, the number of susceptible human with optimal control keeps staying
on high level, and the number of infected human with optimal control keeps staying
on low level.

Indeed, in Fig.2 and Fig.3, the adapted threshold parameter including control

function, given by r(t) =
b

(s+ d+ εu3(t))

s

(sL + dL + dcu3(t))

sL
dm

remains less than

one in both cases, hence, the mosquito population density is described by a rapidly
decreasing function on the time interval [0, T ].

In the cases of Fig. 4 and Fig. 5, the reduction of the density of all infected
populations is due to a reduction of the second reproduction number given by

R0(t) =
βmβH(1− u1(t))2

dm(sL + dL + dcu2(t))
(see Fig. 5(e)) when applying control functions

while the threshold parameter r(t) remains larger than 1. In Fig. 4, optimal control
allows to reduce the function R0(t) less than 1 in the interval of high epidemic level,
Fig. 4(e). In this case, there is only one trivial equilibrium point which is stable and
then all trajectories tend to (1,0,0), Fig. 4(b). Moreover in Fig. 5, at the beginning
of the epidemic, we have to apply full efforts for all controls.

Then, effort on prevention u1 have to be more important than effort for treat-
ment, since the epidemics tends to extinction. Thus, efforts have to focus on the
prevention that will stabilize populations in order to prevent the appearance of
another epidemic peak. Of course, at the end of control measures time T, R0(t)
returns to its initial value. As said before, in the case of R0(t) < 1, full effort has to
be applied at the beginning of the epidemic, until the peak is reached, then unlike
the previous case, more effort focus on the treatment of patients, since the epidemic
tends to the trivial equilibrium. Thus, numerical results suggest that the optimal
strategies should be changed depending on the dynamics of the vector population
and the transmission of the virus to human population.

5. Conclusion. In this paper, an optimal control model to assess the effective-
ness of three measures to reduce the number of chikungunya infected humans is
done. Several governmental plans, like in France, focus in the use of insecticides
to eradicate in the areas where the Aedes albopictus mosquito is newly established.
Moreover, even if in several regions, infection has not been yet observed, recom-
mendations and information to limit the mosquito proliferation to population are
done. Of course, all interventions or strategies may not be efficient without human
mobilization. For instance, after each rainfall, it is advisable to check around the
houses regularly and systematically empty or clean all the water receptacles where
mosquitoes could lay eggs.

The first action, consists in the reduction of the number of host-vector contact
rate due to human prevention. Time dependent intervention strategies have been
implemented, in the present work, to limit the bad effects of vector-borne disease
on a finite time interval. This model allows to determine activities to be intensified
in appropriate time intervals [0, T ] relevant to disease outbreak. Of course, such
strategies allow to control the epidemic on a short time interval and not to predict
the long term of the disease dynamics. In this paper we analyzed the optimal
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control using the functional J in terms of quadratic forms. Minimizing the cost, we
obtained the optimal controls u1,u2 and u3, where IH , Im and L are minimized.
The main conclusion based on results furnished by all these strategies, when the
mosquito is established, is that high application of larvicide or measures to control
the proliferation of mosquitoes is needed during all the interval [0, T ] even if the
peak of epidemic is passed. Then, we observe various scenarios depending on the
mosquito population and virus transmission dynamics. Specific strategies may be
considered in case of an ongoing epidemic. Moreover strategies depend on the
expected objectives (prevention of an epidemic, focus on patients treatment, etc.).
If we are only interested in weakening the vector independently of the virus, then
our attention will focus on the model describing the vector dynamics. Therefore, we
only have to consider the first three equations of system (8). The optimal control
consists, in this case, in the control u3.

REFERENCES

[1] B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne and E.

S. Rosenberg, HIV dynamics: Modeling, data analysis, and optimal treatment protocols, J.
Comput. Appl. Math., 184 (2005), 10–49.

[2] B. M. Adams, H. T. Banks, H.-D. Kwon and H. T. Tran, Dynamic multidrug therapies for

HIV: Optimal and STI control approaches, Mathematical Biosciences and Engineering, 1
(2004), 223–241.

[3] J. Adhami and P. Reiter, Introduction and establishment of Aedes (Stegomyia) albopictus

skuse (diptera : Culicidae) in Albania, American Mosquito Control Association, 14 (1998),
340–343.

[4] N. Alphey, M. B. Bonsall and L. Alphey, Modeling resistance to genetic control of insects,

Journal of Theoretical Biology, 270 (2011), 42–55.
[5] Be dry with mosquitoes, 2011. Available from: http://www.albopictus.eid-med.org/.
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Figure 2. Numerical simulations with b = 1, d = 0.4, dL = 0.4,
dm = 0.5, βH = 0.2 and βm = 0.1. On this case r = 0.7071 < 1 and
R0 = 0.2800 < 1. (a) Optimal control functions: prevention (–),
treatment (– –), vector control (–·); (b) Solutions for susceptible
and infected human and infected vector: optimal solutions (–),
solutions without controls (– –); (c) Solutions for eggs, larvae and
adults of vector: optimal solutions (–), solutions without controls (–
–); (d) Threshold parameter with the optimal control functions (–)
and without the control functions ( – –); (e) Second reproductive
number with the optimal control functions (–) and without the
control functions (– –).
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Figure 3. Numerical simulations with b = 1, d = 0.4, dL =
0.4, dm = 0.5, βH = 0.75, and βm = 0.5. On this case r =
0.7071 < 1 and R0 = 5.2504 > 1. (a) Optimal control functions:
prevention (–), treatment (– –), vector control (–·); (b) Solutions
for susceptible and infected human and infected vector: optimal
solutions (–), solutions without controls (– –); (c) Solutions for
eggs, larvae and adults of vector: optimal solutions (–), solutions
without controls (– –); (d) Threshold parameter with the optimal
control functions (–) and without the control functions ( – –); (e)
Second reproductive number with the optimal control functions (–)
and without the control functions (– –).
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Figure 4. Numerical simulations with b = 6, d = 0.2, dL =
0.2, dm = 0.25, βH = 0.2, and βm = 0.1. On this case r =
13.3333 > 1 and R0 = 0.5600 < 1. (a) Optimal control functions:
prevention (–), treatment (– –), vector control (–·); (b) Solutions
for susceptible and infected human and infected vector: optimal
solutions (–), solutions without controls (– –); (c) Solutions for
eggs, larvae and adults of vector: optimal solutions (–), solutions
without controls (– –); (d) Threshold parameter with the optimal
control functions (–) and without the control functions ( – –); (e)
Second reproductive number with the optimal control functions (–)
and without the control functions (– –).
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Figure 5. Numerical simulations with b = 6, d = 0.2, dL =
0.2, dm = 0.25, βH = 0.75, and βm = 0.5. On this case r =
13.3333 > 1 and R0 = 10.5008 > 1. (a) Optimal control functions:
prevention (–), treatment (– –), vector control (–·); (b) Solutions
for susceptible and infected human and infected vector: optimal
solutions (–), solutions without controls (– –); (c) Solutions for
eggs, larvae and adults of vector: optimal solutions (–), solutions
without controls (– –); (d) Threshold parameter with the optimal
control functions (–) and without the control functions ( – –); (e)
Second reproductive number with the optimal control functions (–)
and without the control functions (– –).
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